normal.py 11.0 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy as np
17
import paddle
18
from paddle.distribution import distribution
19
from paddle.fluid.data_feeder import check_type, convert_dtype
20
from paddle.fluid.framework import _non_static_mode
21 22 23 24 25 26 27 28
from paddle.fluid.layers import (
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    nn,
    tensor,
)

29 30 31 32
try:
    from collections.abc import Iterable
except:
    from collections import Iterable
33 34


35
class Normal(distribution.Distribution):
36 37 38 39 40 41 42 43
    r"""The Normal distribution with location `loc` and `scale` parameters.

    Mathematical details

    The probability density function (pdf) is

    .. math::

44
        pdf(x; \mu, \sigma) = \frac{1}{Z}e^{\frac {-0.5 (x - \mu)^2}  {\sigma^2} }
45 46 47 48 49 50 51 52 53 54 55 56

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
57 58
        loc(int|float|list|tuple|numpy.ndarray|Tensor): The mean of normal distribution.The data type is float32 and float64.
        scale(int|float|list|tuple|numpy.ndarray|Tensor): The std of normal distribution.The data type is float32 and float64.
59 60 61 62
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            import paddle
            from paddle.distribution import Normal

            # Define a single scalar Normal distribution.
            dist = Normal(loc=0., scale=3.)
            # Define a batch of two scalar valued Normals.
            # The first has mean 1 and standard deviation 11, the second 2 and 22.
            dist = Normal(loc=[1., 2.], scale=[11., 22.])
            # Get 3 samples, returning a 3 x 2 tensor.
            dist.sample([3])

            # Define a batch of two scalar valued Normals.
            # Both have mean 1, but different standard deviations.
            dist = Normal(loc=1., scale=[11., 22.])

            # Complete example
            value_tensor = paddle.to_tensor([0.8], dtype="float32")

            normal_a = Normal([0.], [1.])
            normal_b = Normal([0.5], [2.])
            sample = normal_a.sample([2])
            # a random tensor created by normal distribution with shape: [2, 1]
            entropy = normal_a.entropy()
            # [1.4189385] with shape: [1]
            lp = normal_a.log_prob(value_tensor)
            # [-1.2389386] with shape: [1]
            p = normal_a.probs(value_tensor)
            # [0.28969154] with shape: [1]
            kl = normal_a.kl_divergence(normal_b)
            # [0.34939718] with shape: [1]
94 95 96
    """

    def __init__(self, loc, scale, name=None):
J
Jiabin Yang 已提交
97
        if not _non_static_mode():
98 99 100 101 102 103 104 105 106 107 108 109
            check_type(
                loc,
                'loc',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Normal',
            )
            check_type(
                scale,
                'scale',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Normal',
            )
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

        self.batch_size_unknown = False
        self.all_arg_is_float = False
        self.name = name if name is not None else 'Normal'
        self.dtype = 'float32'

        if isinstance(loc, int):
            loc = float(loc)
        if isinstance(scale, int):
            scale = float(scale)

        if self._validate_args(loc, scale):
            self.batch_size_unknown = True
            self.loc = loc
            self.scale = scale
            self.dtype = convert_dtype(loc.dtype)
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
129 130 131 132
            if isinstance(loc, np.ndarray) and str(loc.dtype) in [
                'float32',
                'float64',
            ]:
133
                self.dtype = loc.dtype
134 135 136 137
            elif isinstance(scale, np.ndarray) and str(scale.dtype) in [
                'float32',
                'float64',
            ]:
138 139 140 141 142 143
                self.dtype = scale.dtype
            # pylint: disable=unbalanced-tuple-unpacking
            self.loc, self.scale = self._to_tensor(loc, scale)
            if self.dtype != convert_dtype(self.loc.dtype):
                self.loc = tensor.cast(self.loc, dtype=self.dtype)
                self.scale = tensor.cast(self.scale, dtype=self.dtype)
144
        super().__init__(self.loc.shape)
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    @property
    def mean(self):
        """Mean of multinomial distribuion.

        Returns:
            Tensor: mean value.
        """
        return self.loc

    @property
    def variance(self):
        """Variance of lognormal distribution.

        Returns:
            Tensor: variance value.
        """
        return self.scale.pow(2)

    def sample(self, shape=(), seed=0):
165 166 167
        """Generate samples of the specified shape.

