optimizer.py 60.5 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from collections import defaultdict

18 19
import numpy as np

20
import paddle
21 22
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid import core
23 24
from paddle.fluid.framework import (
    Variable,
25 26 27
    _current_expected_place,
    _in_eager_without_dygraph_check,
    _in_legacy_dygraph,
28 29
    default_main_program,
    device_guard,
30
    in_dygraph_mode,
31 32
    name_scope,
)
M
MRXLT 已提交
33

34
from ..fluid import framework, layers, unique_name
35
from ..fluid.backward import _get_no_grad_set_name, append_backward
36 37 38 39 40
from ..fluid.clip import (
    GradientClipBase,
    append_gradient_clip_ops,
    error_clip_callback,
)
41 42
from ..fluid.dygraph import base as imperative_base
from ..fluid.framework import Parameter, program_guard
M
MRXLT 已提交
43 44
from ..fluid.initializer import Constant
from ..fluid.layer_helper import LayerHelper
45
from .lr import LRScheduler
M
MRXLT 已提交
46

47 48
__all__ = []

M
MRXLT 已提交
49

50
@framework.static_only
51 52 53 54 55 56 57 58
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
59
    from paddle.incubate.autograd.primx import Transform, orig2prim
60

61
    program = default_main_program()
62 63 64
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
65
    block = program.current_block()
66
    for el in loss_list:
67 68 69
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


98
class Optimizer:
99
    r"""Optimizer Base class.
M
MRXLT 已提交
100 101 102 103 104 105

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
106 107
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
108
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
109 110 111 112
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
M
MRXLT 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
130 131
       Base class for optimizer.

M
MRXLT 已提交
132 133 134 135 136 137
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
138
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
139 140 141 142
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
143
            loss.backward()
M
MRXLT 已提交
144 145 146
            adam.step()
            adam.clear_grad()

147
            #Take the subclass sgd as an example
148
            #optimize parameters in linear_1 and linear2 in different options.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
165
                weight_decay=0.01)
R
Roc 已提交
166
            loss.backward()
167 168 169
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
170 171
    """

172
    @imperative_base.no_grad
173 174 175 176 177 178 179 180
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
181

182 183 184 185
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
186
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
187 188
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
189 190 191 192
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
193 194 195 196
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
197 198
                    " as list of dict"
                )
199 200 201 202
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
203
        self._name = name
J
Jiabin Yang 已提交
204
        if framework._non_static_mode():
M
MRXLT 已提交
205 206 207 208 209
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
210 211
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
212 213 214 215
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
216 217 218
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
219 220
                                % weight_decay.__str__()
                            )
221 222
                            break

223
        if not isinstance(learning_rate, (float, LRScheduler)):
224
            raise TypeError(
225 226 227
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
228 229 230 231 232 233 234
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            from ..fluid.regularizer import L2Decay
235

M
MRXLT 已提交
236 237 238 239 240
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
241

M
MRXLT 已提交
242
        self._dtype = None
L
Leo Chen 已提交
243 244
        # Infer the dtype form parameter
        if self._parameter_list:
245 246
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
247 248 249
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
250 251 252
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
253

M
MRXLT 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad
267 268
        self._default_dict = {
            'weight_decay': self.regularization,
269
            'grad_clip': self._grad_clip,
270 271 272 273 274 275 276 277
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
278

279
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
280
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
281 282
        self._use_multi_tensor = None

283
        self._param_dict = self._create_multi_tensor_dict()
284 285 286 287 288
        self._auxiliary_vars = {}

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

289 290 291 292 293 294 295
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

296 297 298
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
299 300 301
    @framework.dygraph_only
    def state_dict(self):
        '''
302
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
303 304
        If the optimizer never be called(minimize function), the state_dict is empty.

