compiler.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
18
import sys
19
from .. import compat as cpt
X
Xin Pan 已提交
20
from . import framework
21 22

from . import core
23
from . import framework
24

X
Xin Pan 已提交
25 26
__all__ = ['CompiledProgram', 'ExecutionStrategy', 'BuildStrategy']

27 28
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
29 30
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
31 32 33 34 35 36 37 38


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


X
polish  
Xin Pan 已提交
39
class CompiledProgram(object):
X
polish  
Xin Pan 已提交
40
    """
X
Xin Pan 已提交
41
    Compiles to Graph for execution.
X
polish  
Xin Pan 已提交
42

X
Xin Pan 已提交
43 44 45 46
    1. Users first create the program with layers.
    2. Optionally, users use CompiledProgram to optimize the program before run.
    3. The original program or CompiledProgram is run by executor.

X
polish  
Xin Pan 已提交
47 48 49 50 51 52 53 54
    The CompiledProgram is used to transform a program for various
    optimizations, for example.
      * Pre-compute some logic once so that each run is faster.
      * Transform the program so that it can run in multiple devices.
      * TODO: transform the program for optimized inference or distributed
              training.

    Example:
X
Xin Pan 已提交
55
        .. code-block:: python
X
Xin Pan 已提交
56
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
X
Xin Pan 已提交
57 58 59 60 61 62 63 64
            exe = fluid.Executor(place)
            exe.run(startup)
            compiled_prog = compiler.CompiledProgram(main).with_data_parallel(
                loss_name=loss.name)
            for i in range(5):
                test_loss, = exe.run(compiled_prog,
                                     feed=feed_dict,
                                     fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
65 66

    Args:
X
Xin Pan 已提交
67 68 69 70 71
        program_or_graph (Graph|Program): If it's Program, it will be first
            lowered to a graph for further optimizations. If it's a graph
            (potentially optimized before), it will be directly used for
            further optimizations. Note: graph is only supported when compiled
            with with_data_parallel option.
X
polish  
Xin Pan 已提交
72 73
    """

X
Xin Pan 已提交
74 75 76 77 78 79 80 81 82 83 84 85
    def __init__(self, program_or_graph):
        if isinstance(program_or_graph, core.Graph):
            self._graph = program_or_graph
            self._program = None
        elif isinstance(program_or_graph, framework.Program):
            self._graph = core.Graph(program_or_graph.desc)
            self._program = program_or_graph
        else:
            raise ValueError("Wrong program_to_graph type: %s" %
                             type(program_or_graph))

        self._program_desc = self._graph.origin_program_desc()
X
polish  
Xin Pan 已提交
86 87 88
        self._scope = None
        self._place = None
        self._executor = None
89 90
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
91
        self._is_inference = False
92

X
Xin Pan 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    def with_data_parallel(self,
                           loss_name=None,
                           build_strategy=None,
                           exec_strategy=None,
                           share_vars_from=None):
        """Configs the program to run in data parallel way.

        Args:
            loss_name (str): The loss name must set in training. Default None.
            build_strategy(BuildStrategy): build_strategy is used to
                build the graph so it can run on multiple devices/cores with
                optimized topology.
                For more information, please refer to fluid.BuildStrategy.
                Default None.
            exec_strategy(ExecutionStrategy): exec_strategy is used to
                to select the a way to execute the graph, for example how many
                threads are used, how many iterations to clean up the temp
                variables. For more information, please refer
                to fluid.ExecutionStrategy. Default None.
            share_vars_from(CompiledProgram): If provide, this CompiledProgram
                will share variables from `share_vars_from`. `share_vars_from`
                must be run by the executor before this CompiledProgram so that
                vars are ready.
        Returns:
            self
        """
119
        assert not self._is_data_parallel, "Already compiled with parallel."
X
Xin Pan 已提交
120
        assert not self._is_inference, "Cannot compile both data parallel and inference"
121 122 123 124
        self._is_data_parallel = True
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
125
        self._share_vars_from = share_vars_from
X
fix  
Xin Pan 已提交
126 127 128 129
        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
Q
Qiao Longfei 已提交
130 131
        self._build_strategy.is_distribution = framework.is_pserver_mode(
            self._program)
132 133
        return self

F
flame 已提交
134 135 136 137 138 139 140 141
    def with_inference_optimize(self, config):
        """ Add inference optimize

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
X
Xin Pan 已提交
142
        assert not self._is_data_parallel, "Cannot compile both data parallel and inference"
X
Xin Pan 已提交
143 144
        assert not self._is_inference, "Already compiled with inference"

