compiler.py 51.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
X
polish  
Xin Pan 已提交
17
import sys
18
import warnings
X
Xin Pan 已提交
19
from . import framework
20
from .framework import _get_paddle_place, _get_paddle_place_list
21
from .framework import cuda_places, cpu_places, xpu_places
22 23
from . import core

J
jianghaicheng 已提交
24
__all__ = [
25 26 27 28 29
    'CompiledProgram',
    'ExecutionStrategy',
    'BuildStrategy',
    'IpuCompiledProgram',
    'IpuStrategy',
J
jianghaicheng 已提交
30
]
X
Xin Pan 已提交
31

32 33
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
34 35
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
36
DeviceType = core.DeviceType
37 38 39 40 41 42 43 44


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


45
def _is_pserver_mode(main_program):
46
    main = main_program if main_program else framework.default_main_program()
47 48 49 50 51 52
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


C
chengduo 已提交
53 54
def _has_backward_op(graph):
    for node in graph.nodes():
55 56 57 58 59
        if (
            node.is_op()
            and node.op() is not None
            and node.op().type().endswith("_grad")
        ):
C
chengduo 已提交
60 61 62 63
            return True
    return False


64 65 66 67
def _prune_feed_ops(program):
    # prune the feed ops in the program.
    pop_idx = []
    for i, op in enumerate(program.global_block().ops):
68 69
        if op.type == "feed":
            pop_idx.append(i)
70 71 72 73
    for index in pop_idx[::-1]:
        program.global_block()._remove_op(index)


74 75 76 77
def _has_optimize_op(block):
    for op in block.ops:
        op_maker = core.op_proto_and_checker_maker
        optimize = core.op_proto_and_checker_maker.OpRole.Optimize
78 79 80
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(optimize):
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
            return True
    return False


def _has_optimizer_in_control_flow(program):
    if not program:
        program = framework.default_main_program()
    for op in program.global_block().ops:
        if op.type == "conditional_block_grad":
            sub_block = program.block(op._block_attr_id("sub_block"))
            if _has_optimize_op(sub_block):
                return True

    return False


97 98 99 100 101 102
def _should_broadcast_or_not_exists(program, var_name):
    block = program.global_block()
    var = block.vars.get(var_name, None)
    if var is None:
        return True
    is_distributed = getattr(var, '_is_distributed', False) or getattr(
103 104
        var, 'is_distributed', False
    )
105 106 107
    return not is_distributed


108
class CompiledProgram:
X
polish  
Xin Pan 已提交
109
    """
110
    :api_attr: Static Graph
111

C
chengduo 已提交
112 113 114 115 116
    The CompiledProgram is used to transform a program or graph for
    various optimizations according to the configuration of build_strategy,
    for example, the operators' fusion in the computation graph, memory
    optimization during the execution of the computation graph, etc.
    For more information about build_strategy, please refer to
117
    :code:`paddle.static.BuildStrategy`.
X
polish  
Xin Pan 已提交
118

C
chengduo 已提交
119
    Args:
120
        program_or_graph (Graph|Program): This argument is the Program or Graph
C
chengduo 已提交
121
            being executed.
122
        build_strategy(BuildStrategy): This argument is used to compile the
C
chengduo 已提交
123 124 125
            program or graph with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
126
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
X
Xin Pan 已提交
127

C
chengduo 已提交
128 129
    Returns:
        CompiledProgram
X
polish  
Xin Pan 已提交
130 131

    Example:
X
Xin Pan 已提交
132
        .. code-block:: python
133

134 135 136
            import numpy
            import paddle
            import paddle.static as static
137

138
            paddle.enable_static()
139

140 141
            place = paddle.CUDAPlace(0) # paddle.CPUPlace()
            exe = static.Executor(place)
142

143
            data = static.data(name='X', shape=[None, 1], dtype='float32')
144
            hidden = static.nn.fc(x=data, size=10)
145 146
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
147

148 149 150 151 152 153 154 155
            exe.run(static.default_startup_program())
            compiled_prog = static.CompiledProgram(
                static.default_main_program())

            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(compiled_prog,
                                feed={"X": x},
                                fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
156 157
    """

C
chengduo 已提交
158
    def __init__(self, program_or_graph, build_strategy=None):
X
Xin Pan 已提交
159 160
        if isinstance(program_or_graph, core.Graph):
            self._graph = program_or_graph
161
            # don't not create a new program here.
X
Xin Pan 已提交
162 163
            self._program = None
        elif isinstance(program_or_graph, framework.Program):
164
            _prune_feed_ops(program_or_graph)
X
Xin Pan 已提交
165 166 167
            self._graph = core.Graph(program_or_graph.desc)
            self._program = program_or_graph
        else:
168 169
            raise TypeError(
                "The type of program_to_graph parameter is wrong, expected Graph or Program, but received %s"
170 171
                % type(program_or_graph)
            )
X
Xin Pan 已提交
172

X
polish  
Xin Pan 已提交
173 174 175
        self._scope = None
        self._place = None
        self._executor = None
176 177
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
178
        self._is_inference = False
C
chengduo 已提交
179 180 181 182 183
        self._loss_name = None
        self._share_vars_from = None
        self._places = None
        self._build_strategy = build_strategy
        self._exec_strategy = None
184

185 186 187 188 189 190 191 192
    def with_data_parallel(
        self,
        loss_name=None,
        build_strategy=None,
        exec_strategy=None,
        share_vars_from=None,
        places=None,
    ):
C
chengduo 已提交
193 194 195 196 197 198
        """
        This interface is used to transform the input Program or Graph to a multi-graph
        to run the model in data parallel mode. Users can use the build_strategy and
        exec_strategy to set some optimizations that can be applied during the construction
        and computation of the Graph, such as reducing the number of AllReduce operations,
        specifying the size of the thread pool used in the computation Graph running the model,
199 200
        and so on.

