layers.py 178.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

33 34 35 36 37 38 39 40
__all__ = [
    "full_matrix_projection",
    "AggregateLevel",
    "ExpandLevel",
    "identity_projection",
    "dotmul_projection",
    "dotmul_operator",
    "repeat_layer",
41
    "seq_reshape_layer",
42 43 44 45 46 47 48 49 50 51 52 53 54
    "table_projection",
    "mixed_layer",
    "data_layer",
    "embedding_layer",
    "fc_layer",
    "grumemory",
    "pooling_layer",
    "lstmemory",
    "last_seq",
    "first_seq",
    "cos_sim",
    "hsigmoid",
    "conv_projection",
55
    "mse_cost",
56 57 58 59 60 61 62 63 64
    "regression_cost",
    'classification_cost',
    "LayerOutput",
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
65
    'seq_concat_layer',
66 67 68 69 70 71
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
72
    'scaling_projection',
73 74 75 76
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
77
    'rotate_layer',
78 79 80 81 82 83 84 85 86
    'sum_to_one_norm_layer',
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
87
    'gru_step_naive_layer',
88 89 90 91 92 93 94 95 96 97 98 99
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
100
    'warp_ctc_layer',
101 102 103 104 105 106 107 108 109 110 111 112 113 114
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'print_layer',
Y
yuan 已提交
115
    'priorbox_layer',
116
    'cross_channel_norm_layer',
117
    'spp_layer',
D
dangqingqing 已提交
118
    'pad_layer',
119
    'eos_layer',
120
    'smooth_l1_cost',
121
    'layer_support',
122
    'multiplex_layer',
D
dangqingqing 已提交
123
    'row_conv_layer',
124
]
125 126 127 128 129 130 131 132 133 134 135 136 137


class LayerType(object):
    """
    Layer type enumerations.
    """

    DATA = "data"
    MIXED_LAYER = "mixed"
    LSTMEMORY = "lstmemory"
    GRUMEMORY = "gated_recurrent"
    SEQUENCE_LAST_INSTANCE = "seqlastins"
    SEQUENCE_FIRST_INSTANCE = "seqfirstins"
138
    SEQUENCE_RESHAPE = "seqreshape"
139 140 141 142
    POOLING_MAX = "max"
    POOLING_AVG = 'average'
    FC_LAYER = "fc"
    COST = 'cost'
143 144
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
145 146
    HSIGMOID = 'hsigmoid'
    CONV_LAYER = "conv"
147
    CONVTRANS_LAYER = "convt"
148 149 150
    EXCONV_LAYER = "exconv"
    EXCONVTRANS_LAYER = "exconvt"
    CUDNNCONV_LAYER = "cudnn_conv"
151 152 153 154 155 156 157 158
    POOL_LAYER = "pool"
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
159
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
160 161 162 163 164 165 166

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
167
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
168 169 170
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
171
    ROTATE_LAYER = 'rotate'
172
    OUT_PROD_LAYER = 'out_prod'
173
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
174 175 176 177 178 179 180 181 182 183 184

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
185
    LINEAR_COMBINATION_LAYER = "convex_comb"
186
    BLOCK_EXPAND = "blockexpand"
187
    MAXOUT = "maxout"
Q
qijun 已提交
188
    SPP_LAYER = "spp"
D
dangqingqing 已提交
189
    PAD_LAYER = "pad"
190
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
191
    ROW_CONV_LAYER = "row_conv"
192

193
    PRINT_LAYER = "print"
Y
yuan 已提交
194
    PRIORBOX_LAYER = "priorbox"
195

196
    CTC_LAYER = "ctc"
197
    WARP_CTC_LAYER = "warp_ctc"
198 199
    CRF_LAYER = "crf"
    CRF_DECODING_LAYER = "crf_decoding"
200
    NCE_LAYER = 'nce'
201 202 203 204 205 206 207 208

    RANK_COST = "rank-cost"
    LAMBDA_COST = "lambda_cost"
    HUBER = "huber"
    CROSS_ENTROPY = "multi-class-cross-entropy"
    CROSS_ENTROPY_WITH_SELFNORM = "multi_class_cross_entropy_with_selfnorm"
    SOFT_BIN_CLASS_CROSS_ENTROPY = "soft_binary_class_cross_entropy"
    MULTI_BIN_LABEL_CROSS_ENTROPY = "multi_binary_label_cross_entropy"
X
xuwei06 已提交
209
    SUM_COST = "sum_cost"
D
dangqingqing 已提交
210
    SMOOTH_L1 = "smooth_l1"
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
232
    """
L
Luo Tao 已提交
233
    PaddlePaddle supports three sequence types:
234 235 236

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
237 238
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
239

L
Luo Tao 已提交
240
    Accordingly, AggregateLevel supports two modes:
241

242
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
243
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
244 245
      be aggregated to :code:`NO_SEQUENCE`.

246
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
247 248 249
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
250 251
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
252 253 254
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
277
    :type parents: list|tuple|collections.Sequence
278 279
    """

280 281 282 283 284 285 286 287 288
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
289
                 reverse=None):
290 291
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
292
        assert size is not None
293 294
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
295
        self.full_name = MakeLayerNameInSubmodel(name)
296
        self.layer_type = layer_type
297 298
        if parents is not None and type(parents) != list:
            parents = [parents]
299 300 301 302 303 304 305 306
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
307
        self.reverse = reverse
308 309 310 311 312 313 314 315 316 317 318 319 320

    def __repr__(self):
        """
        Disable __repr__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

    def __str__(self):
        """
        Disable __str__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

321 322 323 324 325 326 327 328
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

329 330 331

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
332
DEVICE = 'device'
333 334 335


def layer_support(*attrs):
336
    attrs_list = list(attrs)
337
    attrs_list.append(DEVICE)
338

339 340 341
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
342
            for attr in attrs_list:
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
359 360 361 362 363
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
403 404
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
405 406 407 408
    proj.origin = input
    return proj


409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
439 440
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
441 442 443 444
    proj.origin = input
    return proj


445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
484 485
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
486 487 488 489
    proj.origin = input
    return proj


490
def identity_projection(input, offset=None, size=None):
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
521
    :type input: LayerOutput
522 523
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
524
    :return: A IdentityProjection or IdentityOffsetProjection object
525 526 527 528 529 530
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
531 532
        if size is None:
            size = input.size - offset
533
        proj = IdentityOffsetProjection(
534
            input_layer_name=input.name, offset=offset, size=size)
535 536 537 538
        proj.origin = input
    return proj


