test_unsqueeze_op.py 9.2 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import unittest
17

18
import numpy as np
19

20 21
import paddle
import paddle.fluid as fluid
22
from op_test import OpTest
23

24
paddle.enable_static()
25 26 27


# Correct: General.
28
class TestUnsqueezeOp(OpTest):
29
    def setUp(self):
30
        self.init_test_case()
31
        self.op_type = "unsqueeze"
32
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float64")}
C
chenweihang 已提交
33
        self.init_attrs()
34
        self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)}
35 36

    def test_check_output(self):
37
        self.check_output()
38 39 40 41

    def test_check_grad(self):
        self.check_grad(["X"], "Out")

42
    def init_test_case(self):
Z
zhupengyang 已提交
43
        self.ori_shape = (3, 40)
44
        self.axes = (1, 2)
Z
zhupengyang 已提交
45
        self.new_shape = (3, 1, 1, 40)
46

C
chenweihang 已提交
47
    def init_attrs(self):
48
        self.attrs = {"axes": self.axes}
C
chenweihang 已提交
49

50

51 52 53
# Correct: Single input index.
class TestUnsqueezeOp1(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
54
        self.ori_shape = (20, 5)
55
        self.axes = (-1, )
Z
zhupengyang 已提交
56
        self.new_shape = (20, 5, 1)
57 58 59


# Correct: Mixed input axis.
60 61
class TestUnsqueezeOp2(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
62
        self.ori_shape = (20, 5)
63
        self.axes = (0, -1)
Z
zhupengyang 已提交
64
        self.new_shape = (1, 20, 5, 1)
65 66


67
# Correct: There is duplicated axis.
68 69
class TestUnsqueezeOp3(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
70
        self.ori_shape = (10, 2, 5)
71
        self.axes = (0, 3, 3)
Z
zhupengyang 已提交
72
        self.new_shape = (1, 10, 2, 1, 1, 5)
73 74


75 76 77
# Correct: Reversed axes.
class TestUnsqueezeOp4(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
78
        self.ori_shape = (10, 2, 5)
79
        self.axes = (3, 1, 1)
Z
zhupengyang 已提交
80
        self.new_shape = (10, 1, 1, 2, 5, 1)
81 82


83 84
class API_TestUnsqueeze(unittest.TestCase):
    def test_out(self):
85 86 87 88
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data1 = paddle.static.data('data1', shape=[-1, 10], dtype='float64')
89
            result_squeeze = paddle.unsqueeze(data1, axis=[1])
90 91
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
92 93 94 95 96 97 98 99 100
            input1 = np.random.random([5, 1, 10]).astype('float64')
            input = np.squeeze(input1, axis=1)
            result, = exe.run(feed={"data1": input},
                              fetch_list=[result_squeeze])
            self.assertTrue(np.allclose(input1, result))


class TestUnsqueezeOpError(unittest.TestCase):
    def test_errors(self):
101 102 103
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
104 105
            # The type of axis in split_op should be int or Variable.
            def test_axes_type():
106
                x6 = paddle.static.data(
107
                    shape=[-1, 10], dtype='float16', name='x3')
108
                paddle.unsqueeze(x6, axis=3.2)
109 110 111 112 113 114

            self.assertRaises(TypeError, test_axes_type)


class API_TestUnsqueeze2(unittest.TestCase):
    def test_out(self):
115 116 117 118 119
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data1 = paddle.static.data('data1', shape=[-1, 10], dtype='float64')
            data2 = paddle.static.data('data2', shape=[1], dtype='int32')
120
            result_squeeze = paddle.unsqueeze(data1, axis=data2)
121 122
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
123 124 125 126 127 128 129 130 131 132 133
            input1 = np.random.random([5, 1, 10]).astype('float64')
            input2 = np.array([1]).astype('int32')
            input = np.squeeze(input1, axis=1)
            result1, = exe.run(feed={"data1": input,
                                     "data2": input2},
                               fetch_list=[result_squeeze])
            self.assertTrue(np.allclose(input1, result1))


class API_TestUnsqueeze3(unittest.TestCase):
    def test_out(self):
134 135 136 137 138
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data1 = paddle.static.data('data1', shape=[-1, 10], dtype='float64')
            data2 = paddle.static.data('data2', shape=[1], dtype='int32')
139
            result_squeeze = paddle.unsqueeze(data1, axis=[data2, 3])
140 141
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
142 143 144 145 146 147
            input1 = np.random.random([5, 1, 10, 1]).astype('float64')
            input2 = np.array([1]).astype('int32')
            input = np.squeeze(input1)
            result1, = exe.run(feed={"data1": input,
                                     "data2": input2},
                               fetch_list=[result_squeeze])
L
Leo Chen 已提交
148 149
            self.assertTrue(np.array_equal(input1, result1))
            self.assertEqual(input1.shape, result1.shape)
150 151 152 153


class API_TestDyUnsqueeze(unittest.TestCase):
    def test_out(self):
154 155 156 157 158 159 160 161
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input1 = np.expand_dims(input_1, axis=1)
        input = paddle.to_tensor(input_1)
        output = paddle.unsqueeze(input, axis=[1])
        out_np = output.numpy()
        self.assertTrue(np.array_equal(input1, out_np))
        self.assertEqual(input1.shape, out_np.shape)
162 163 164 165


class API_TestDyUnsqueeze2(unittest.TestCase):
    def test_out(self):
166 167 168 169 170 171 172 173
        paddle.disable_static()
        input1 = np.random.random([5, 10]).astype("int32")
        out1 = np.expand_dims(input1, axis=1)
        input = paddle.to_tensor(input1)
        output = paddle.unsqueeze(input, axis=1)
        out_np = output.numpy()
        self.assertTrue(np.array_equal(out1, out_np))
        self.assertEqual(out1.shape, out_np.shape)
L
Leo Chen 已提交
174 175 176 177


class API_TestDyUnsqueezeAxisTensor(unittest.TestCase):
    def test_out(self):
178 179 180 181 182 183 184 185 186
        paddle.disable_static()
        input1 = np.random.random([5, 10]).astype("int32")
        out1 = np.expand_dims(input1, axis=1)
        out1 = np.expand_dims(out1, axis=2)
        input = paddle.to_tensor(input1)
        output = paddle.unsqueeze(input, axis=paddle.to_tensor([1, 2]))
        out_np = output.numpy()
        self.assertTrue(np.array_equal(out1, out_np))
        self.assertEqual(out1.shape, out_np.shape)
L
Leo Chen 已提交
187 188 189 190


class API_TestDyUnsqueezeAxisTensorList(unittest.TestCase):
    def test_out(self):
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        paddle.disable_static()
        input1 = np.random.random([5, 10]).astype("int32")
        # Actually, expand_dims supports tuple since version 1.18.0
        out1 = np.expand_dims(input1, axis=1)
        out1 = np.expand_dims(out1, axis=2)
        input = paddle.to_tensor(input1)
        output = paddle.unsqueeze(
            paddle.to_tensor(input1),
            axis=[paddle.to_tensor([1]), paddle.to_tensor([2])])
        out_np = output.numpy()
        self.assertTrue(np.array_equal(out1, out_np))
        self.assertEqual(out1.shape, out_np.shape)


class API_TestDygraphUnSqueeze(unittest.TestCase):
    def test_out(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
        output = paddle.unsqueeze(input, axis=[1])
        out_np = output.numpy()
        expected_out = np.expand_dims(input_1, axis=1)
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_int8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int8")
        input = paddle.to_tensor(input_1)
        output = paddle.unsqueeze(input, axis=[1])
        out_np = output.numpy()
        expected_out = np.expand_dims(input_1, axis=1)
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_uint8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("uint8")
        input = paddle.to_tensor(input_1)
        output = paddle.unsqueeze(input, axis=1)
        out_np = output.numpy()
        expected_out = np.expand_dims(input_1, axis=1)
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_axis_not_list(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
        output = paddle.unsqueeze(input, axis=1)
        out_np = output.numpy()
        expected_out = np.expand_dims(input_1, axis=1)
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_dimension_not_1(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
        output = paddle.unsqueeze(input, axis=(1, 2))
        out_np = output.numpy()
        expected_out = np.expand_dims(input_1, axis=1)
        self.assertTrue(np.allclose(expected_out, out_np))
250 251


252 253
if __name__ == "__main__":
    unittest.main()