201
        .. note::
202 203 204
            If build_strategy is specified when building CompiledProgram and calling
            with_data_parallel, build_strategy in CompiledProgram will be overwritten, therefore,
            if it is data parallel training, it is recommended to set build_strategy when calling
205
            with_data_parallel interface.
C
chengduo 已提交
206 207

        Args:
208
            loss_name (str): This parameter is the name of the loss Tensor of the model.
C
chengduo 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                **Note: If it is model training, you must set loss_name, otherwise the
                result may be problematic**. The default is None.
            build_strategy(BuildStrategy): This parameter is used to compile the
                program or graph with the specified options, such as operators' fusion
                in the computational graph and memory optimization during the execution
                of the computational graph. For more information about build_strategy,
                please refer to :code:`fluid.BuildStrategy`. The default is None.
            exec_strategy(ExecutionStrategy): exec_strategy specifies the options that can
                be changed when running the current model, such as the thread pool size.
                For more information about exec_strategy, please refer to :code:`fluid.ExecutionStrategy`.
                The default is None.
            share_vars_from(CompiledProgram): If share_vars_from is set, the current
                CompiledProgram will share the parameter value with the CompiledProgram
                specified by share_vars_from. This parameter needs to be set when model testing
                is required during model training, and the data parallel mode is used for
                training and testing. Since CompiledProgram will only distribute parameter
225
                Tensors to other devices when it is first executed, the CompiledProgram
C
chengduo 已提交
226 227
                specified by share_vars_from must be run before the current CompiledProgram.
                The default is None.
228
            places(list(CUDAPlace)|list(CPUPlace)|list(str)|None): This parameter specifies the device
C
chengduo 已提交
229 230 231 232 233 234 235 236 237 238
                on which the model is running. If you want to run on GPU0 and GPU1, places are
                [fluid.CUDAPlace(0), fluid.CUDAPlace(1)]; if you want to run with 2 CPUs, places are
                [fluid.CPUPlace()] * 2. If the parameter is not set, i.e. the parameter is None,
                the available device will be obtained from the environment variable when the model
                is executed: If the GPU is used, the currently available device ID is obtained
                from the environment variable FLAGS_selected_gpus or CUDA_VISIBLE_DEVICES when
                the model is executed; CPU, when the model is executed, the currently available
                CPU number is obtained from the environment variable CPU_NUM. For example,
                export CPU_NUM=4, if the environment variable is not set, the executor will
                add the variable to the environment variable and set its value to 1.
239
                The default is None. If ``places`` is the list of string, the string in the list
240
                can be ``cpu``, ``gpu:x``, where ``x`` is the index of the GPUs.
C
chengduo 已提交
241 242 243

        Returns:
            CompiledProgram
X
Xin Pan 已提交
244

245 246 247
        Example:
            .. code-block:: python

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
                import numpy
                import os
                import paddle
                import paddle.static as static

                paddle.enable_static()

                use_cuda = True
                place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                parallel_places = [paddle.CUDAPlace(0), paddle.CUDAPlace(1)] if use_cuda else [paddle.CPUPlace()] * 2

                # NOTE: If you use CPU to run the program, you need
                # to specify the CPU_NUM, otherwise, paddle will use
                # all the number of the logic core as the CPU_NUM,
                # in that case, the batch size of the input should be
                # greater than CPU_NUM, if not, the process will be
                # failed by an exception.
                if not use_cuda:
                    os.environ['CPU_NUM'] = str(2)

                exe = static.Executor(place)

                data = static.data(name='X', shape=[None, 1], dtype='float32')
271
                hidden = static.nn.fc(x=data, size=10)
272 273 274 275 276 277 278 279 280 281
                loss = paddle.mean(hidden)

                test_program = static.default_main_program().clone(for_test=True)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

                exe.run(static.default_startup_program())
                compiled_train_prog = static.CompiledProgram(
                    static.default_main_program()).with_data_parallel(
                            loss_name=loss.name, places=parallel_places)
                # NOTE: if not set share_vars_from=compiled_train_prog,
282
                # the parameters used in test process are different with
283 284 285 286 287 288 289 290
                # the parameters used by train process
                compiled_test_prog = static.CompiledProgram(
                    test_program).with_data_parallel(
                            share_vars_from=compiled_train_prog,
                            places=parallel_places)

                train_data = numpy.random.random(size=(10, 1)).astype('float32')
                loss_data, = exe.run(compiled_train_prog,
291 292
                                feed={"X": train_data},
                                fetch_list=[loss.name])
293 294
                test_data = numpy.random.random(size=(10, 1)).astype('float32')
                loss_data, = exe.run(compiled_test_prog,
295 296
                                feed={"X": test_data},
                                fetch_list=[loss.name])
X
Xin Pan 已提交
297
        """
298 299 300 301 302 303
        assert (
            not self._is_data_parallel
        ), "Already compiled with parallel, cannot be recompiled."
        assert (
            not self._is_inference
        ), "Cannot compile with both data parallel and inference."
304
        self._is_data_parallel = True
C
chengduo 已提交
305 306 307 308
        # FIXME(zcd): Currently, the build_strategy can be set during creating
        # CompiledProgram or calling with_data_parallel, and it may be confusing,
        # but in the long run, we should set up build_strategy only when creating
        # CompiledProgram, and exec_strategy should be deprecated.
309 310
        if build_strategy is not None:
            self._build_strategy = build_strategy
311 312
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
313
        self._share_vars_from = share_vars_from
314 315 316 317
        if isinstance(places, (list, tuple)):
            self._places = _get_paddle_place_list(places)
        else:
            self._places = _get_paddle_place(places)
C
chengduo 已提交
318 319

        if _has_backward_op(self._graph):
320 321 322
            assert (
                self._loss_name is not None
            ), "The loss name of CompiledProgram is None. The loss name should be set if CompiledProgram contains backward part."
C
chengduo 已提交
323 324 325 326

        if self._places is not None:
            if not isinstance(self._places, (list, tuple)):
                self._places = [self._places]
327 328 329 330 331
        if self._places is not None and len(self._places) > 1:
            raise NotImplementedError(
                "If you need to train with multi-gpus, please use `fleet` instead of `with_data_parallel`."
                "This will be removed soon in develop version."
            )
C
chengduo 已提交
332

333 334
        return self

F
flame 已提交
335
    def _with_inference_optimize(self, config):
336
        """Add inference optimize
F
flame 已提交
337 338 339 340 341 342