X
xuwei06 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
561
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
562 563 564 565
    proj.origin = input
    return proj


566
@wrap_param_attr_default()
567
def dotmul_projection(input, param_attr=None):
568
    """
569
    DotMulProjection with a layer as input.
570 571 572 573 574 575 576 577 578 579 580 581 582
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

583 584 585 586 587 588 589
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
590 591
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
592
    proj.origin = input
593
    return proj
594

595 596

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
597 598
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
599

600
    .. math::
L
Luo Tao 已提交
601
       out.row[i] += scale * (a.row[i] .* b.row[i])
602

603 604
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
605

606
    The example usage is:
607

608
    .. code-block:: python
609

L
Luo Tao 已提交
610
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
611

612 613 614 615
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
616 617
    :param scale: config scalar, default value is one.
    :type scale: float
618 619
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
620
    """
621 622 623
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
624
    a = kwargs.get('x', a)  # For Backward capacity.
625 626 627 628 629 630
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

631
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
632
    op.origin = [a, b]
633
    return op
634

635

636
@wrap_bias_attr_default(['padding_attr'])
637 638 639
def context_projection(input,
                       context_len,
                       context_start=None,
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

676 677 678 679 680 681
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
682 683 684 685 686 687 688 689 690 691 692 693 694
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

695
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
712 713 714 715 716 717 718
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
719 720 721 722 723
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

724
    def __iadd__(self, other):
725 726 727 728 729 730 731 732
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
733
            assert isinstance(other, Projection) or isinstance(other, Operator)
734
            self.inputs.append(other)
735 736 737 738
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
739 740 741 742 743 744 745 746
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

747
    def __exit__(self, exc_type, exc_value, tb):
748 749
        if exc_value is not None:
            raise exc_value
750
        assert len(self.inputs) != 0
751
        ml = MixedLayer(
752 753 754 755 756
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
757
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
758 759 760
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
761
        self.finalized = True
762 763 764 765 766 767


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
768 769 770 771 772
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
817 818 819 820 821 822
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
823
            if isinstance(input, collections.Sequence):
824 825 826 827 828 829 830 831
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
832
def data_layer(name, size, height=None, width=None, layer_attr=None):
833 834 835 836 837 838 839
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
840
        data = data_layer(name="input", size=1000)
841 842 843 844 845

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
846
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
847
    :type height: int|None
848
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
849
    :type width: int|None
850 851
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
852
    :return: LayerOutput object.
853 854
    :rtype: LayerOutput
    """
855 856 857 858
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
859 860
        height=height,
        width=width,
861
        **ExtraLayerAttribute.to_kwargs(layer_attr))
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
@layer_support(ERROR_CLIPPING)
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
884
    :return: LayerOutput object.
885 886
    :rtype: LayerOutput
    """
887 888 889 890 891 892
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
893 894 895 896 897 898 899 900 901
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
902 903 904 905 906 907 908
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
909 910 911 912 913 914 915 916 917 918 919 920
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

921
    which is equal to:
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
944
    :return: LayerOutput object.
945 946 947 948
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
949
        assert not isinstance(param_attr, collections.Sequence)
950 951
        param_attr = [param_attr]
    else:
952
        if isinstance(param_attr, collections.Sequence):
953 954 955 956
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

957
    assert isinstance(input, collections.Sequence)
958 959

    Layer(
960 961 962
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
963 964 965 966 967
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
968 969 970
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
971

972

973 974 975 976
@wrap_name_default("print")
def print_layer(input, name=None):
    """
    Print the output value of input layers. This layer is useful for debugging.
977 978 979 980 981

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
982
    :return: LayerOutput
983
    """
984 985 986 987 988
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
989 990 991 992

    Layer(
        name=name,
        type=LayerType.PRINT_LAYER,
993
        inputs=[l.name for l in input], )
994
    # this layer don't return anything, can not be input of other layer.
995

996

Y
yuan 已提交
997
@wrap_name_default("priorbox")
G
gaoyuan 已提交
998
def priorbox_layer(input,
999
                   image,
G
gaoyuan 已提交
1000 1001 1002 1003 1004
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1005 1006 1007 1008 1009 1010 1011
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
1012 1013
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1025
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1026 1027 1028
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
1029
        inputs=[input.name, image.name],
Y
yuan 已提交
1030 1031 1032 1033 1034 1035
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1036 1037
        name,
        LayerType.PRIORBOX_LAYER,
1038
        parents=[input, image],
G
gaoyuan 已提交
1039 1040 1041
        num_filters=num_filters,
        size=size)

1042

1043 1044
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1045 1046 1047 1048 1049
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1050

G
gaoyuan 已提交
1051 1052 1053 1054 1055 1056 1057 1058
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1059
    assert input.num_filters is not None
G
gaoyuan 已提交
1060 1061
    Layer(
        name=name,
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1075 1076
    return LayerOutput(
        name,
1077
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1078 1079 1080 1081 1082
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


1083 1084 1085 1086
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
1087 1088 1089 1090
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
1091
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
1102
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
1103

1104 1105
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1118
    :return: LayerOutput object.
1119
    :rtype: LayerOutput
1120 1121
    """
    extra_dict = dict()
1122
    # noinspection PyUnresolvedReferences
1123 1124
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1125 1126 1127 1128
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
1129 1130 1131 1132 1133 1134 1135 1136
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1137
        **extra_dict)
1138

1139 1140
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
1141

Q
qijun 已提交
1142

1143 1144
@wrap_bias_attr_default()
@wrap_param_attr_default()
1145
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
1146 1147 1148
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
@layer_support(DROPOUT)
1149 1150 1151 1152 1153 1154 1155 1156 1157
def lstmemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
1158 1159 1160 1161 1162 1163 1164 1165
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

1166
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
1167

1168
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
1169

1170
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
1171

1172
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
1173

1174
        h_t & = o_t tanh(c_t)
1175 1176


1177
    NOTE: In PaddlePaddle's implementation, the multiplications
1178
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
1179 1180 1181 1182
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
1183

1184
    NOTE: This is a low level user interface. You can use network.simple_lstm
1185 1186
    to config a simple plain lstm layer.