F
flame 已提交
145 146 147 148 149 150 151
        assert any([
            isinstance(config, InferNativeConfig),
            isinstance(config, InferAnalysisConfig)
        ])
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
152

F
flame 已提交
153
    def _with_distributed(self):
X
polish  
Xin Pan 已提交
154 155
        raise NotImplementedError()

156
    def _compile_data_parallel(self):
X
polish  
Xin Pan 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169
        if self._share_vars_from:
            if self._scope:
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
                raise ValueError("share_vars_from is not data parallel. Cannot "
                                 "share vars from it.")
            if self._share_vars_from._executor is None:
                raise ValueError(
                    "share_vars_from is not compiled and run, so there is no "
                    "var to share.")
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
            self._local_scopes = []
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

        self._exec_strategy.use_cuda = isinstance(self._place, core.CUDAPlace)
        if self._exec_strategy.use_cuda:
            gpus_env = os.getenv("FLAGS_selected_gpus")
            if gpus_env:
                gpus = [int(s) for s in gpus_env.split(",")]
            else:
                gpus = [
                    i for i in six.moves.range(core.get_cuda_device_count())
                ]
            self._places = [core.CUDAPlace(i) for i in gpus]
        else:
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            self._places = [core.CPUPlace() for _ in six.moves.range(cpu_num)]
        assert self._places, "no place for execution"

        if self._exec_strategy.num_threads == 0:
            if self._exec_strategy.use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
                self._exec_strategy.num_threads = len(self._places) * 4
            else:
                cpu_num = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
                self._exec_strategy.num_threads = cpu_num * 2

D
dzhwinter 已提交
197 198
        # FIXME(dzhwinter): enable_inplace should be after memory_optimize
        # if turn on python memory optimize, turn off the inplace_pass.
D
dzhwinter 已提交
199
        if self._build_strategy.memory_optimize is None:
X
Xin Pan 已提交
200
            self._build_strategy.memory_optimize = False if self._program and self._program._is_mem_optimized else True
D
dzhwinter 已提交
201
        if self._build_strategy.enable_inplace is None:
X
Xin Pan 已提交
202 203 204 205 206 207 208
            self._build_strategy.enable_inplace = False if self._program and self._program._is_mem_optimized else True

        # TODO(wuyi): trainer endpoings should be passed in through
        # build_strategy, not program.xxx.
        if self._program and self._build_strategy.num_trainers > 1 and \
                self._program._trainers_endpoints:
            tps = self._program._trainers_endpoints
D
dzhwinter 已提交
209

210
            assert self._build_strategy.num_trainers == len(
X
Xin Pan 已提交
211 212 213 214 215 216 217 218 219 220
                tps), "num_trainers == len(end_points)"
            self._build_strategy.trainers_endpoints = tps

        self._persistable_vars = []
        for block_id in range(self._program_desc.num_blocks()):
            bdesc = self._program_desc.block(block_id)
            self._persistable_vars.extend([
                cpt.to_text(v.name()) for v in bdesc.all_vars()
                if v.persistable() and v.type() != core.VarDesc.VarType.RAW
            ])
221 222

        places = list(map(_place_obj, self._places))
X
Xin Pan 已提交
223

224
        return core.ParallelExecutor(
X
Xin Pan 已提交
225
            places,
X
Xin Pan 已提交
226
            set(self._persistable_vars),
227 228
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
X
Xin Pan 已提交
229
            self._exec_strategy, self._build_strategy, self._graph)
230

F
flame 已提交
231 232 233
    def _compile_inference(self):
        return core.create_paddle_predictor(self._infer_config)

234
    def _compile(self, scope, place):
X
Xin Pan 已提交
235 236 237 238 239 240 241 242 243 244
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
245
        if self._compiled:
X
polish  
Xin Pan 已提交
246 247
            if scope and self._scope != scope:
                raise ValueError("Cannot compile with different scope")
S
sneaxiy 已提交
248
            if place and not self._place._equals(place):
X
polish  
Xin Pan 已提交
249
                raise ValueError("Cannot compile with different place")
250
            return self
X
fix  
Xin Pan 已提交
251
        self._compiled = True
252 253 254 255 256

        self._scope = scope
        self._place = place
        if self._is_data_parallel:
            self._executor = self._compile_data_parallel()
F
flame 已提交
257 258
        elif self._is_inference:
            self._executor = self._compile_inference()
259 260 261 262
        else:
            p = _place_obj(self._place)
            self._executor = core.Executor(p)
        return self