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
343 344 345 346 347 348 349 350 351 352 353 354 355
        assert (
            not self._is_data_parallel
        ), "Cannot compile with both data parallel and inference"
        assert (
            not self._is_inference
        ), "Already compiled with inference, cannot be recompiled."

        assert any(
            [
                isinstance(config, InferNativeConfig),
                isinstance(config, InferAnalysisConfig),
            ]
        )
F
flame 已提交
356 357 358
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
359

F
flame 已提交
360
    def _with_distributed(self):
361 362 363
        raise NotImplementedError(
            "Subclass of CompiledProgram should implement _with_distributed method."
        )
X
polish  
Xin Pan 已提交
364

365
    def _compile_data_parallel(self, places, use_device, scope=None):
X
polish  
Xin Pan 已提交
366
        if self._share_vars_from:
367
            if scope:
X
polish  
Xin Pan 已提交
368 369
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
370 371
                raise ValueError(
                    "The shared Program is not data parallel, cannot "
372 373
                    "share variables from it."
                )
X
polish  
Xin Pan 已提交
374 375
            if self._share_vars_from._executor is None:
                raise ValueError(
376
                    "The shared Program is not compiled and executed, so there is no "
377 378
                    "variables to share."
                )
X
polish  
Xin Pan 已提交
379 380
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
381
            assert scope is not None, ""
X
polish  
Xin Pan 已提交
382
            self._local_scopes = []
383

384 385 386 387 388
        assert isinstance(places, tuple) or isinstance(
            places, list
        ), "Currently , The places type can only be list or tuple, but the input type is {}.".format(
            type(places)
        )
C
chengduo 已提交
389 390 391 392 393 394 395

        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
        self._build_strategy.is_distribution = _is_pserver_mode(self._program)

        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
396
        self._exec_strategy._use_device = use_device
397 398

        if self._exec_strategy.num_threads == 0:
399
            if self._exec_strategy._use_device == DeviceType.CUDA:
400 401
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
C
chengduo 已提交
402
                self._exec_strategy.num_threads = len(places) * 4
403
            elif self._exec_strategy._use_device == DeviceType.XPU:
404 405
                # Currently only single thread is supported in Kunlun XPU.
                self._exec_strategy.num_threads = 1
406
            else:
C
chengduo 已提交
407 408
                self._exec_strategy.num_threads = len(places) * 2

409 410 411 412 413 414 415 416 417
        if (
            "FLAGS_use_cinn" in core.globals()
            and core.globals()["FLAGS_use_cinn"]
            and self._exec_strategy.num_threads != 1
        ):
            warnings.warn(
                "At present, when CINN is turned on, each process can "
                "only contain one thread, so reset the number of threads to 1 here."
            )
418 419
            self._exec_strategy.num_threads = 1

X
Xin Pan 已提交
420 421
        # TODO(wuyi): trainer endpoings should be passed in through
        # build_strategy, not program.xxx.
422
        # TODO(gongwb): let user to set them once.
423 424 425 426 427
        if (
            self._program
            and self._build_strategy.num_trainers > 1
            and self._program._trainers_endpoints
        ):
X
Xin Pan 已提交
428
            tps = self._program._trainers_endpoints
D
dzhwinter 已提交
429

430
            assert self._build_strategy.num_trainers == len(
431 432
                tps
            ), "The trainer numbers is not equal to endpoint numbers."
X
Xin Pan 已提交
433 434
            self._build_strategy.trainers_endpoints = tps

435 436
        if self._program:
            self._build_strategy.nccl_comm_num = self._program._nccl_comm_num
437 438 439 440 441 442
            self._build_strategy.use_hierarchical_allreduce = (
                self._program._use_hierarchical_allreduce
            )
            self._build_strategy.hierarchical_allreduce_inter_nranks = (
                self._program._hierarchical_allreduce_inter_nranks
            )
443

Q
qingqing01 已提交
444 445 446
        if self._build_strategy.sync_batch_norm:
            self._build_strategy.enable_sequential_execution = True

447
        if self._program is not None and self._program._enable_dgc:
448 449 450 451 452 453 454 455 456 457
            assert (
                self._exec_strategy._use_device == DeviceType.CUDA
            ), "DGC only used under CUDA environment."
            assert (
                self._build_strategy.num_trainers * len(places) > 1
            ), "DGC is not avaliable for single card training."
            assert (
                self._build_strategy.reduce_strategy
                == BuildStrategy.ReduceStrategy.AllReduce
            ), "DGC \
458
                only can be used for AllReduce BuildStrategy."
459 460 461 462

            # DGC doesn't support fuse for now, close fuse.
            self._build_strategy.fuse_all_reduce_ops = False

X
Xin Pan 已提交
463
        self._persistable_vars = []
Z
Zhen Wang 已提交
464
        for node in self._graph.nodes():
465 466 467 468 469 470
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
                and node.var().type() != core.VarDesc.VarType.RAW
            ):
471
                name = node.name()
472 473 474 475
                if (
                    self._program is not None
                    and _should_broadcast_or_not_exists(self._program, name)
                ):
476
                    self._persistable_vars.append(node.name())
477

C
chengduo 已提交
478 479
        places = list(map(_place_obj, places))

Y
Yan Xu 已提交
480 481 482 483 484 485
        # ParallelExecutor would broadcast all the parameters during initializing.
        # The parameters of each process should be in the same ordered for the data-parallelism
        # distributed training to keep the broadcast correct.
        self._persistable_vars = list(set(self._persistable_vars))
        self._persistable_vars.sort()

486 487 488 489
        if core.is_cuda_graph_capturing():
            raise RuntimeError(
                "CUDA Graph is not allowed to capture when running the first batch."
            )
490 491 492 493 494 495 496 497 498 499
        return core.ParallelExecutor(
            places,
            self._persistable_vars,
            self._loss_name if self._loss_name else '',
            self._scope,
            self._local_scopes,
            self._exec_strategy,
            self._build_strategy,
            self._graph,
        )
500

F
flame 已提交
501 502 503
    def _compile_inference(self):
        return core.create_paddle_predictor(self._infer_config)