1187 1188 1189 1190
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1214
    :return: LayerOutput object.
1215 1216 1217 1218 1219 1220
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    assert input.size is not None and input.size % 4 == 0
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal

        plog("NOTE: The lstmemory layer[%s]'s size is set by previous input "
             "layer. The lstm size should be equal with input layer size/4. The"
             " size which is set explicitly will be ignored." % name)
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
1242

1243 1244 1245 1246 1247
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1248

1249 1250 1251

@wrap_bias_attr_default()
@wrap_param_attr_default()
1252
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
1253 1254 1255
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
@layer_support(DROPOUT)
1256 1257 1258 1259 1260 1261 1262 1263
def grumemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              bias_attr=None,
              param_attr=None,
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

1285 1286
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
1287 1288 1289 1290 1291

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

1292 1293 1294
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
1295 1296 1297 1298 1299

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

1300
    NOTE: In PaddlePaddle's implementation, the multiplication operations
1301
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
1302 1303 1304
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
1305

1306 1307 1308
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1320
    :param reverse: Whether sequence process is reversed or not.
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
1336 1337 1338
    :param size: Stub parameter of size, but actually not used. If set this size
                 will get a warning.
    :type size: None
D
dangqingqing 已提交
1339
    :return: LayerOutput object.
1340 1341 1342 1343
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1344 1345 1346 1347 1348 1349 1350 1351 1352
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
        plog("NOTE: the gru memory layer's size is set by previous input layer,"
             " and should be input size / 3. Set size explicitly will be "
             "ignored.")
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
1363

1364 1365 1366 1367 1368
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1369

1370 1371 1372

@wrap_name_default()
@layer_support()
1373 1374
def last_seq(input,
             name=None,
1375
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1376
             stride=-1,
1377 1378 1379 1380
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1381 1382 1383
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1384
    of stride is -1.
1385

L
Luo Tao 已提交
1386 1387 1388 1389 1390 1391
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

1392 1393 1394 1395 1396
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
1397
    :param stride: window size.
1398
    :type stride: Int
1399 1400
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1401
    :return: LayerOutput object.
1402 1403
    :rtype: LayerOutput
    """
1404 1405 1406 1407 1408 1409
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

1410
    if agg_level == AggregateLevel.TO_SEQUENCE:
1411 1412
        assert stride == -1

1413 1414 1415 1416 1417
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1418
        stride=stride,
1419 1420 1421 1422 1423 1424
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
1425 1426 1427 1428


@wrap_name_default()
@layer_support()
1429 1430
def first_seq(input,
              name=None,
1431
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1432
              stride=-1,
1433 1434 1435 1436
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1437 1438 1439
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1440
    of stride is -1.
1441

L
Luo Tao 已提交
1442 1443 1444 1445 1446 1447
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

1448 1449 1450 1451 1452
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
1453
    :param stride: window size.
1454
    :type stride: Int
1455 1456
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1457
    :return: LayerOutput object.
1458 1459
    :rtype: LayerOutput
    """
1460 1461 1462 1463 1464 1465 1466

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

1467
    if agg_level == AggregateLevel.TO_SEQUENCE:
1468 1469
        assert stride == -1

1470 1471 1472 1473 1474
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1475
        stride=stride,
1476 1477 1478 1479 1480 1481
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
1482 1483 1484


class ExpandLevel(object):
1485 1486 1487 1488 1489
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

1490 1491
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1492 1493
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

1494 1495
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1496 1497
      :code:`SUB_SEQUENCE`.
    """
1498 1499
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1500 1501
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
1502

1503

1504 1505
@wrap_name_default()
@layer_support()
1506 1507
def expand_layer(input,
                 expand_as,
1508 1509
                 name=None,
                 bias_attr=False,
1510
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
1522
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1537
    :return: LayerOutput object.
1538 1539 1540 1541 1542 1543 1544 1545 1546
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
1547 1548 1549 1550 1551 1552
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
1553 1554


1555 1556
@wrap_name_default()
@layer_support()
1557
def repeat_layer(input, num_repeats, name=None, layer_attr=None):
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
    """
    A layer for repeating the input for num_repeats times. This is equivalent
    to apply concat_layer() with num_repeats same input.

    .. math::
       y  = [x, x, \cdots, x]

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1569
       expand = repeat_layer(input=layer, num_repeats=4)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
        num_filters=num_repeats,
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
1588 1589 1590 1591 1592 1593 1594
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
        parents=[input])

1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support()
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1608
    the dimension of each instance is M, and the input reshape_size is N, then the
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1679
    :return: LayerOutput object.
1680 1681
    :rtype: LayerOutput
    """
1682
    assert isinstance(input, collections.Sequence)
1683
    assert len(input) == 2
1684 1685 1686 1687 1688 1689 1690
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
1691 1692 1693 1694
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
1695 1696 1697 1698 1699 1700
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
1701 1702


1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1719
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1720

L
liaogang 已提交
1721
    :param   input:        A input layer.
1722
    :type    input:        LayerOutput.
L
liaogang 已提交
1723
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1724
    :type    out_size_x:   int|None
L
liaogang 已提交
1725
    :param   out_size_y:   bilinear interpolation output height.
1726
    :type    out_size_y:   int|None
L
liaogang 已提交
1727
    :param   name:         The layer's name, which cna not be specified.
1728
    :type    name:         None|basestring
L
liaogang 已提交
1729
    :param   layer_attr:   Extra Layer attribute.
1730 1731 1732 1733 1734 1735 1736
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1737
    assert input.num_filters is not None
L
liaogang 已提交
1738
    num_channels = input.num_filters
1739 1740 1741 1742 1743 1744 1745
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
1746
                channels=num_channels)),
1747 1748 1749 1750 1751 1752 1753 1754 1755
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1784
    :return: LayerOutput object.
1785 1786
    :rtype: LayerOutput
    """
1787 1788 1789
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
1790 1791 1792
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
1793
        inputs=[weight.name, input.name],
1794 1795 1796
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
1797 1798 1799 1800 1801 1802


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
1803
    A layer for multiplying input vector by weight scalar.
1804 1805

    .. math::
1806
       y  = w x
1807

1808 1809 1810 1811 1812
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1828
    :return: LayerOutput object.
1829 1830
    :rtype: LayerOutput
    """
1831 1832 1833
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
1834 1835 1836 1837
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
1838 1839 1840
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
1841 1842 1843 1844 1845 1846


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
1847
    A layer for transposing a minibatch matrix.
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1866
    :return: LayerOutput object.
1867 1868 1869 1870 1871 1872
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
1873 1874 1875
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
1876 1877


1878 1879
@wrap_name_default()
@layer_support()
1880
def rotate_layer(input, height, width, name=None, layer_attr=None):
1881
    """
H
Haonan 已提交
1882 1883
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
1884 1885

