compiler.py 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
18
import sys
19
from .. import compat as cpt
X
Xin Pan 已提交
20
from . import framework
S
sneaxiy 已提交
21
from .framework import cuda_places, cpu_places
22 23 24

from . import core

X
Xin Pan 已提交
25 26
__all__ = ['CompiledProgram', 'ExecutionStrategy', 'BuildStrategy']

27 28
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
29 30
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
31 32 33 34 35 36 37 38


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


39 40
def _is_pserver_mode(main_program):
    main = main_program if main_program \
C
chengduo 已提交
41
        else framework.default_main_program()
42 43 44 45 46 47
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


48 49 50 51 52 53 54 55 56
def _prune_feed_ops(program):
    # prune the feed ops in the program.
    pop_idx = []
    for i, op in enumerate(program.global_block().ops):
        if op.type == "feed": pop_idx.append(i)
    for index in pop_idx[::-1]:
        program.global_block()._remove_op(index)


X
polish  
Xin Pan 已提交
57
class CompiledProgram(object):
X
polish  
Xin Pan 已提交
58
    """
X
Xin Pan 已提交
59
    Compiles to Graph for execution.
X
polish  
Xin Pan 已提交
60

X
Xin Pan 已提交
61 62 63 64
    1. Users first create the program with layers.
    2. Optionally, users use CompiledProgram to optimize the program before run.
    3. The original program or CompiledProgram is run by executor.

X
polish  
Xin Pan 已提交
65 66 67 68
    The CompiledProgram is used to transform a program for various
    optimizations, for example.
      * Pre-compute some logic once so that each run is faster.
      * Transform the program so that it can run in multiple devices.
69 70
      * Transform the program for optimized inference or distributed
        training. **Note that: this part is not finished.**
X
polish  
Xin Pan 已提交
71 72

    Example:
X
Xin Pan 已提交
73
        .. code-block:: python
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          place = fluid.CUDAPlace(0) # fluid.CPUPlace()
          exe = fluid.Executor(place)

          data = fluid.layers.data(name='X', shape=[1], dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          loss = fluid.layers.mean(hidden)
          fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          fluid.default_startup_program().random_seed=1
          exe.run(fluid.default_startup_program())
          compiled_prog = compiler.CompiledProgram(
                   fluid.default_main_program())

          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
97 98

    Args:
X
Xin Pan 已提交
99 100 101 102 103
        program_or_graph (Graph|Program): If it's Program, it will be first
            lowered to a graph for further optimizations. If it's a graph
            (potentially optimized before), it will be directly used for
            further optimizations. Note: graph is only supported when compiled
            with with_data_parallel option.
X
polish  
Xin Pan 已提交
104 105
    """

X
Xin Pan 已提交
106 107 108
    def __init__(self, program_or_graph):
        if isinstance(program_or_graph, core.Graph):
            self._graph = program_or_graph
109
            # don't not create a new program here.
X
Xin Pan 已提交
110 111
            self._program = None
        elif isinstance(program_or_graph, framework.Program):
112
            _prune_feed_ops(program_or_graph)
X
Xin Pan 已提交
113 114 115 116 117 118
            self._graph = core.Graph(program_or_graph.desc)
            self._program = program_or_graph
        else:
            raise ValueError("Wrong program_to_graph type: %s" %
                             type(program_or_graph))

X
polish  
Xin Pan 已提交
119 120 121
        self._scope = None
        self._place = None
        self._executor = None
122 123
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
124
        self._is_inference = False
125

X
Xin Pan 已提交
126 127 128 129
    def with_data_parallel(self,
                           loss_name=None,
                           build_strategy=None,
                           exec_strategy=None,
S
sneaxiy 已提交
130 131
                           share_vars_from=None,
                           places=None):
X
Xin Pan 已提交
132 133
        """Configs the program to run in data parallel way.