504
    def _compile(self, scope, place):
X
Xin Pan 已提交
505 506 507 508 509 510 511 512 513 514
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
515
        if self._compiled:
X
polish  
Xin Pan 已提交
516
            if scope and self._scope != scope:
517
                raise ValueError("Cannot compile program with different scope.")
S
sneaxiy 已提交
518
            if place and not self._place._equals(place):
519
                raise ValueError("Cannot compile program with different place.")
520
            return self
X
fix  
Xin Pan 已提交
521
        self._compiled = True
522 523 524

        self._scope = scope
        self._place = place
C
chengduo 已提交
525 526

        if self._is_inference:
F
flame 已提交
527
            self._executor = self._compile_inference()
528
        else:
C
chengduo 已提交
529 530 531 532
            if self._is_data_parallel:
                self._places = self._get_places(self._place, self._places)
            else:
                self._places = [self._place]
533

534
            if isinstance(self._place, core.CUDAPlace):
535
                use_device = DeviceType.CUDA
536
            elif isinstance(self._place, core.XPUPlace):
537
                use_device = DeviceType.XPU
538
            else:
539
                use_device = DeviceType.CPU
540 541 542
            self._executor = self._compile_data_parallel(
                use_device=use_device, scope=self._scope, places=self._places
            )
543
        return self
C
chengduo 已提交
544 545

    def _get_places(self, place, place_list):
546
        has_set_place = place_list is not None
C
chengduo 已提交
547 548
        if has_set_place:
            for p in place_list:
549 550 551
                assert (
                    p._type() == place._type()
                ), "Place type not match. You may set wrong type of places."
C
chengduo 已提交
552
        else:
553 554 555 556 557 558
            if isinstance(place, core.CUDAPlace):
                place_list = cuda_places()
            elif isinstance(place, core.XPUPlace):
                place_list = xpu_places()
            else:
                place_list = cpu_places()
559
        assert place_list, "No places for execution."
C
chengduo 已提交
560
        return place_list
J
jianghaicheng 已提交
561 562


563
class IpuDynamicPatcher:
564 565 566 567 568 569 570 571 572 573
    """
    Patcher for IPU dynamic2static support.
    """

    patcher_cache = []

    def __init__(self):
        pass

    @staticmethod
574 575 576
    def convert_concrete_program(
        ipu_strategy, concrete_program, class_instance=None
    ):
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
        """
        Convert the ConcreteProgram to IPUConcreteProgram.
        """
        from ..fluid.dygraph.base import switch_to_static_graph
        from ..fluid import backward
        from ..fluid.framework import device_guard
        import paddle

        inputs = concrete_program.inputs
        outputs = concrete_program.outputs
        startup_program = concrete_program.startup_program

        scope = paddle.static.global_scope()

        @switch_to_static_graph
        def append_backward_desc():
            program = concrete_program.main_program

            # backward with optimizer to add backward graph to program
            backward.gradients_with_optimizer(program, ipu_strategy._optimizer)

            # initialize backward parameters
            exe = paddle.static.Executor(paddle.CPUPlace())
            startup_program = paddle.static.default_startup_program()
            exe.run(startup_program)

            return program

        if ipu_strategy.enable_fp16:
            class_instance.to(dtype="float16")

        # copy the bias and filters
        for param_or_buffer in concrete_program.parameters:
            param_or_buffer_tensor = scope.var(
611 612
                param_or_buffer.name
            ).get_tensor()
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
            src_tensor = param_or_buffer.value().get_tensor()
            param_or_buffer_tensor._share_data_with(src_tensor)

        # TODO(czr): feed and fetch list needs to consider more type
        if class_instance:
            feed_list = [elem.name for elem in inputs[1:] if elem is not None]
        else:
            feed_list = [elem.name for elem in inputs if elem is not None]
        fetch_list = [elem.name for elem in outputs]

        if ipu_strategy.is_training:
            concrete_program.main_program = append_backward_desc()
            # copy optimizer parameters
            optimizer = ipu_strategy._optimizer
            for k, v in optimizer._accumulators.items():
                for param_name, var_tmp in v.items():
                    var = optimizer.helper.create_global_variable(
                        name=var_tmp.name,
                        persistable=True,
                        dtype=var_tmp.dtype,
                        type=var_tmp.type,
                        shape=var_tmp.shape,
635 636
                        belong_to_optimizer=True,
                    )
637 638 639
                    device = optimizer._get_device_for_param(param_name)
                    with device_guard(device):
                        optimizer.helper.set_variable_initializer(
640 641 642 643
                            var,
                            initializer=paddle.nn.initializer.Constant(
                                value=0.0
                            ),
644
                        )
645
                    param_or_lr_tensor = scope.find_var(
646 647
                        var_tmp.name
                    ).get_tensor()
648 649 650 651 652 653 654 655 656 657 658 659
                    optim_tensor = var.value().get_tensor()
                    param_or_lr_tensor._share_data_with(optim_tensor)
                    optimizer._accumulators[k][param_name] = var

        @switch_to_static_graph
        def func_compile():
            if ipu_strategy.enable_fp16:
                amp_list = paddle.static.amp.CustomOpLists()
                amp_list.unsupported_list = {"cumsum"}
                to_fp16_var_names = paddle.static.amp.cast_model_to_fp16(
                    concrete_program.main_program,
                    amp_list,
660 661
                    use_fp16_guard=False,
                )
662 663 664
                paddle.static.amp.cast_parameters_to_fp16(
                    paddle.CPUPlace(),
                    concrete_program.main_program,
665 666 667 668 669 670 671 672
                    to_fp16_var_names=to_fp16_var_names,
                )

            program = IpuCompiledProgram(
                concrete_program.main_program,
                ipu_strategy=ipu_strategy,
                scope=scope,
            ).compile(feed_list, fetch_list)
673 674 675 676 677 678 679 680
            return program

        main_program = func_compile()
        concrete_program.main_program = main_program
        return concrete_program

    @staticmethod
    def patch_program_cache(ipu_strategy):
681
        """Monkey patch ProgramCache discriptor to support dynamic2static in IPU.
682 683 684 685 686 687 688

        Args:
            ipu_strategy: The ipu_strategy used in dynamic graph.