    .. math::
1886
       y(j,i,:) = x(M-i-1,j,:)
1887

1888
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
1889 1890 1891 1892 1893 1894

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
1895 1896
                          height=100,
                          width=100)
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
1910 1911 1912
    l = Layer(
        name=name,
        height=height,
1913
        width=width,
H
Haonan 已提交
1914 1915 1916 1917 1918 1919 1920 1921
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
1922 1923


1924 1925
@wrap_name_default()
@layer_support()
1926
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
1927 1928 1929 1930
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
1931
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
1932 1933 1934 1935 1936
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
1937

1938 1939
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
1940

L
Luo Tao 已提交
1941 1942 1943 1944 1945 1946
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1959
    :return: LayerOutput object.
1960 1961
    :rtype: LayerOutput
    """
1962
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
1963 1964 1965 1966 1967 1968
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
1969
            **ExtraLayerAttribute.to_kwargs(layer_attr))
1970
    else:
1971 1972
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
1973 1974 1975 1976 1977 1978
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
1979
            **ExtraLayerAttribute.to_kwargs(layer_attr))
1980
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
1981

1982

1983 1984
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
1985
@wrap_param_attr_default()
1986
@layer_support()
1987 1988
def hsigmoid(input,
             label,
1989
             num_classes=None,
1990 1991 1992 1993
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2005
                        label=data_layer)
2006 2007 2008 2009 2010 2011 2012

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2013
    :type num_classes: int|None
2014 2015
    :param name: layer name
    :type name: basestring
2016 2017 2018
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2019 2020
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
2021 2022
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2023
    :return: LayerOutput object.
2024 2025 2026 2027
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2028 2029 2030 2031 2032 2033 2034 2035 2036
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
2037 2038 2039
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2040 2041 2042 2043 2044
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

2045 2046
    ipts_for_layer = []
    parents = []
2047
    for each_input, each_param_attr in zip(input, param_attr):
2048
        assert isinstance(each_input, LayerOutput)
2049
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
2050 2051 2052 2053
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

2054
    l = Layer(
2055 2056 2057 2058 2059
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
2060 2061 2062
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
2063

2064

2065 2066 2067 2068 2069
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2086 2087
                   trans=False,
                   layer_type=None):
2088
    """
2089
    Convolution layer for image. Paddle can support both square and non-square
2090
    input currently.
2091 2092 2093 2094

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2095

2096
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2097
    and non-square input currently.
2098

X
xuwei06 已提交
2099
    The details of convolution transpose layer,
2100 2101 2102
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
2103 2104 2105 2106
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

2107 2108 2109
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
2110
    32*4 = 128 filters to process inputs. The channels will be split into 4
2111 2112
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
2113

L
Luo Tao 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2124 2125 2126 2127
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2128 2129 2130
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
2131 2132 2133
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2134
    :type filter_size_y: int|None
2135 2136 2137 2138 2139
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2140 2141 2142
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
2143 2144
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2145 2146 2147
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2162 2163
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2164
    :param layer_type: specify the layer_type, default is None. If trans=True,
2165 2166
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2167
                       "cudnn_conv"
2168
    :type layer_type: String
D
dangqingqing 已提交
2169
    :return: LayerOutput object.
2170 2171 2172 2173 2174
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2175

2176
    if filter_size_y is None:
2177 2178 2179 2180 2181 2182
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

2183
    if stride_y is None:
2184 2185 2186 2187 2188 2189
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

2190
    if padding_y is None:
2191 2192 2193 2194 2195 2196 2197 2198
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
2199
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2200 2201 2202 2203
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2204

2205 2206
    if layer_type:
        if trans:
2207
            assert layer_type in ["exconvt", "cudnn_convt"]
2208 2209 2210 2211 2212
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
2213

2214
    l = Layer(
2215
        name=name,
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
2228 2229 2230 2231
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2232
        type=lt,
2233 2234 2235 2236 2237 2238 2239 2240
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
2241 2242 2243 2244


@wrap_name_default("pool")
@layer_support()
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2255 2256
                   padding_y=None,
                   ceil_mode=True):
2257 2258 2259 2260 2261 2262 2263
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2292
    :param padding: pooling padding width.
2293
    :type padding: int
2294 2295
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
2296 2297 2298 2299
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2300
    :param pool_size: pooling window width
2301
    :type pool_size: int
2302 2303
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
2304 2305
    :param num_channels: number of input channel.
    :type num_channels: int
2306
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
2307 2308
                      MaxPooling.
    :type pool_type: BasePoolingType
2309
    :param stride: stride width of pooling.
2310
    :type stride: int
2311 2312
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
2313 2314
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2315 2316 2317 2318
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2319 2320
    :return: LayerOutput object.
    :rtype: LayerOutput
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2331
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2332
        if (
2333
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2334
        else pool_type.name
2335 2336 2337 2338 2339

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

2340
    l = Layer(
2341 2342
        name=name,
        type=LayerType.POOL_LAYER,
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
2355
                    padding_y=padding_y))
2356
        ],
2357
        ceil_mode=ceil_mode,
2358 2359 2360 2361 2362 2363 2364
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
2365 2366


Q
qijun 已提交
2367 2368
@wrap_name_default("spp")
@layer_support()
2369 2370 2371 2372 2373 2374
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2375 2376 2377 2378 2379
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2380 2381 2382 2383
    The example usage is:

    ..  code-block:: python

2384 2385 2386
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2387 2388
                        pool_type=MaxPooling())

Q
qijun 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

2417
    l = Layer(
Q
qijun 已提交
2418 2419
        name=name,
        type=LayerType.SPP_LAYER,
2420 2421 2422 2423 2424
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
2425
                pyramid_height=pyramid_height)),
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
2437 2438 2439 2440
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

2441
    l = Layer(
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
2461 2462 2463 2464


@wrap_name_default("crmnorm")
@layer_support()
2465 2466 2467 2468 2469 2470
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2471
                      layer_attr=None):
2472
    """
2473
    Response normalization across feature maps.
D
dangqingqing 已提交
2474 2475
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
2476

L
Luo Tao 已提交
2477 2478 2479
    The example usage is:

    ..  code-block:: python
2480

L
Luo Tao 已提交
2481 2482
        norm = img_cmrnorm_layer(input=net, size=5)