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        Example:
            .. code-block:: python

              import paddle.fluid as fluid
              import paddle.fluid.compiler as compiler
              import numpy
              import os

              use_cuda = True
              place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

              # NOTE: If you use CPU to run the program, you need
              # to specify the CPU_NUM, otherwise, fluid will use
              # all the number of the logic core as the CPU_NUM,
              # in that case, the batch size of the input should be
              # greater than CPU_NUM, if not, the process will be
              # failed by an exception.
              if not use_cuda:
                  os.environ['CPU_NUM'] = str(2)

              exe = fluid.Executor(place)

              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

              fluid.default_startup_program().random_seed=1
              exe.run(fluid.default_startup_program())
              compiled_prog = compiler.CompiledProgram(
                       fluid.default_main_program()).with_data_parallel(
                                loss_name=loss.name)

              x = numpy.random.random(size=(10, 1)).astype('float32')
              loss_data, = exe.run(compiled_prog,
                                   feed={"X": x},
                                   fetch_list=[loss.name])

X
Xin Pan 已提交
172 173 174 175 176 177 178 179 180 181 182 183
        Args:
            loss_name (str): The loss name must set in training. Default None.
            build_strategy(BuildStrategy): build_strategy is used to
                build the graph so it can run on multiple devices/cores with
                optimized topology.
                For more information, please refer to fluid.BuildStrategy.
                Default None.
            exec_strategy(ExecutionStrategy): exec_strategy is used to
                to select the a way to execute the graph, for example how many
                threads are used, how many iterations to clean up the temp
                variables. For more information, please refer
                to fluid.ExecutionStrategy. Default None.
S
sneaxiy 已提交
184
            share_vars_from(CompiledProgram): If provided, this CompiledProgram
X
Xin Pan 已提交
185 186 187
                will share variables from `share_vars_from`. `share_vars_from`
                must be run by the executor before this CompiledProgram so that
                vars are ready.
S
sneaxiy 已提交
188
            places(list(CUDAPlace)|list(CPUPlace)|None): If provided, only compile
S
sneaxiy 已提交
189 190 191
                program in the given places. Otherwise, the places used when compiled 
                is determined by the Executor, and the places used are controlled 
                by environment variables: FLAGS_selected_gpus or CUDA_VISIBLE_DEVICES
S
sneaxiy 已提交
192 193 194
                if using GPU; or CPU_NUM if using CPU. For example, if you want to 
                run on GPU 0 and 1, set places=[fluid.CUDAPlace(0), fluid.CUDAPlace(1)].
                If you want to run on 2 CPU cores, set places=[fluid.CPUPlace()]*2.  
S
sneaxiy 已提交
195

X
Xin Pan 已提交
196 197 198
        Returns:
            self
        """
199
        assert not self._is_data_parallel, "Already compiled with parallel."
X
Xin Pan 已提交
200
        assert not self._is_inference, "Cannot compile both data parallel and inference"
201 202 203 204
        self._is_data_parallel = True
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
205
        self._share_vars_from = share_vars_from
X
fix  
Xin Pan 已提交
206 207 208 209
        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
S
sneaxiy 已提交
210 211 212
        if places is not None:
            if not isinstance(places, (list, tuple)):
                places = [places]
S
sneaxiy 已提交
213
            self._places = places
S
sneaxiy 已提交
214 215
        else:
            self._places = None
S
sneaxiy 已提交
216
        self._build_strategy.is_distribution = _is_pserver_mode(self._program)
217 218
        return self

F
flame 已提交
219 220 221 222 223 224 225 226
    def with_inference_optimize(self, config):
        """ Add inference optimize

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
X
Xin Pan 已提交
227
        assert not self._is_data_parallel, "Cannot compile both data parallel and inference"
X
Xin Pan 已提交
228 229
        assert not self._is_inference, "Already compiled with inference"

F
flame 已提交
230 231 232 233 234 235 236
        assert any([
            isinstance(config, InferNativeConfig),
            isinstance(config, InferAnalysisConfig)
        ])
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
237

F
flame 已提交
238
    def _with_distributed(self):
X
polish  
Xin Pan 已提交
239 240
        raise NotImplementedError()

241
    def _compile_data_parallel(self, use_cuda=False, scope=None):
X
polish  
Xin Pan 已提交
242
        if self._share_vars_from:
243
            if scope:
X
polish  
Xin Pan 已提交
244 245 246 247 248 249 250 251 252 253
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
                raise ValueError("share_vars_from is not data parallel. Cannot "
                                 "share vars from it.")
            if self._share_vars_from._executor is None:
                raise ValueError(
                    "share_vars_from is not compiled and run, so there is no "
                    "var to share.")
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
254
            assert scope is not None, ""
X
polish  
Xin Pan 已提交
255
            self._local_scopes = []
256