305
        Args:
M
MRXLT 已提交
306 307 308 309
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
310

M
MRXLT 已提交
311 312 313 314
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
315
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
316 317 318 319 320 321 322 323 324

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
325 326 327 328
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
329
        # global step if use lr decay
330
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
331 332 333 334 335 336
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
337
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
338

339
        Args:
M
MRXLT 已提交
340 341 342
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
343

M
MRXLT 已提交
344 345 346 347 348
        Examples:
            .. code-block:: python

                import paddle

349
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
350

351 352
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
353

354
                scheduler = paddle.optimizer.lr.NoamDecay(
355 356 357 358 359 360
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
361

362
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
363 364 365
                adam.set_state_dict(opti_state_dict)

        '''
366
        if isinstance(self._learning_rate, LRScheduler):
367
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
368

369
        # NOTE: exclude learning rate scheduler's state from
370 371 372 373
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
374 375 376 377
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
378 379 380
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
381 382 383
                assert (
                    var_tmp.name in state_dict
                ), "optimizer Tensor {} not found".format(var_tmp.name)
M
MRXLT 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
397 398 399 400 401 402 403 404 405 406 407
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
408

409 410 411 412 413
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
414 415 416 417 418 419 420

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
421
        # lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr
422 423 424 425 426 427
        _lr_dtype = (
            paddle.get_default_dtype() if self._dtype is None else self._dtype
        )
        _lr_dtype = (
            paddle.float32
            if (
428 429 430 431 432 433 434 435
                (
                    paddle.get_default_dtype() != "float16"
                    and _lr_dtype == paddle.float16
                )
                or (
                    paddle.get_default_dtype() != "bfloat16"
                    and _lr_dtype == paddle.bfloat16
                )
436 437 438
            )
            else _lr_dtype
        )
439
        if isinstance(self._learning_rate, LRScheduler):
440 441 442 443 444
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
445 446 447 448 449 450 451
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype=_lr_dtype,
                )
452 453 454
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
M
MRXLT 已提交
455

456
                self._learning_rate_map[
457 458
                    framework.default_main_program()
                ] = lr_var
M
MRXLT 已提交
459

460 461
            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
462 463
                lr_var, initializer=Constant(value=lr_value)
            )
464 465 466
        elif isinstance(self._learning_rate, float):
            # only create global lr_var once
            lr = self._global_learning_rate()
M
MRXLT 已提交
467 468 469
            if isinstance(lr, framework.Variable):
                return
            else:
470 471 472
                self._learning_rate_map[
                    framework.default_main_program()
                ] = layers.create_global_var(
473 474 475
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
476
                    dtype=_lr_dtype,
477 478
                    persistable=True,
                )
M
MRXLT 已提交
479 480 481 482 483

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
484

485
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
486 487 488
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
489
            value (float): the value of learning rate
M
MRXLT 已提交
490 491 492

        Returns:
            None
493

M
MRXLT 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
516
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
517
            raise TypeError(
518
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
519 520
                % (type(value))
            )
521
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
522
            raise RuntimeError(
523
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
524
            )
525 526 527
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
528 529
            if in_dygraph_mode():
                place = _current_expected_place()
530 531 532 533 534 535 536
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
537 538

            elif _in_legacy_dygraph():
539 540 541 542 543 544 545 546 547
                _legacy_C_ops.fill_constant(
                    current_lr,
                    'value',
                    float(value),
                    'dtype',
                    current_lr.dtype,
                    'shape',
                    list(current_lr.shape),
                )
548 549
            else:
                global_block = framework.default_main_program().global_block()
550 551 552 553 554 555 556 557 558 559
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
560 561 562

    def get_lr(self):
        """
563
        Get current learning rate of optimizer.
564 565
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
566

M
MRXLT 已提交
567
        Returns:
568
            float: The current learning rate of optimizer.
M
MRXLT 已提交
569 570 571 572

        Examples:
            .. code-block:: python

573
                # train on default dynamic graph mode
M
MRXLT 已提交
574
                import paddle
575 576 577 578 579 580 581 582 583 584 585
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
586

587 588 589 590 591 592 593 594
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
595
                    adam.step()
596
                    scheduler.step()
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
616 617 618 619 620

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
621
            return self._learning_rate()
M
MRXLT 已提交
622 623 624 625 626 627 628 629 630 631 632

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
633
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
634 635 636 637 638 639 640
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
641 642 643 644
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
645
            else:
646 647 648 649
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
650 651
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
652 653 654
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