        Returns:
            None
        """
689
        from paddle.jit.dy2static.program_translator import (
690
            CacheKey,
691
            ProgramCache,
692 693
            MAX_TRACED_PROGRAM_COUNT,
        )
694
        from paddle.jit.dy2static import logging_utils
695
        from paddle.jit.dy2static.partial_program import (
696 697
            partial_program_from,
        )
698 699 700 701 702 703

        old_getter = ProgramCache.__getitem__

        def patch_getter(self, item):
            if not isinstance(item, CacheKey):
                raise ValueError(
704 705 706
                    'type(item) should be CacheKey, but received %s'
                    % type(item).__name__
                )
707 708 709 710 711
            item_id = hash(item)
            self._recent_key = item_id
            if item_id not in self._caches or ipu_strategy.need_compile:
                if item_id in self._caches:
                    logging_utils.warn(
712 713
                        "ipu_strategy chances detected. Please sync weights."
                    )
714 715 716
                if self._caches and not ipu_strategy.need_compile:
                    logging_utils.warn(
                        "dynamic2static on IPU doesn't support mutiple caches. Please make sure"
717 718
                        "dynamic inputs is not used."
                    )
719 720
                concrete_program, _ = self._build_once(item)
                concrete_program = IpuDynamicPatcher.convert_concrete_program(
721 722
                    ipu_strategy, concrete_program, item.class_instance
                )
723

724 725 726 727
                self._caches[item_id] = (
                    concrete_program,
                    partial_program_from(concrete_program),
                )
728 729 730 731 732
                # Note: raise warnings if number of traced program is more than `max_tracing_count`
                current_tracing_count = len(self._caches)
                if current_tracing_count > MAX_TRACED_PROGRAM_COUNT:
                    logging_utils.warn(
                        "Current traced program number: {} > `max_tracing_count`:{}. Too much cached programs will bring expensive overhead. "
733 734 735 736
                        "The reason may be: (1) passing tensors with different shapes, (2) passing python objects instead of tensors.".format(
                            current_tracing_count, MAX_TRACED_PROGRAM_COUNT
                        )
                    )
737 738 739 740 741

            return self._caches[item_id]

        setattr(ProgramCache, '__getitem__', patch_getter)
        IpuDynamicPatcher.patcher_cache.append(
742 743
            [ProgramCache, '__getitem__', old_getter]
        )
744 745 746 747

    @staticmethod
    def patch_lr_scheduler(ipu_strategy):
        from paddle.optimizer.lr import LRScheduler
748

749
        # For IPU dynamic graph usage, lr_var is not synced in executor as static graph mode do.
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
        # Manually set lr to ipu_strategy to update the lr.
        old_step = LRScheduler.step

        def patch_step(self, epoch=None):
            old_step(self, epoch)
            ipu_strategy.set_options({"lr": self.last_lr})

        setattr(LRScheduler, 'step', patch_step)
        IpuDynamicPatcher.patcher_cache.append([LRScheduler, 'step', old_step])

    @staticmethod
    def register_patch(ipu_strategy):
        IpuDynamicPatcher.patch_program_cache(ipu_strategy)
        IpuDynamicPatcher.patch_lr_scheduler(ipu_strategy)

    @staticmethod
    def release_patch():
        for module, key, attr in IpuDynamicPatcher.patcher_cache:
            setattr(module, key, attr)


771
class IpuStrategy:
J
jianghaicheng 已提交
772 773 774 775 776 777 778 779
    """
    Help users precisely control the graph building in :code:`paddle.static.IpuCompiledProgram` .

    Returns:
        The IpuStrategy instance.

    Examples:
        .. code-block:: python
780

J
jianghaicheng 已提交
781 782 783 784 785 786
            # required: ipu

            import paddle
            import paddle.static as static

            paddle.enable_static()
787

J
jianghaicheng 已提交
788 789 790 791 792 793
            ipu_strategy = static.IpuStrategy()
    """

    def __init__(self):
        if core.is_compiled_with_ipu():
            self._ipu_strategy = core.IpuStrategy()
794 795 796 797 798
            default_options = {
                'location_optimizer': {
                    'on_chip': 0,
                    'use_replicated_tensor_sharding': 1,
                },  # set optimizer location
799 800
                'accumulation_and_replication_reduction_type': 1,  # popart::ReductionType::Mean
                'mean_accumulation_and_replication_reduction_strategy': 1,  # popart::MeanReductionStrategy::Post
801 802 803 804
            }
            self._ipu_strategy.set_options(default_options)
            self.has_custom_ops = False
            self.custom_op_names = []
805
            self.need_compile = True
J
jianghaicheng 已提交
806 807 808 809
        else:
            raise RuntimeError(
                "Can not use IpuStrategy in non IPU compiled environment, please re-compile with WITH_IPU=ON."
            )
810
        from paddle import in_dynamic_mode
811

812 813 814 815 816 817 818 819 820 821
        if in_dynamic_mode():
            self.register_patch()

    def register_patch(self):
        """
        Register patchs function to support dynamic to static on IPU. This operation would break the dy2static functionality on CPU.
        Use `release_patch` to release the patch.

        Examples:
            .. code-block:: python
822

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
                # required: ipu

                import paddle
                import paddle.static as static

                ipu_strategy = static.IpuStrategy()

                ipu_strategy.register_patch()
        """
        IpuDynamicPatcher.register_patch(self)

    def release_patch(self):
        """
        Release the registered IPU functions.

        Examples:
            .. code-block:: python
840

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
                # required: ipu

                import paddle
                import paddle.static as static

                ipu_strategy = static.IpuStrategy()

                ipu_strategy.release_patch()
        """
        IpuDynamicPatcher.release_patch()

    def set_optimizer(self, optimizer):
        """
        Set optimizer to ipu_strategy in dynamic mode.

          Args:
              optimizer (Optimizer): Optimizer to be used in training.
858

859 860 861 862 863
          Returns:
              None.