2483
    :param name: layer name.
D
dangqingqing 已提交
2484
    :type name: None|basestring
2485 2486
    :param input: layer's input.
    :type input: LayerOutput
2487
    :param size: Normalize in number of :math:`size` feature maps.
2488
    :type size: int
D
dangqingqing 已提交
2489
    :param scale: The hyper-parameter.
2490
    :type scale: float
D
dangqingqing 已提交
2491
    :param power: The hyper-parameter.
2492 2493 2494 2495 2496
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2497
    :return: LayerOutput object.
2498 2499 2500
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2501
                              power, num_channels, 0, layer_attr)
2502 2503 2504 2505 2506 2507 2508 2509


@wrap_bias_attr_default()
@wrap_param_attr_default(default_factory=lambda _: ParamAttr(initial_mean=1.0,
                                                             initial_std=0.))
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
@layer_support(DROPOUT)
2510 2511 2512 2513 2514 2515 2516
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2538 2539 2540
    The example usage is:

    ..  code-block:: python
2541

L
Luo Tao 已提交
2542 2543
        norm = batch_norm_layer(input=net, act=ReluActivation())

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2558
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2586
    :return: LayerOutput object.
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
    :rtype: LayerOutput
    """
    if not isinstance(act, ReluActivation):
        logger.log(logging.WARN,
                   "%s is not recommend for batch normalization's activation, "
                   "maybe the relu is better" % act.name)

    if not isinstance(input.activation, LinearActivation):
        logger.log(logging.WARN,
                   "The activation should be inside batch normalization, the "
                   "previous layer's activation may be Linear")

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
2606
    l = Layer(
2607
        name=name,
2608 2609
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
2610 2611 2612 2613 2614 2615
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
2616
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2617

2618 2619 2620 2621 2622 2623 2624
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2652
    :return: LayerOutput object.
2653 2654 2655 2656 2657 2658
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
2659 2660 2661
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
2662 2663 2664 2665 2666 2667


@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT)
2668
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

2691 2692 2693
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
2694 2695

    It is a very good way to set dropout outside the layers. Since not all
2696 2697
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2712
    :return: LayerOutput object.
2713 2714 2715 2716 2717 2718
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2719
    assert isinstance(input, collections.Sequence)
2720 2721 2722 2723 2724 2725 2726
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

2727
    l = Layer(
2728 2729 2730
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
2731 2732
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
2733
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2734

2735 2736 2737 2738 2739 2740 2741
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
2742 2743 2744 2745 2746


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
@layer_support()
2747
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
2748 2749 2750 2751
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2752 2753 2754 2755 2756 2757
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

2758 2759 2760
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2761
    :type input: list|tuple|collections.Sequence
2762 2763 2764 2765
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2766
    :return: LayerOutput object.
2767 2768 2769 2770 2771 2772 2773 2774
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
2775
        assert isinstance(input, collections.Sequence)
2776 2777

    def __is_type__(o, tp):
2778
        if not isinstance(o, collections.Sequence):
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

2800 2801
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
2802

2803 2804
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
2805

2806 2807
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
2808

2809
    layer = Layer(
2810 2811
        name=name,
        type=layer_type,
2812 2813
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
2814
        bias=ParamAttr.to_bias(bias_attr),
2815
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2816

2817
    sz = layer.config.size
2818

2819 2820 2821 2822 2823 2824 2825 2826
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


2827 2828
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
2829
@wrap_bias_attr_default(has_bias=False)
2830 2831 2832 2833 2834
@layer_support()
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
2835

2836
    Inputs:
2837 2838 2839
      - a = [a1, a2, ..., an]
      - b = [b1, b2, ..., bn]
      - Note that the length of a and b should be the same.
2840

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
    Output: [a1, b1, a2, b2, ..., an, bn]

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
2859 2860 2861 2862
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


2884
@wrap_name_default("memory", "memory_name")
2885 2886
def memory(name,
           size,
2887
           memory_name=None,
2888 2889 2890 2891
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)


    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
2929 2930 2931
    :type name: basestring
    :param size: size of memory.
    :type size: int
2932 2933 2934
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
    :param is_seq: is sequence for boot_layer
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
2945
    :return: LayerOutput object which is a memory.
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
2956 2957
    if name is not None:
        memory_name = None
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967
    memory_name = Memory(
        name,
        size,
        is_sequence=is_seq,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
2968 2969

    lout = LayerOutput(
2970
        name=memory_name,
2971 2972 2973
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
2974 2975 2976 2977
    return lout


@wrap_bias_attr_default()
2978 2979
@wrap_act_default(
    param_names=['gate_act', 'state_act'], act=SigmoidActivation())
2980 2981 2982
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
2983 2984
def lstm_step_layer(input,
                    state,
2985
                    size=None,
2986 2987 2988 2989 2990 2991
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
2992 2993 2994 2995 2996 2997
    """
    LSTM Step Layer. It used in recurrent_group. The lstm equations are shown
    as follow.

    ..  math::

2998
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
2999

3000
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
3001

3002
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
3003

3004
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
3005

3006
        h_t & = o_t tanh(c_t)
3007 3008


3009
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
    input vector.

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


    This layer contains two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, which name is 'state' and can use
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
    :param size: Layer's size. NOTE: lstm layer's size, should be equal as
                 :code:`input.size/4`, and should be equal as
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3048
    :return: LayerOutput object.
3049 3050
    :rtype: LayerOutput
    """
3051 3052 3053

    assert size is None or state.size == size
    size = state.size
3054 3055 3056 3057 3058 3059 3060
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3061
        size=state.size,
3062 3063
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3064

3065 3066 3067 3068 3069 3070 3071
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
3072 3073 3074


@wrap_bias_attr_default()
3075
@wrap_param_attr_default()
3076
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
3077 3078 3079
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
3080 3081 3082 3083 3084 3085 3086
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
3087
                   param_attr=None,
3088
                   layer_attr=None):
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3099 3100
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
3101
    :param layer_attr:
D
dangqingqing 已提交
3102
    :return: LayerOutput object.
3103 3104 3105 3106 3107 3108 3109 3110
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3111 3112 3113 3114
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3115
        # backward model compatibility.
3116
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
3117 3118 3119 3120
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
3121
        **ExtraAttr.to_kwargs(layer_attr))
3122
    return LayerOutput(
3123 3124
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
3125
        parents=[input, output_mem],
3126 3127
        size=size,
        activation=act)
3128 3129


3130 3131 3132 3133
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3134
@wrap_name_default('gru_step_naive')
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


3202 3203 3204 3205
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
3206 3207 3208 3209
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
3210 3211 3212 3213 3214 3215 3216 3217 3218

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3219
    :return: LayerOutput object.
3220 3221 3222 3223 3224 3225 3226
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
3227 3228 3229 3230 3231 3232 3233
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3234