678 679 680 681 682 683 684 685 686 687
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
688 689 690 691 692 693 694 695 696 697 698
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
699 700 701 702
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
703
            if framework._non_static_mode():
M
MRXLT 已提交
704
                return self._accumulators[name][param.name]
705 706
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
707 708 709
                    name, param.name
                )
            )
710
        if shape is None:
M
MRXLT 已提交
711 712 713 714 715 716 717 718 719 720 721
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
722
            type=core.VarDesc.VarType.LOD_TENSOR
723 724
            if framework._in_eager_without_dygraph_check()
            else (param.type if type is None else type),
M
MRXLT 已提交
725
            shape=shape,
726 727
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
728 729
        if device is None:
            device = self._get_device_for_param(param.name)
730

W
wanghuancoder 已提交
731 732 733 734
        if (
            in_dygraph_mode()
            and (device == 'cpu' or isinstance(device, core.CPUPlace))
            and (not core.is_compiled_with_xpu())
735 736 737 738 739 740 741
        ):
            _C_ops.full_(
                var,
                var.shape,
                str(float(fill_value)),
                var.dtype,
                core.CPUPlace(),
742
            )
743 744 745 746 747
        else:
            with device_guard(device):
                self.helper.set_variable_initializer(
                    var, initializer=Constant(value=float(fill_value))
                )
M
MRXLT 已提交
748

J
Jiabin Yang 已提交
749
        if framework._non_static_mode():
M
MRXLT 已提交
750
            if len(self._accumulators_holder) > 0:
751 752 753 754 755
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
M
MRXLT 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
                var.set_value(self._accumulators_holder[var_name])

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
773 774 775 776
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
777 778
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
779 780 781
                    name, param.name
                )
            )
M
MRXLT 已提交
782 783 784 785
        return self._accumulators[name][param.name]

    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
786
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
787 788
                param_name = param_and_grad[0].name
                ops = target_block.ops
789 790
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
791 792 793 794 795
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
796 797
                            device_attr_name
                        )
M
MRXLT 已提交
798 799 800 801 802 803 804 805
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

806 807 808
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
836 837 838
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
839
            target_block = framework.default_main_program().blocks[
840 841
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
842 843 844

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
845

M
MRXLT 已提交
846 847
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
848 849
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
850 851
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
852
        ]:
853
            if (
854 855 856
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
857
            ):
858
                if isinstance(parameters_and_grads, list):
859
                    assert param_group_idx == 0
860 861 862 863 864 865 866
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
867
                        param_group_idx,
868
                    )
869 870
                else:
                    self._update_param_group(parameters_and_grads)
871 872 873 874 875 876 877
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
878
                        param_group_idx,
879
                    )
J
Jiabin Yang 已提交
880
            if framework._non_static_mode():
881
                self._append_optimize_multi_tensor_op(
882 883 884
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
885
                )
886
            else:
887 888 889
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
890 891 892
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
893
                for param_and_grad in parameters_and_grads:
894 895 896 897
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
898 899 900
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
901 902
                    param_grad_list
                ), name_scope("optimizer"):
903 904 905
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
906 907 908
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
909
                        )
910
        else:
J
Jiabin Yang 已提交
911
            if not framework._non_static_mode():
912 913 914 915 916 917 918 919
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
920

921
            if isinstance(parameters_and_grads, list):
922 923 924 925 926 927 928 929
                self._create_accumulators(
                    target_block,
                    [
                        p[0]
                        for p in parameters_and_grads
                        if not p[0].stop_gradient
                    ],
                )
930
            else:
931 932
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
933 934
                    p[0]
                    for p in params_acc_dict['params']
935 936 937 938
                    if not p[0].stop_gradient
                ]
                self._create_accumulators(target_block, params_acc_dict)

