test_unsqueeze_op.py 5.0 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

from op_test import OpTest


# Correct: General.
22
class TestUnsqueezeOp(OpTest):
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
    def setUp(self):
        ori_shape = (3, 5)
        axes = (0, 2)
        new_shape = (1, 3, 1, 5)

        self.op_type = "unsqueeze"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"axes": axes, "inpalce": False}
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


# Correct: There is mins axis.
41
class TestUnsqueezeOp2(OpTest):
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    def setUp(self):
        ori_shape = (3, 5)
        axes = (0, -2)
        new_shape = (1, 3, 1, 5)

        self.op_type = "unsqueeze"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"axes": axes, "inpalce": False}
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}

        def test_check_output(self):
            self.check_output()

        def test_check_grad(self):
            self.check_grad(["X"], "Out")


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
# Correct: There is duplicated axis.
class TestUnsqueezeOp3(OpTest):
    def setUp(self):
        ori_shape = (3, 2, 5)
        axes = (0, 3, 3)
        new_shape = (1, 3, 2, 1, 1, 5)

        self.op_type = "unsqueeze"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"axes": axes, "inpalce": False}
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}

        def test_check_output(self):
            self.check_output()

        def test_check_grad(self):
            self.check_grad(["X"], "Out")


# Error: Output dimension is error.
class TestUnsqueezeOp4(OpTest):
    def setUp(self):
        ori_shape = (3, 2, 5)
        axes = (0, 3)
        new_shape = (1, 3, 2, 2, 5)

        self.op_type = "unsqueeze"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"axes": axes, "inpalce": False}
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}

        def test_check_output(self):
            self.check_output()

        def test_check_grad(self):
            self.check_grad(["X"], "Out")


# Error: Input axes is invalid case 1.
class TestUnsqueezeOp5(OpTest):
    def setUp(self):
        ori_shape = (3, 2, 5)
        axes = (0, 5)
        new_shape = (1, 3, 1, 5)

        self.op_type = "unsqueeze"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"axes": axes, "inpalce": False}
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}

        def test_check_output(self):
            self.check_output()

        def test_check_grad(self):
            self.check_grad(["X"], "Out")


# Error: Input axes is invalid case 2.
class TestUnsqueezeOp5(OpTest):
    def setUp(self):
        ori_shape = (3, 2, 5)
        axes = (0, 2, 10)
        new_shape = (1, 3, 1, 5)

        self.op_type = "unsqueeze"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"axes": axes, "inpalce": False}
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}

        def test_check_output(self):
            self.check_output()

        def test_check_grad(self):
            self.check_grad(["X"], "Out")


135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
# Correct: Inplace.
class TestUnsqueezeOpInplace1(OpTest):
    def setUp(self):
        ori_shape = (3, 5)
        axes = (0, 2)
        new_shape = (1, 3, 1, 5)

        self.op_type = "unsqueeze"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"axes": axes, "inplace": True}
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


154
# Correct: Inplace. There is duplicated axis.
155 156
class TestUnsqueezeOpInplace2(OpTest):
    def setUp(self):
157 158 159
        ori_shape = (3, 2, 5)
        axes = (0, 3, 3)
        new_shape = (1, 3, 2, 1, 1, 5)
160 161 162 163 164 165

        self.op_type = "unsqueeze"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"axes": axes, "inpalce": True}
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}

166 167
        def test_check_output(self):
            self.check_output()
168

169 170
        def test_check_grad(self):
            self.check_grad(["X"], "Out")
171 172 173 174


if __name__ == "__main__":
    unittest.main()