3235 3236 3237 3238 3239
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
3240 3241 3242 3243 3244 3245 3246


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
3247 3248 3249 3250 3251 3252 3253
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
3254
    """
3255 3256
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
3257

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3285
    :return: LayerOutput object.
3286
    :rtype: LayerOutput
3287
    """
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
3303 3304 3305 3306 3307 3308 3309


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
    """
3310

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
        self.is_seq = is_seq
        assert input.size is not None or size is not None
        if size is not None:
            input.size = size


class SubsequenceInput(object):
    """
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3330

3331 3332 3333 3334 3335 3336 3337
    def __init__(self, input):
        assert isinstance(input, LayerOutput)
        assert input.size is not None
        self.input = input


@wrap_name_default("recurrent_group")
3338 3339 3340 3341 3342
def recurrent_group(step,
                    input,
                    reverse=False,
                    name=None,
                    targetInlink=None,
3343
                    is_generating=False):
3344
    """
3345 3346 3347 3348 3349
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3394 3395
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
3396
    :type reverse: bool
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

    :param targetInlink: the input layer which share info with layer group's output

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

3408
    :param is_generating: If is generating, none of input type should be LayerOutput;
3409
                          else, for training or testing, one of the input type must
3410
                          be LayerOutput.
3411

3412
    : type is_generating: bool
3413

D
dangqingqing 已提交
3414
    :return: LayerOutput object.
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

    def is_single_input(x):
        return isinstance(x, LayerOutput) or isinstance(x, StaticInput) \
               or isinstance(x, SubsequenceInput)

    if is_single_input(input):
        input = [input]
3425
    assert isinstance(input, collections.Sequence)
3426 3427 3428 3429 3430 3431

    def is_in_links(x):
        return isinstance(x, LayerOutput) or isinstance(x, SubsequenceInput)

    in_links = filter(is_in_links, input)

3432 3433 3434 3435 3436 3437 3438 3439 3440
    def targetInlink_in_inlinks():
        for inlink in in_links:
            if isinstance(inlink, SubsequenceInput):
                if targetInlink == inlink.input:
                    return True
            elif targetInlink == inlink:
                return True
        return False

3441
    assert (targetInlink == None or targetInlink_in_inlinks())
3442
    targetInlinkName = None if targetInlink == None \
Y
Yu Yang 已提交
3443 3444
        else targetInlink.name if isinstance(targetInlink, LayerOutput) \
        else targetInlink.input.name
3445

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
    contains_sub_seq = [False]

    def map_in_links(x):
        if isinstance(x, SubsequenceInput):
            contains_sub_seq[0] = True
            return Link(name=x.input.name, has_subseq=True)
        else:
            return x.name

    RecurrentLayerGroupWithoutOutLinksBegin(
3456 3457
        name=name,
        in_links=map(map_in_links, in_links),
3458 3459
        seq_reversed=reverse,
        target_inlinkname=targetInlinkName)
3460
    in_args = []
3461
    has_LayerOutput = False
3462 3463 3464 3465
    for each_input in input:
        assert is_single_input(each_input)
        if isinstance(each_input, LayerOutput):
            in_args.append(each_input)
3466
            has_LayerOutput = True
3467 3468
        elif isinstance(each_input, SubsequenceInput):
            in_args.append(each_input.input)
3469
            has_LayerOutput = True
3470 3471
        else:
            mem_name = "__%s_memory__" % each_input.input.name
3472 3473 3474 3475 3476 3477 3478 3479 3480
            mem = memory(
                name=mem_name,
                is_seq=each_input.is_seq,
                size=each_input.input.size,
                boot_layer=each_input.input)
            with mixed_layer(
                    name=mem_name,
                    size=each_input.input.size,
                    act=IdentityActivation()) as mix:
3481 3482 3483
                mix += identity_projection(mem)
            in_args.append(mem)

3484
    assert (is_generating != has_LayerOutput)
3485

3486 3487 3488 3489 3490 3491 3492
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

    for ot in layer_outs:
        assert isinstance(ot, LayerOutput)
3493
        ot.reverse = reverse
3494 3495 3496 3497 3498 3499 3500
        if contains_sub_seq[0]:
            RecurrentLayerGroupSetOutLink(Link(ot.name, has_subseq=True))
        else:
            RecurrentLayerGroupSetOutLink(ot.name)

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3501 3502 3503 3504 3505
    for layer_out in layer_outs:
        # Thee previous full_name is the name is the rnn group
        # We need a full_name outside the rnn group
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

3506 3507 3508 3509 3510
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3511

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
        return maxid_layer(input=input, name='__beam_search_predict__')

    def before_real_step(self):
3529 3530 3531 3532 3533 3534 3535 3536 3537
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
3538 3539 3540
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3541
        super(GeneratedInput, self).__init__()
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3565
    :return: LayerOutput object.
3566 3567 3568 3569
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
3580

3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3618

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

3635 3636
    :param name: Layer name.
    :type name: basestring
3637 3638 3639 3640 3641 3642
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3643
    :return: LayerOutput object.
3644 3645
    :rtype: LayerOutput
    """
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
3657 3658 3659


@wrap_name_default()
3660 3661 3662 3663 3664 3665 3666
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
3667
                num_results_per_sample=None):
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3679
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3680 3681 3682 3683
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3684 3685 3686 3687 3688
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3689 3690
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3691 3692
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3693 3694
                               bos_id=0,
                               eos_id=1,
3695
                               beam_size=5)
3696 3697 3698 3699 3700 3701 3702 3703 3704

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3705
                 step, and it is applied to sequences with arbitrary length by
3706 3707 3708 3709 3710
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3711 3712
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3713
    :type input: list
3714 3715 3716
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3717
                   symbol is essential, since it is used to initialize the RNN
3718 3719 3720 3721 3722 3723 3724 3725
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3726 3727
    :param max_length: Max generated sequence length.
    :type max_length: int
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3738 3739
    :return: The generated word index.
    :rtype: LayerOutput
3740 3741
    """

3742 3743 3744 3745 3746
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

3747
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
3748 3749 3750 3751 3752 3753
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3754 3755
        assert isinstance(each_input, StaticInput) or isinstance(
            each_input, BaseGeneratedInput)
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
        if isinstance(each_input, BaseGeneratedInput):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]
    assert isinstance(gipt, BaseGeneratedInput)