        Args:
168
            shape (Sequence[int], optional): Shape of the generated samples.
169
            seed (int): Python integer number.
170 171

        Returns:
172
            Tensor, A tensor with prepended dimensions shape.The data type is float32.
173 174

        """
175 176 177
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

J
Jiabin Yang 已提交
178
        if not _non_static_mode():
179 180
            check_type(seed, 'seed', (int), 'sample')

181
        shape = list(shape)
182 183 184 185 186 187
        batch_shape = list((self.loc + self.scale).shape)
        name = self.name + '_sample'

        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
188 189
                self.loc + self.scale, batch_shape + shape, self.dtype, 0.0
            )
190 191
            zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
            zero_tmp_shape = nn.shape(zero_tmp_reshape)
192 193 194
            normal_random_tmp = nn.gaussian_random(
                zero_tmp_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype
            )
195 196 197 198 199
            output = normal_random_tmp * (zero_tmp_reshape + self.scale)
            output = elementwise_add(output, self.loc, name=name)
            return output
        else:
            output_shape = shape + batch_shape
200
            output = nn.gaussian_random(
201 202
                output_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype
            ) * (tensor.zeros(output_shape, dtype=self.dtype) + self.scale)
203 204 205 206 207 208
            output = elementwise_add(output, self.loc, name=name)
            if self.all_arg_is_float:
                return nn.reshape(output, shape, name=name)
            else:
                return output

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    def rsample(self, shape=()):
        """Generate reparameterized samples of the specified shape.

        Args:
          shape (Sequence[int], optional): Shape of the generated samples.

        Returns:
          Tensor: A tensor with prepended dimensions shape.The data type is float32.

        """
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

        shape = self._extend_shape(tuple(shape))
        eps = paddle.normal(shape=shape)
224
        return self.loc + eps * self.scale
225

226 227 228 229 230 231 232
    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

233
            entropy(\sigma) = 0.5 \log (2 \pi e \sigma^2)
234 235 236 237 238 239

        In the above equation:

        * :math:`scale = \sigma`: is the std.

        Returns:
240
            Tensor, Shannon entropy of normal distribution.The data type is float32.
241 242 243 244

        """
        name = self.name + '_entropy'
        batch_shape = list((self.loc + self.scale).shape)
245 246 247 248 249 250 251 252
        zero_tmp = tensor.fill_constant_batch_size_like(
            self.loc + self.scale, batch_shape, self.dtype, 0.0
        )
        return elementwise_add(
            0.5 + zero_tmp,
            0.5 * math.log(2 * math.pi) + nn.log((self.scale + zero_tmp)),
            name=name,
        )
253 254 255 256 257 258 259 260

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
261
          Tensor: log probability.The data type is same with :attr:`value` .
262 263 264 265 266 267 268

        """
        name = self.name + '_log_prob'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
        log_scale = nn.log(self.scale)
269 270 271 272 273
        return elementwise_sub(
            -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var),
            log_scale + math.log(math.sqrt(2.0 * math.pi)),
            name=name,
        )
274 275 276 277 278

    def probs(self, value):
        """Probability density/mass function.

        Args:
279
            value (Tensor): The input tensor.
280 281

        Returns:
282
            Tensor, probability. The data type is same with :attr:`value` .
283 284 285 286 287 288

        """
        name = self.name + '_probs'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
289
        return elementwise_div(
290
            paddle.exp(
291 292 293 294 295
                -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var)
            ),
            (math.sqrt(2 * math.pi) * self.scale),
            name=name,
        )
296 297 298 299 300 301 302 303

    def kl_divergence(self, other):
        r"""The KL-divergence between two normal distributions.

        The probability density function (pdf) is

        .. math::

304
            KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\frac{diff}{\sigma_1})^2 - 1 - 2 \ln {ratio})
305 306 307

        .. math::

308
            ratio = \frac{\sigma_0}{\sigma_1}
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        .. math::

            diff = \mu_1 - \mu_0

        In the above equation:

        * :math:`loc = \mu_0`: is the mean of current Normal distribution.
        * :math:`scale = \sigma_0`: is the std of current Normal distribution.
        * :math:`loc = \mu_1`: is the mean of other Normal distribution.
        * :math:`scale = \sigma_1`: is the std of other Normal distribution.
        * :math:`ratio`: is the ratio of scales.
        * :math:`diff`: is the difference between means.

        Args:
            other (Normal): instance of Normal.

        Returns:
327
            Tensor, kl-divergence between two normal distributions.The data type is float32.
328 329

        """
J
Jiabin Yang 已提交
330
        if not _non_static_mode():
331 332 333 334
            check_type(other, 'other', Normal, 'kl_divergence')

        name = self.name + '_kl_divergence'
        var_ratio = self.scale / other.scale
335
        var_ratio = var_ratio * var_ratio
336
        t1 = (self.loc - other.loc) / other.scale
337 338 339 340
        t1 = t1 * t1
        return elementwise_add(
            0.5 * var_ratio, 0.5 * (t1 - 1.0 - nn.log(var_ratio)), name=name
        )