J
Jiabin Yang 已提交
939
            if framework._non_static_mode():
940 941 942 943 944
                if isinstance(parameters_and_grads, list):
                    for param_and_grad in parameters_and_grads:
                        if param_and_grad[1] is None:
                            continue
                        if param_and_grad[0].stop_gradient is False:
945 946 947
                            self._append_optimize_op(
                                target_block, param_and_grad
                            )
948 949 950 951 952 953 954
                else:
                    for param_and_grad in parameters_and_grads['params']:
                        if param_and_grad[1] is None:
                            continue
                        if param_and_grad[0].stop_gradient is False:
                            param_grad_dict = dict()
                            param_grad_dict['params'] = param_and_grad
955 956 957 958 959 960 961 962 963 964
                            param_grad_dict.update(
                                {
                                    k: v
                                    for k, v in parameters_and_grads.items()
                                    if k != 'params'
                                }
                            )
                            self._append_optimize_op(
                                target_block, param_grad_dict
                            )
965 966
            else:
                for param_and_grad in parameters_and_grads:
967 968
                    if param_and_grad[1] is None:
                        continue
969
                    with param_and_grad[0].block.program._optimized_guard(
970 971
                        param_and_grad
                    ), name_scope("optimizer"):
972
                        if param_and_grad[0].stop_gradient is False:
973
                            device = self._get_device_for_param(
974 975
                                param_and_grad[0].name
                            )
976 977
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
978 979
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
980 981 982 983 984 985 986 987 988 989 990

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

991 992 993 994 995 996 997 998
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
1024 1025
                x = paddle.arange(26, dtype="float32").reshape([2, 13])

M
MRXLT 已提交
1026
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1027
                # This can be any optimizer supported by dygraph.
1028
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1029
                                            parameters = linear.parameters())
1030
                out = linear(x)
M
MRXLT 已提交
1031 1032 1033 1034 1035
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
1036
        if framework._non_static_mode():
M
MRXLT 已提交
1037 1038 1039 1040
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1041 1042 1043 1044
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
1045
        if framework._non_static_mode():
1046
            parameter_list = parameters if parameters else self._parameter_list
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
            if framework.in_dygraph_mode():
                # It is very time-consuming to call c++ functions in a loop on the python side.
                # We put this part of the code on the c++ side to improve the speed in eager mode.
                params_grads = []
                grads = core.eager.get_all_grads(parameter_list)
                for index, grad in enumerate(grads):
                    if grad is not None:
                        params_grads.append((parameter_list[index], grad))
            else:
                # Keep the original code to support legacy mode.
                # Delete the else branch when the legacy mode exits.
                params_grads = []
                for param in parameter_list:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        # create gradient tensor
                        grad_var = param._grad_ivar()
                        params_grads.append((param, grad_var))
M
MRXLT 已提交
1067 1068 1069 1070
        else:
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
1071
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1072
            program = loss.block.program
1073 1074
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
M
MRXLT 已提交
1075
                "Maybe that you should call paddle.mean to process the current loss.".format(
1076 1077 1078 1079
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1080
            with program_guard(program, startup_program):
1081
                from paddle.incubate.autograd.utils import prim_enabled
1082

1083
                if prim_enabled():
1084 1085 1086
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1087
                else:
1088 1089 1090
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle

1112
                inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
M
MRXLT 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
                linear = paddle.nn.Linear(10, 10)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

            params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
1133 1134 1135
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1136 1137 1138 1139

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1140 1141 1142
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1154
        if framework._non_static_mode():
1155 1156 1157 1158
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1159 1160 1161
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1162
                    params_grads = self.append_regularization_ops(
1163 1164
                        params_grads, self.regularization
                    )
1165 1166 1167
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1168
                        params_grads['params'] = grad_clip(
1169 1170
                            params_grads['params']
                        )
1171

1172
                    params_grads['params'] = self.append_regularization_ops(
1173 1174
                        params_grads['params'], self.regularization
                    )
1175 1176 1177
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1178
        else:
1179
            assert param_group_idx == 0
M
MRXLT 已提交
1180 1181 1182 1183 1184
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1185
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1186
        """Create and add backward regularization Operators
1187

1188 1189 1190
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1191
        if grad is None or (
1192 1193 1194 1195 1196 1197
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1208
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1209
            return _C_ops.add_n([grad, regularization_term])
1210
        elif framework._in_legacy_dygraph():
1211
            return _legacy_C_ops.sum([grad, regularization_term])
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1224 1225
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1226 1227 1228

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1229
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1230 1231 1232

        return new_grad

1233 1234 1235
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1236
        r"""Create and add backward regularization Operators
1237

1238 1239 1240 1241
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1242

1243 1244 1245 1246 1247
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1248