          Examples:
              .. code-block:: python
864

865 866 867 868 869 870 871 872 873 874 875 876
                  # required: ipu

                  import paddle
                  import paddle.static as static

                  linear = paddle.nn.Linear(10, 10)
                  optimizer = paddle.optimizer.SGD(learning_rate=0.01,
                                                   parameters=linear.parameters())
                  ipu_strategy = static.IpuStrategy()
                  ipu_strategy.set_optimizer(optimizer)
        """
        from paddle import in_dynamic_mode
877

878 879 880 881 882 883 884 885 886 887 888 889 890
        if in_dynamic_mode():
            self._optimizer = optimizer
            optimizer_attrs = self.parse_optimizer(optimizer)
            self._ipu_strategy.set_options(optimizer_attrs)
        else:
            raise RuntimeError("Only needs to set optimizer in dynamic mode.")

    def parse_optimizer(self, optimizer):
        """
        Parse optimizer attributes for IPU dynamic to static support. Currently only support parse lr.

          Args:
              optimizer (Optimizer): Optimizer to be parsed.
891

892 893 894 895 896
          Returns:
              Dict.

          Examples:
              .. code-block:: python
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911
                  # required: ipu

                  import paddle
                  import paddle.static as static

                  linear = paddle.nn.Linear(10, 10)
                  optimizer = paddle.optimizer.SGD(learning_rate=0.01,
                                                   parameters=linear.parameters())
                  ipu_strategy = static.IpuStrategy()
                  attrs = ipu_strategy.parse_optimizer(optimizer)
        """

        def get_lr():
            from paddle.optimizer.lr import LRScheduler
912

913 914 915 916 917 918 919 920 921 922
            if isinstance(optimizer._learning_rate, float):
                return {"lr": optimizer._learning_rate}
            elif isinstance(optimizer._learning_rate, LRScheduler):
                return {"lr": optimizer._learning_rate()}

        attr_fn = [get_lr]
        optimizer_attrs = {"is_dynamic": True}
        for fn in attr_fn:
            optimizer_attrs.update(fn())
        return optimizer_attrs
J
jianghaicheng 已提交
923

924 925 926 927 928 929 930
    def set_graph_config(
        self,
        num_ipus=1,
        is_training=True,
        micro_batch_size=1,
        enable_manual_shard=False,
    ):
J
jianghaicheng 已提交
931 932 933 934 935 936 937 938
        """
        Set graph configuration to the IpuStrategy instance.

        Args:
            num_ipus (int, optional): Number of IPU devices. Default 1, which means only use 1 IPU.
            is_training (bool, optional): True is training graph, False is inference graph. Default True, which means is training mode.
            batch_size (int, optional): The batch-size in the graph. Used to make the graph batch-size fixed,
                if the batch-size in the graph is dynamic. Default 1, which means the batch-size would be set 1, if the batch-size is dynamice.
939 940 941
            enable_manual_shard (bool, optional): Enable graph sharding or not. Only if num_ipus > 1, enable_manual_shard is able to be set True.
                Default False, which means disabled.

J
jianghaicheng 已提交
942 943 944 945 946
        Returns:
            None.

        Examples:
            .. code-block:: python
947

J
jianghaicheng 已提交
948 949 950 951 952 953
                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()
954

J
jianghaicheng 已提交
955
                ipu_strategy = static.IpuStrategy()
956
                ipu_strategy.set_graph_config(num_ipus=1,
J
jianghaicheng 已提交
957
                                            is_training=True,
A
Allen Guo 已提交
958
                                            micro_batch_size=1,
959
                                            enable_manual_shard=False)
J
jianghaicheng 已提交
960
        """
961
        if num_ipus == 1 and enable_manual_shard:
J
jianghaicheng 已提交
962 963 964
            raise RuntimeError(
                "Only if num_ipus > 1, enable_manual_shard is able to be set True."
            )
965 966 967
        options = {
            'num_ipus': num_ipus,
            'is_training': is_training,
A
Allen Guo 已提交
968
            'micro_batch_size': micro_batch_size,
969 970 971 972
            'enable_manual_shard': enable_manual_shard,
        }
        self.set_options(options)

973 974 975 976 977 978 979
    def set_pipelining_config(
        self,
        enable_pipelining=False,
        batches_per_step=1,
        enable_gradient_accumulation=False,
        accumulation_factor=1,
    ):
J
jianghaicheng 已提交
980 981 982 983
        """
        Set pipelining configuration to the IpuStrategy instance. Used to optimize the throughput performance.

        Args:
984
            enable_pipelining (bool, optional): Enable data pipelining between subgraphs. Only if enable_manual_shard=True, enable_pipelining is able to be set True.
J
jianghaicheng 已提交
985 986 987
                Default False, which means disabled.
            batches_per_step (int, optional): Set the batches per run in data pipelining mode. Only if enable_pipelining=True, batches_per_step is able to be set > 1.
                Default 1, which means no data pipelining.
A
Allen Guo 已提交
988
            enable_gradient_accumulation (bool, optional): Enable to accumulate gradients before updating the weights in training mode. Only if enable_pipelining=True,
989 990
                enable_gradient_accumulation is able to be set True. Default False, which means no gradient accumulation.
            accumulation_factor (int, optional): Specify the number of micro-batches to accumulate
J
jianghaicheng 已提交
991
                before applying the varUpdate. Default 1, which means disable the accumulation.
992

J
jianghaicheng 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
1007 1008
                ipu_strategy.set_pipelining_config(enable_pipelining=False,
                                                    batches_per_step=1,
A
Allen Guo 已提交
1009
                                                    enable_gradient_accumulation=False,
1010
                                                    accumulation_factor=1)
J
jianghaicheng 已提交
1011
        """
1012 1013
        enable_manual_shard = self.get_option('enable_manual_shard')
        if not enable_manual_shard and enable_pipelining:
J
jianghaicheng 已提交
1014 1015 1016
            raise RuntimeError(
                "Only if enable_manual_shard=True, enable_pipelining is able to be set True."
            )
1017 1018 1019
        options = {
            'enable_pipelining': enable_pipelining,
            'batches_per_step': batches_per_step,
A
Allen Guo 已提交
1020
            'enable_gradient_accumulation': enable_gradient_accumulation,
1021 1022 1023 1024 1025
            'accumulation_factor': accumulation_factor,
        }
        self.set_options(options)

    def set_precision_config(self, enable_fp16=False):
J
jianghaicheng 已提交
1026 1027 1028 1029 1030
        """
        Set half computation configuration to the IpuStrategy instance. Used to optimize the performance.

        Args:
            enable_fp16 (bool, optional): Enable FLOAT16 mode and transform FLOAT32 to FLOAT16. Default False, which means disable FLOAT16 mode.
1031

J
jianghaicheng 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
1046 1047
                ipu_strategy.set_precision_config(enable_fp16=False)
        """
1048 1049 1050
        options = {
            'enable_fp16': enable_fp16,
        }
1051 1052
        self.set_options(options)

1053 1054 1055
    def add_custom_op(
        self, paddle_op, popart_op=None, domain='custom.ops', version=1
    ):
J
jianghaicheng 已提交
1056
        """
1057
        Add a mapping to use popart custom ops running on the IPU.
J
jianghaicheng 已提交
1058

1059 1060
        Args:
            paddle_op(str): the name of custom op in paddle.
J
jianghaicheng 已提交
1061

1062
            popart_op(str): the name of custom op in popart.
J
jianghaicheng 已提交
1063

1064
            domain(str): domain name of custom op in popart.
J
jianghaicheng 已提交
1065

1066
            version(int): version of custom op in popart.
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
                ipu_strategy.add_custom_op('paddle_relu', 'popart_relu')
J
jianghaicheng 已提交
1083
        """
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
        if popart_op is None:
            popart_op = paddle_op
        custom_op = {
            'paddle_op': paddle_op,
            'popart_op': popart_op,
            'domain': domain,
            'version': version,
        }
        self.set_options({'custom_op': custom_op})
        self.custom_op_names.append(paddle_op)
        if not self.has_custom_ops:
            self.has_custom_ops = True

    def set_options(self, options):
J
jianghaicheng 已提交
1098
        """
1099
        Set options from dict.
J
jianghaicheng 已提交
1100

1101 1102
        Args:
            options(dict): dict of options.
1103

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
                options = {'num_ipus':1, 'enable_fp16': True}
                ipu_strategy.set_options(options)
J
jianghaicheng 已提交
1120
        """
1121
        self._ipu_strategy.set_options(options)
1122 1123 1124 1125
        # check whether to recompile program with updated ipu options.
        recompile_white_list = {'lr'}
        if options.keys() - recompile_white_list:
            self.need_compile = True
J
jianghaicheng 已提交
1126

1127
    def get_option(self, option):
J
jianghaicheng 已提交
1128
        """
1129 1130 1131 1132
        Get option.

        Args:
            option(str): name of option.
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        Returns:
            option value.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
                num_ipus = ipu_strategy.get_option('num_ipus')
J
jianghaicheng 已提交
1149
        """
1150
        return self._ipu_strategy.get_option(option)['value']
J
jianghaicheng 已提交
1151

A
Allen Guo 已提交
1152 1153 1154 1155 1156 1157
    def enable_pattern(self, pattern):
        """
        Enable PopART pattern to optimize the graph.

        Args:
            pattern(string): the name of the pattern.
1158

A
Allen Guo 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
                ipu_strategy.enable_pattern("ViewSimplifyPattern")
        """
        self._ipu_strategy.enable_pattern(pattern)

    def disable_pattern(self, pattern):
        """
        Disable PopART pattern.

        Args:
            pattern(string): the name of the pattern.
1183

A
Allen Guo 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
                ipu_strategy.disable_pattern("ViewSimplifyPattern")
        """
        self._ipu_strategy.disable_pattern(pattern)

J
jianghaicheng 已提交
1202
    @property
1203
    def num_ipus(self):
J
jianghaicheng 已提交
1204
        """
1205
        Get the number of IPU devices from IpuStrategy instance.
J
jianghaicheng 已提交
1206
        """
1207
        return self.get_option('num_ipus')
J
jianghaicheng 已提交
1208 1209

    @property
1210
    def is_training(self):
J
jianghaicheng 已提交
1211
        """
1212
        Get the boolean of training or inference from IpuStrategy instance.
J
jianghaicheng 已提交
1213
        """
1214
        return self.get_option('is_training')
J
jianghaicheng 已提交
1215 1216

    @property
1217
    def enable_pipelining(self):
J
jianghaicheng 已提交
1218
        """
1219
        Get the boolean of enable pipelining or not from IpuStrategy instance.
J
jianghaicheng 已提交
1220
        """
1221
        return self.get_option('enable_pipelining')
J
jianghaicheng 已提交
1222 1223 1224 1225 1226 1227

    @property
    def enable_fp16(self):
        """
        Get the boolean of float16 mode or not from IpuStrategy instance.
        """
1228
        return self.get_option('enable_fp16')
J
jianghaicheng 已提交
1229 1230


1231
class IpuCompiledProgram:
J
jianghaicheng 已提交
1232 1233 1234 1235 1236 1237
    """
    The IpuCompiledProgram is used to transform a program to a ipu-target program,
    such as forward graph extraction, computing graph transformation, useless scale Ops clean, etc.

    Args:
        program(Program, optional): This parameter represents the :code:`Program`
1238
            to be executed. Default is None, which means the program will be set to
J
jianghaicheng 已提交
1239 1240
            the default program :code:`paddle.static.default_main_program()` .
        scope(Scope, optional): The scope used to run this program, you can switch
1241
            it to different scope. Default is None, which means use the global
J
jianghaicheng 已提交
1242 1243 1244
            scope :code:`paddle.static.global_scope()` .
        ipu_strategy(IpuStrategy, optional): This argument is used to build the program with the
            specified options, such as half computation, training or inference session, the number of IPUs, etc.
1245
            Default is None, which means build the program based on the default `ipu_strategy`.
J
jianghaicheng 已提交
1246 1247 1248 1249 1250 1251

    Returns:
        IpuCompiledProgram

    Example:
        .. code-block:: python
1252

J
jianghaicheng 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
            # required: ipu

            import paddle
            import paddle.static as static

            paddle.enable_static()

            a = static.data(name='data', shape=[None, 1], dtype='int32')
            b = a + 1
            main_prog = static.default_main_program()
1263

J
jianghaicheng 已提交
1264
            ipu_strategy = static.IpuStrategy()
A
Allen Guo 已提交
1265 1266
            ipu_strategy.set_graph_config(num_ipus=1, is_training=True, micro_batch_size=1)
            ipu_strategy.set_pipelining_config(enable_pipelining=False, batches_per_step=1, enable_gradient_accumulation=False, accumulation_factor=1)
1267
            ipu_strategy.set_precision_config(enable_fp16=False)
1268

J
jianghaicheng 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
            ipu_compiled_program = static.IpuCompiledProgram(
                main_prog,
                ipu_strategy=ipu_strategy)
    """

    def __init__(self, program=None, scope=None, ipu_strategy=None):
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "Can not use this function since PaddlePaddle is not compiled with IPU"
            )

        if program is None:
1281
            program = framework.default_main_program()
J
jianghaicheng 已提交
1282 1283 1284

        if not isinstance(program, framework.Program):
            raise TypeError(
1285 1286 1287
                "The type of program is wrong, expected Program, but got %s"
                % type(program)
            )
J
jianghaicheng 已提交
1288 1289 1290 1291 1292 1293 1294

        self._program = program
        self._compiled = False

        if scope is not None:
            self._scope = scope
        else:
1295 1296
            # import here to avoiding confused
            import paddle
1297

J
jianghaicheng 已提交
1298 1299 1300
            self._scope = paddle.static.global_scope()

        if ipu_strategy is not None:
1301
            self._ipu_strategy = ipu_strategy
J
jianghaicheng 已提交
1302
        else:
1303
            self._ipu_strategy = IpuStrategy()
J
jianghaicheng 已提交
1304

1305 1306 1307 1308 1309 1310
        if ipu_strategy.has_custom_ops:
            self._custom_op_names = set(ipu_strategy.custom_op_names)
        else:
            self._custom_op_names = ()

        self._backend = core.IpuBackend.get_instance()
J
jianghaicheng 已提交
1311 1312 1313 1314 1315

    def compile(self, feed_list, fetch_list):
        """
        This interface is used to compile the input Program to a program
        to run the model on the ipu.
1316

J
jianghaicheng 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        Args:
            feed_list(list): This parameter represents the input Tensors of the model.

            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model.

        Returns:
            Program

        Example:
            .. code-block:: python
1328

J
jianghaicheng 已提交
1329
                # required: ipu
1330

J
jianghaicheng 已提交
1331 1332
                import paddle
                import paddle.static as static
1333

J
jianghaicheng 已提交
1334
                paddle.enable_static()
1335

J
jianghaicheng 已提交
1336 1337 1338 1339 1340
                a = static.data(name='data', shape=[None, 1], dtype='int32')
                b = a + 1
                main_prog = static.default_main_program()

                ipu_strategy = static.IpuStrategy()
A
Allen Guo 已提交
1341 1342
                ipu_strategy.set_graph_config(num_ipus=1, is_training=True, micro_batch_size=1)
                ipu_strategy.set_pipelining_config(enable_pipelining=False, batches_per_step=1, enable_gradient_accumulation=False, accumulation_factor=1)
1343
                ipu_strategy.set_precision_config(enable_fp16=False)
1344

J
jianghaicheng 已提交
1345 1346 1347 1348
                program = static.IpuCompiledProgram(
                    main_prog,
                    ipu_strategy=ipu_strategy).compile([a.name], [b.name])
        """
1349 1350 1351
        self._backend.set_scope(self._scope)
        self._backend.set_ipu_strategy(self._ipu_strategy._ipu_strategy)

J
jianghaicheng 已提交
1352 1353 1354 1355 1356
        # feed and fetch doesn't have corresponding popart op, so we rm both here
        global_block = self._program.global_block()
        need_to_remove_op_index = []
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
1357
            if op.type == 'feed' or op.type == 'fetch':
J
jianghaicheng 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

        for var in ['feed', 'fetch']:
            if global_block.has_var(var):
                global_block._remove_var(var)

        self._program.desc.flush()
        self._graph = core.Graph(self._program.desc)

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        if self._ipu_strategy.is_training:
            passes = [
                'optimizer_extract_pass',
                'optimizer_state_align_pass',
            ]
            for pass_name in passes:
                a_pass = core.get_pass(pass_name)
                a_pass.apply(self._graph)

        passes = [
            'forward_graph_extract_pass',
            'infer_shape_pass',
            'avg_shard_pass',
            'delete_scale_op_pass',
        ]
        for pass_name in passes:
            a_pass = core.get_pass(pass_name)
            if pass_name == 'infer_shape_pass':
                a_pass.set('feed_list', feed_list)
            a_pass.apply(self._graph)

        a_pass = core.get_pass('popart_canonicalization_pass')
        if self._custom_op_names:
            a_pass.set('custom_ops', self._custom_op_names)
        a_pass.apply(self._graph)

        passes = [
            'ipu_inplace_pass',
            'ipu_graph_builder_pass',
            'ipu_runtime_replacer_pass',
        ]
        for pass_name in passes:
            a_pass = core.get_pass(pass_name)
            a_pass.set('feed_list', feed_list)
            a_pass.set('fetch_list', fetch_list)
            a_pass.apply(self._graph)
J
jianghaicheng 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

        convert_pass = core.get_pass('graph_to_program_pass')
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
        convert_pass.apply(self._graph)
        program = framework.Program._construct_from_desc(desc)

        if hasattr(self._program, 'lr_sheduler'):
            # how to share var between two different block ?
            lr_var_name = self._program.lr_sheduler._var_name

            program.lr_sheduler = self._program.lr_sheduler
            # Program.clone will clone lr_sheduler, so i set lr_var as
            # lr_sheduler attribute
            global_block = self._program.global_block()
            program.lr_sheduler.lr_var = global_block.vars[lr_var_name]

        # with popart, we need to support batches_per_step, what means
        # the shape of feed_var and feed_tensor(maybe numpy array) will
        # mismatch, so we set need_check_feed to False. Thus we can avoid
        # modify logic of run.
        program_global_block = program.global_block()
        for feed_name in feed_list:
            feed_var = program_global_block.var(feed_name)
            feed_var.desc.set_need_check_feed(False)

        if not hasattr(program, 'org_program'):
            program.org_program = self._program

1435 1436
        self._ipu_strategy.need_compile = False

J
jianghaicheng 已提交
1437
        return program