S
sneaxiy 已提交
257
        self._exec_strategy.use_cuda = use_cuda
S
sneaxiy 已提交
258 259 260
        has_set_place = (self._places is not None)
        if has_set_place:
            for p in self._places:
S
sneaxiy 已提交
261
                assert p._type() == self._place._type(), \
S
sneaxiy 已提交
262
                    "Place type not match. You may set the wrong type of places"
263
        else:
S
sneaxiy 已提交
264
            self._places = cuda_places(
S
sneaxiy 已提交
265
            ) if self._exec_strategy.use_cuda else cpu_places()
266 267 268 269 270 271 272 273
        assert self._places, "no place for execution"

        if self._exec_strategy.num_threads == 0:
            if self._exec_strategy.use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
                self._exec_strategy.num_threads = len(self._places) * 4
            else:
S
sneaxiy 已提交
274
                self._exec_strategy.num_threads = len(self._places) * 2
275

X
Xin Pan 已提交
276 277
        # TODO(wuyi): trainer endpoings should be passed in through
        # build_strategy, not program.xxx.
278
        # TODO(gongwb): let user to set them once.
X
Xin Pan 已提交
279 280 281
        if self._program and self._build_strategy.num_trainers > 1 and \
                self._program._trainers_endpoints:
            tps = self._program._trainers_endpoints
D
dzhwinter 已提交
282

283
            assert self._build_strategy.num_trainers == len(
X
Xin Pan 已提交
284 285 286
                tps), "num_trainers == len(end_points)"
            self._build_strategy.trainers_endpoints = tps

287 288
        if self._program:
            self._build_strategy.nccl_comm_num = self._program._nccl_comm_num
289 290
            self._build_strategy.use_hierarchical_allreduce = self._program._use_hierarchical_allreduce
            self._build_strategy.hierarchical_allreduce_inter_nranks = self._program._hierarchical_allreduce_inter_nranks
291

Q
qingqing01 已提交
292 293 294
        if self._build_strategy.sync_batch_norm:
            self._build_strategy.enable_sequential_execution = True

X
Xin Pan 已提交
295
        self._persistable_vars = []
Z
Zhen Wang 已提交
296 297 298 299
        for node in self._graph.nodes():
            if node.is_var() and node.var() is not None and node.var().persistable() and \
                    node.var().type() != core.VarDesc.VarType.RAW:
                self._persistable_vars.append(cpt.to_text(node.name()))
300 301

        places = list(map(_place_obj, self._places))
Y
Yan Xu 已提交
302 303 304 305 306 307 308 309 310 311 312
        # ParallelExecutor would broadcast all the parameters during initializing.
        # The parameters of each process should be in the same ordered for the data-parallelism
        # distributed training to keep the broadcast correct.
        self._persistable_vars = list(set(self._persistable_vars))
        self._persistable_vars.sort()

        return core.ParallelExecutor(
            places, self._persistable_vars,
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
            self._exec_strategy, self._build_strategy, self._graph)
313

F
flame 已提交
314 315 316
    def _compile_inference(self):
        return core.create_paddle_predictor(self._infer_config)

317
    def _compile(self, scope, place):
X
Xin Pan 已提交
318 319 320 321 322 323 324 325 326 327
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
328
        if self._compiled:
X
polish  
Xin Pan 已提交
329 330
            if scope and self._scope != scope:
                raise ValueError("Cannot compile with different scope")
S
sneaxiy 已提交
331
            if place and not self._place._equals(place):
X
polish  
Xin Pan 已提交
332
                raise ValueError("Cannot compile with different place")
333
            return self
X
fix  
Xin Pan 已提交
334
        self._compiled = True
335 336 337 338

        self._scope = scope
        self._place = place
        if self._is_data_parallel:
339 340 341
            self._executor = self._compile_data_parallel(
                use_cuda=isinstance(self._place, core.CUDAPlace),
                scope=self._scope)
F
flame 已提交
342 343
        elif self._is_inference:
            self._executor = self._compile_inference()
344 345 346 347
        else:
            p = _place_obj(self._place)
            self._executor = core.Executor(p)
        return self