1249 1250 1251
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1252

1253 1254 1255 1256
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1257
        if framework._non_static_mode():
1258
            for param, grad in parameters_and_grads:
1259
                new_grad = self._create_regularization_of_grad(
1260 1261
                    param, grad, regularization
                )
1262 1263 1264 1265 1266
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1267 1268 1269 1270 1271
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1272 1273 1274 1275
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1276 1277
                            % regularization.__str__()
                        )
1278 1279
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1280 1281
                            param, grad, regularization
                        )
1282 1283 1284
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1285 1286 1287
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1288
        param_no_trainable = set(
1289 1290
            [param.name for param in parameters if param.stop_gradient is True]
        )
M
MRXLT 已提交
1291 1292 1293 1294 1295 1296
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

    @framework.dygraph_only
1297
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1298 1299
        """
        Clear the gradients of all optimized parameters for model.
1300 1301

        If not, new gradient will accumulat on previous gradient.
1302 1303

        There are two method to clear grad: set_to_zero or delete grad.
1304

1305 1306
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1307

M
MRXLT 已提交
1308 1309
        Returns:
            None
1310

M
MRXLT 已提交
1311 1312 1313 1314
        Examples:
            .. code-block:: python

                import paddle
1315

1316
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1317
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1318
                # This can be any optimizer supported by dygraph.
1319
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1320 1321 1322 1323 1324 1325 1326
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1327
        param_list = []
1328
        if self._parameter_list is None or not isinstance(
1329 1330
            self._parameter_list[0], dict
        ):
1331 1332
            for p in self._parameter_list:
                if not p.stop_gradient:
1333
                    param_list.append(p)
1334 1335 1336 1337
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1338
                        param_list.append(p)
1339

J
Jiabin Yang 已提交
1340
        if _in_eager_without_dygraph_check():
1341
            for p in param_list:
1342
                p.clear_gradient(set_to_zero)
1343 1344
        else:
            core.clear_gradients(param_list, set_to_zero)
M
MRXLT 已提交
1345

1346
    @imperative_base.no_grad
1347 1348 1349
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1368 1369
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1370 1371 1372 1373
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1374

M
MRXLT 已提交
1375
                import paddle
M
MRXLT 已提交
1376
                linear = paddle.nn.Linear(10, 10)
1377 1378
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1379 1380 1381 1382 1383 1384 1385 1386
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1387
                loss.backward()
M
MRXLT 已提交
1388 1389 1390
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1391 1392 1393
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1394
        parameter_list = parameters if parameters else self._parameter_list
1395

1396 1397 1398 1399 1400 1401
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1402

1403 1404 1405
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1406 1407 1408

        return optimize_ops, params_grads

L
Leo Chen 已提交
1409
    @imperative_base.no_grad
M
MRXLT 已提交
1410 1411 1412
    @framework.dygraph_only
    def step(self):
        """
M
MRXLT 已提交
1413
        Execute the optimizer and update parameters once.
1414

M
MRXLT 已提交
1415 1416 1417 1418 1419 1420 1421
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
1422

1423
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1424
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1425
                # This can be any optimizer supported by dygraph.
1426
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
1427
                                        parameters = linear.parameters())
M
MRXLT 已提交
1428 1429 1430 1431 1432
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1443
            self._apply_optimize(
1444 1445 1446 1447
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
1448
            )
1449 1450 1451

        else:
            # optimize parameters in groups
1452
            for idx, param_group in enumerate(self._param_groups):
1453 1454 1455 1456 1457 1458 1459 1460
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1461 1462 1463
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
1464 1465 1466 1467
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
1468
                )
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1484 1485
                "but received set, please use list instead."
            )
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1499 1500
                "some parameters appear in more than one parameter group"
            )
1501 1502 1503 1504 1505

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                from ..fluid.regularizer import L2Decay
1506

1507 1508 1509 1510
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1511
            param.optimize_attr['learning_rate'] = param_group.get(
1512 1513
                'learning_rate', 1.0
            )
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1525 1526

    @framework.dygraph_only
1527
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1539
    def _append_optimize_multi_tensor_op(
1540
        self, target_block, parameters_and_grads, param_group_idx
1541
    ):
1542
        """
1543 1544 1545
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )