提交 e4024962 编写于 作者: C chenweihang

complete unsqueeze op and related unittest.

上级 a1e7f2d5
......@@ -32,42 +32,85 @@ class UnsqueezeOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of UnsqueezeOp should not be null.");
const auto& x_dims = ctx->GetInputDim("X");
const auto& axes = ctx->Attrs().Get<std::vector<int>>("axes");
// Check output tensor dims (<9).
PADDLE_ENFORCE_LE(x_dims.size() + axes.size(), 9,
"Invalid dimnesions, dynamic dimensions must have "
"between [1, 9] dimensions.");
// Check the range of unsqueeze aixs.
for (int a : axes) {
PADDLE_ENFORCE_LT(a, static_cast<int64_t>(x_dims.size() + axes.size()),
"The axis must be less than output tensor's rank.");
PADDLE_ENFORCE(!axes.empty(),
"The unsqueeze axes information must be set by Attr(axes).");
const auto& x_dims = ctx->GetInputDim("X");
// Validity Check: input tensor dims (<6).
PADDLE_ENFORCE(x_dims.size() < 6,
"Invalid dimensions, dynamic dimensions should within "
"[0, 5] dimensions (Eigen limit).");
// Validity Check: the range of unsqueeze aixs.
// TODO(chenweihang): Don't consider negative axis?.
for (unsigned int idx = 0; idx < axes.size(); ++idx) {
PADDLE_ENFORCE(axes[idx] < 6,
"Invalid dimensions, input axis should within "
"[0, 5] dimensions (Eigen limit).");
}
auto out_dims = GetOutputShape(axes, x_dims);
ctx->SetOutputDim("Out", out_dims);
}
static framework::DDim GetOutputShape(const std::vector<int> unsqueeze_dims,
static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
const framework::DDim& in_dims) {
int out_dims_size = in_dims.size() + unsqueeze_dims.size();
bool should_unsqueeze[9] = {false};
// Determines the dimensions should be unsqueezed in output tensor after.
for (unsigned int idx = 0; idx < unsqueeze_dims.size(); ++idx) {
int current = unsqueeze_dims[idx] < 0
? unsqueeze_dims[idx] + out_dims_size
: unsqueeze_dims[idx];
// Check current index.
PADDLE_ENFORCE_GE(current, 0,
"Invaild axis, negative axis is out of range.");
should_unsqueeze[idx] = true;
/*
* STL version
* Test Error! don't know why?.
std::vector<int64_t> output_shape;
// Contruct base output shape
for(int idx = 0; idx < in_dims.size(); ++idx) {
output_shape.emplace_back(in_dims[idx]);
}
// Validity Check: output dimensions limit.
PADDLE_ENFORCE(unsqz_dims.size() + output_shape.size() < 6,
"The Attr(axes) size is too large. The output shape should "
"be less than 6 (Eigne limit).");
// Insert the unsqueeze axis in turn.
auto it = output_shape.begin();
for (int axis : unsqz_dims) {
int cur = axis < 0 ? (axis + output_shape.size() + 1)
: axis;
// Vaildity Check: the axis bound
PADDLE_ENFORCE(cur >= 0 && cur <= static_cast<int>(output_shape.size()),
"The unsqueeze dims must be within range of current
rank.");
output_shape.emplace(it + axis, 1);
}
*/
unsigned int unsqz_mask = 0;
unsigned int front = 0, back = 0;
int output_dims_size = in_dims.size();
// Simulate insert by bit calc.
for (int axis : unsqz_dims) {
int cur = axis < 0 ? axis + output_dims_size + 1 : axis;
// Vaildity Check: the axis bound
PADDLE_ENFORCE(
cur >= 0 && cur <= output_dims_size,
"The unsqueeze dims must be within range of current rank.");
// Save the front part.
front = unsqz_mask & ((1 << axis) - 1);
// Move the back part.
back = unsqz_mask & ~((1 << axis) - 1);
back <<= 1;
// Merge two part.
back |= (1 << axis);
unsqz_mask = front | back;
// Add the output size.
output_dims_size++;
// Validity Check: rank range.