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
3772 3773 3774 3775 3776 3777
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

        eos_layer(input=predict, eos_id=eos_id, name=eos_name)

        return predict

3788
    tmp = recurrent_group(
3789 3790 3791 3792
        step=__real_step__,
        input=real_input,
        reverse=False,
        name=name,
3793
        is_generating=True)
3794

3795 3796
    return tmp

3797

3798 3799
def __cost_input__(input, label, weight=None):
    """
3800
    inputs and parents for cost layers.
3801 3802 3803 3804
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
3805
        assert weight.size == 1
3806 3807 3808
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3809

3810 3811

@wrap_name_default()
L
luotao1 已提交
3812
@layer_support()
3813
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
3814
    """
3815 3816 3817 3818
    mean squared error cost:

    ..  math::

L
Luo Tao 已提交
3819
        \frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
3820 3821

    :param name: layer name.
3822
    :type name: basestring
3823
    :param input: Network prediction.
3824
    :type input: LayerOutput
3825
    :param label: Data label.
3826 3827 3828 3829
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
3830 3831
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
3832 3833
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3834
    :return: LayerOutput object.
3835
    :rtype: LayerOutput
3836
    """
3837 3838
    ipts, parents = __cost_input__(input, label, weight)

3839 3840 3841 3842
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
3843
        coeff=coeff,
3844
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3845
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
3846 3847


L
Luo Tao 已提交
3848 3849 3850
regression_cost = mse_cost


3851
@wrap_name_default("cost")
3852
@layer_support()
3853 3854 3855 3856
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
3857
                        top_k=None,
3858 3859
                        evaluator=classification_error_evaluator,
                        layer_attr=None):
3860 3861 3862 3863 3864 3865 3866 3867 3868
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
3869 3870 3871
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
3872 3873
    :param top_k: number k in top-k error rate
    :type top_k: int
3874
    :param evaluator: Evaluator method.
3875 3876
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3877
    :return: LayerOutput object.
3878 3879 3880 3881 3882
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
3883 3884 3885

    ipts, parents = __cost_input__(input, label, weight)

3886 3887 3888 3889 3890
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

3901
        e(name=e.__name__, input=input, label=label, weight=weight, top_k=top_k)
3902

3903
    if not isinstance(evaluator, collections.Sequence):
3904 3905 3906 3907 3908
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

3909
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
3910

3911

3912 3913 3914 3915 3916 3917 3918 3919 3920
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
3921 3922
                  padding_y=None,
                  trans=False):
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

3933 3934
       op = conv_operator(img=input1,
                          filter=input2,
3935
                          filter_size=3,
3936 3937 3938
                          num_filters=64,
                          num_channels=64)

3939 3940 3941 3942
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
3943 3944
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
3945 3946 3947
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
3948
    :type filter_size_y: int
3949 3950
    :param num_filters: channel of output data.
    :type num_filters: int
3951 3952
    :param num_channels: channel of input data.
    :type num_channels: int
3953
    :param stride: The x dimension of the stride.
3954
    :type stride: int
3955
    :param stride_y: The y dimension of the stride.
3956
    :type stride_y: int
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
3970

3971 3972
    if num_channels is None:
        num_channels = img.num_filters
3973 3974 3975

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
3976
        filter.size = filter_size * filter_size_y * num_filters * num_channels
3977

3978 3979 3980
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
3992

3993
    op.origin = [img, filter]
3994 3995
    return op

3996

3997
@wrap_param_attr_default()
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4008 4009
                    param_attr=None,
                    trans=False):
4010 4011 4012 4013 4014 4015 4016 4017 4018
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4019
       proj = conv_projection(input=input1,
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4034 4035
    :param num_channels: channel of input data.
    :type num_channels: int
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4048 4049
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
4080
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4081 4082 4083 4084 4085
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4086 4087 4088
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4101 4102 4103 4104

    proj.origin = input
    return proj

4105

D
dangqingqing 已提交
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4123

D
dangqingqing 已提交
4124
    For example,
4125

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4147 4148

    The simply usage is:
D
dangqingqing 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


4210
@wrap_name_default()
L
luotao1 已提交
4211 4212
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4224 4225 4226 4227
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
4228 4229 4230 4231 4232

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4233
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
4234 4235 4236

    :param name: layer name
    :type name: basestring
4237 4238
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4239
    :param b: input layer b.
4240
    :type b: LayerOutput
L
luotao1 已提交
4241 4242
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4243
    :return: LayerOutput object.
4244 4245
    :rtype: LayerOutput
    """
4246 4247
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
4248 4249 4250
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4251
        inputs=[a.name, b.name],
4252
        **ExtraLayerAttribute.to_kwargs(layer_attr))
4253

4254 4255
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
4256 4257 4258 4259 4260


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4261
@wrap_act_default(act=LinearActivation())
4262
@layer_support(ERROR_CLIPPING, DROPOUT)
4263 4264 4265 4266 4267 4268 4269 4270
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
4271 4272 4273 4274 4275
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4276
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
4277 4278

    In this formular:
4279 4280
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
4281 4282
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4283
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
4284 4285 4286 4287 4288

    The simple usage is:

    .. code-block:: python

4289
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
4290 4291 4292

    :param name: layer name
    :type name: basestring
4293 4294 4295 4296
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
4297
    :param size: the layer dimension.
4298
    :type size: int.
4299 4300 4301
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4302
    :type param_attr: ParameterAttribute
4303 4304 4305 4306 4307 4308
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4309
    :return: LayerOutput object.
4310 4311
    :rtype: LayerOutput
    """
4312
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
4313 4314 4315 4316 4317 4318
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
4319 4320 4321 4322
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
4323 4324 4325 4326 4327 4328


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
L
luotao1 已提交
4329
@layer_support()
4330 4331
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4332
                       select=None,
4333 4334
                       act=None,
                       name=None,
4335 4336 4337
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
4338 4339 4340
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4351
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
4352 4353 4354 4355 4356

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4357 4358
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4359
                   If is None, acts exactly like fc_layer.
4360
    :type select: LayerOutput
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4373
    :return: LayerOutput object.
4374 4375 4376 4377
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4378
        assert not isinstance(param_attr, collections.Sequence)
4379 4380
        param_attr = [param_attr]
    else:
4381
        if isinstance(param_attr, collections.Sequence):
4382 4383 4384 4385
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4386 4387 4388 4389
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
4390
    Layer(
4391 4392 4393
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
4394 4395 4396
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4397
        bias=ParameterAttribute.to_bias(bias_attr),
4398 4399 4400 4401
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
4402 4403 4404 4405 4406 4407 4408
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
4409 4410 4411