PADDLE_ENFORCE(output_dims_size < 6,
"The output tensor's rank should be less than 6.");
}
// Make output dimensions
std::vector<int64_t> output_shape(out_dims_size, 0);
for (int in_idx = 0, out_idx = 0; out_idx < out_dims_size; ++out_idx) {
if (!should_unsqueeze[out_idx]) {
// Make output shape
std::vector<int64_t> output_shape(output_dims_size, 0);
for (int in_idx = 0, out_idx = 0; out_idx < output_dims_size; ++out_idx) {
if ((unsqz_mask & (1 << out_idx)) == 0) {
output_shape[out_idx] = in_dims[in_idx++];
} else {
output_shape[out_idx] = 1;
......@@ -94,15 +137,15 @@ class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
"tensor is created, and its data are copied from Input(x).")
.SetDefault(false);
AddComment(R"DOC(
Unsqueeze Operator.
Insert single-dimensional entries to the shape of a tensor.
Takes one required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
For example:
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
Unsqueeze Operator.
Insert single-dimensional entries to the shape of a tensor.
Takes one required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
For example:
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
)DOC");
}
};
......
......@@ -18,12 +18,12 @@ limitations under the License. */
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
squeeze, ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, float>,
unsqueeze, ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, float>,
ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, double>,
ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, int>,
ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
squeeze_grad,
unsqueeze_grad,
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, int>,
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -19,7 +19,7 @@ from op_test import OpTest
# Correct: General.
class TestSqueezeOp1(OpTest):
class TestUnsqueezeOp(OpTest):
def setUp(self):
ori_shape = (3, 5)
axes = (0, 2)
......@@ -38,7 +38,7 @@ class TestSqueezeOp1(OpTest):
# Correct: There is mins axis.
class TestSqueezeOp2(OpTest):
class TestUnsqueezeOp2(OpTest):
def setUp(self):
ori_shape = (3, 5)
axes = (0, -2)
......@@ -56,6 +56,82 @@ class TestSqueezeOp2(OpTest):
self.check_grad(["X"], "Out")
# Correct: There is duplicated axis.
class TestUnsqueezeOp3(OpTest):
def setUp(self):
ori_shape = (3, 2, 5)
axes = (0, 3, 3)
new_shape = (1, 3, 2, 1, 1, 5)
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Error: Output dimension is error.
class TestUnsqueezeOp4(OpTest):
def setUp(self):
ori_shape = (3, 2, 5)
axes = (0, 3)
new_shape = (1, 3, 2, 2, 5)
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Error: Input axes is invalid case 1.
class TestUnsqueezeOp5(OpTest):
def setUp(self):
ori_shape = (3, 2, 5)
axes = (0, 5)
new_shape = (1, 3, 1, 5)
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Error: Input axes is invalid case 2.
class TestUnsqueezeOp5(OpTest):
def setUp(self):
ori_shape = (3, 2, 5)
axes = (0, 2, 10)
new_shape = (1, 3, 1, 5)
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Correct: Inplace.
class TestUnsqueezeOpInplace1(OpTest):
def setUp(self):
......@@ -75,23 +151,23 @@ class TestUnsqueezeOpInplace1(OpTest):
self.check_grad(["X"], "Out")
# Correct: Inplace. There is mins axis.
# Correct: Inplace. There is duplicated axis.
class TestUnsqueezeOpInplace2(OpTest):
def setUp(self):
ori_shape = (3, 5)
axes = (0, -2)
new_shape = (1, 3, 1, 5)
ori_shape = (3, 2, 5)
axes = (0, 3, 3)
new_shape = (1, 3, 2, 1, 1, 5)
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": True}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
def test_check_grad(self):
self.check_grad(["X"], "Out")
if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册