@wrap_name_default()
L
luotao1 已提交
4412 4413
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4428 4429
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4430
    :return: LayerOutput object.
4431 4432
    :rtype: LayerOutput
    """
4433
    l = Layer(
4434 4435 4436
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
4437 4438 4439
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
4440 4441 4442


@wrap_name_default()
L
luotao1 已提交
4443
@layer_support()
4444 4445 4446 4447
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4448
                          layer_attr=None):
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4470 4471
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4472
    :return: LayerOutput object.
4473 4474 4475 4476 4477 4478 4479 4480
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
4481 4482 4483
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
4484 4485 4486


@wrap_name_default()
L
luotao1 已提交
4487
@layer_support()
4488
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
4489
    """
4490 4491 4492 4493
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
4494 4495 4496

    .. math::

4497
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4498

4499 4500 4501 4502 4503
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
4504

4505
       z = x^\mathrm{T} Y
4506 4507

    In this formular:
4508 4509 4510 4511 4512 4513
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
4514 4515 4516 4517 4518

    The simple usage is:

    .. code-block:: python

4519
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
4520 4521
                                       size=elem_dim)

4522 4523 4524 4525
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
4526 4527 4528 4529
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4530 4531
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4532
    :return: LayerOutput object.
4533 4534
    :rtype: LayerOutput
    """
4535 4536 4537 4538
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
4539
            size = vectors.size / weights.size
4540 4541
        else:
            assert size == vectors.size / weights.size
4542 4543
    Layer(
        name=name,
4544
        type=LayerType.LINEAR_COMBINATION_LAYER,
4545
        size=size,
4546
        inputs=[Input(weights.name), Input(vectors.name)],
4547 4548 4549
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4550

4551

4552
convex_comb_layer = linear_comb_layer
4553

4554

4555
@wrap_name_default()
L
luotao1 已提交
4556
@layer_support()
4557 4558 4559 4560 4561 4562 4563
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4564
                       num_channels=None,
L
luotao1 已提交
4565 4566
                       name=None,
                       layer_attr=None):
4567 4568
    """
    Expand feature map to minibatch matrix.
4569
       - matrix width is: block_y * block_x * num_channels
4570
       - matirx height is: outputH * outputW
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4581
    time step is block_y * block_x * num_channels. This layer can be used after
4582 4583
    convolution neural network, and before recurrent neural network.

4584 4585 4586 4587
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4588
       block_expand = block_expand_layer(input=layer,
4589
                                         num_channels=128,
4590 4591 4592 4593 4594
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

4595 4596
    :param input: The input layer.
    :type input: LayerOutput
4597 4598
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4613 4614
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4615
    :return: LayerOutput object.
4616 4617
    :rtype: LayerOutput
    """
4618 4619 4620
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
4638 4639


4640 4641
@wrap_name_default()
@layer_support()
4642
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4643 4644 4645 4646 4647
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4648
    So groups should be larger than 1, and the num of channels should be able
4649 4650
    to devided by groups.

4651
    Please refer to Paper:
4652 4653 4654 4655
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4656

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
4686 4687 4688 4689 4690 4691 4692 4693 4694
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4695 4696


4697
@wrap_name_default()
L
luotao1 已提交
4698
@layer_support()
4699 4700 4701 4702 4703
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4704
              layer_attr=None):
4705 4706 4707 4708 4709
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4710 4711
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4712 4713
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4714 4715 4716 4717 4718 4719 4720 4721

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

4722 4723 4724 4725 4726 4727 4728 4729 4730
    The simple usage:

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4731
    :param input: The input layer.
4732 4733 4734
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4735
    :param size: category numbers + 1.
4736
    :type size: int
4737 4738
    :param name: The name of this layer
    :type name: basestring|None
4739 4740
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4741 4742
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4743
    :return: LayerOutput object.
4744 4745 4746 4747
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4748 4749 4750 4751 4752
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
4753
    Layer(
4754 4755 4756 4757
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4758
        inputs=[input.name, label.name],
4759
        **ExtraLayerAttribute.to_kwargs(layer_attr))
4760 4761
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4762

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
    <https://github.com/baidu-research/warp-ctc>` library, which is used in
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
    <https://arxiv.org/pdf/1512.02595v1.pdf>`, to compute Connectionist Temporal
    Classification (CTC) loss.

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
4786 4787 4788 4789 4790
          label needed by CTC, you need to use (num_classes + 1) as the input
          size. Thus, the size of both warp_ctc_layer and 'input' layer should
          be set to num_classes + 1.
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
4791
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
4792
          'linear' activation is expected instead in the 'input' layer.
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839

    The simple usage:

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


4840
@wrap_name_default()
4841
@wrap_param_attr_default()
L
luotao1 已提交
4842
@layer_support()
4843 4844 4845 4846 4847 4848
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
4849
              coeff=1.0,
L
luotao1 已提交
4850
              layer_attr=None):
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
    """
    A layer for calculating the cost of sequential conditional random
    field model.

    The simple usage:

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
4866
    :type label: LayerOutput
4867 4868 4869 4870 4871 4872 4873 4874 4875
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
4876 4877
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4878 4879
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4880
    :return: LayerOutput object.
4881 4882 4883 4884 4885
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
4886 4887 4888 4889 4890 4891
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
4892

4893
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
4894 4895 4896 4897
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
4898 4899 4900 4901
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
4902
        coeff=coeff,
4903
        **ExtraLayerAttribute.to_kwargs(layer_attr))
4904 4905 4906
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
4907 4908 4909 4910
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
4911

4912

4913
@wrap_name_default()
4914
@wrap_param_attr_default()
L
luotao1 已提交
4915
@layer_support()
4916 4917 4918 4919 4920
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
4921
                       layer_attr=None):
4922 4923 4924 4925 4926 4927 4928
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

L
Luo Tao 已提交
4929 4930 4931 4932 4933 4934 4935
    The simple usage:

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4946 4947
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4948
    :return: LayerOutput object.
4949 4950 4951 4952 4953 4954
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

4955
    ipts = [Input(input.name, **param_attr.attr)]
4956 4957 4958 4959
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
4960 4961 4962 4963
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
4964
        **ExtraLayerAttribute.to_kwargs(layer_attr))
4965 4966 4967
    parents = [input]
    if label is not None:
        parents.append(label)
4968 4969 4970 4971
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
4972

4973

Y
Yu Yang 已提交
4974
@wrap_act_default(act=SigmoidActivation())
4975
@wrap_bias_attr_default(has_bias=True)
4976
@wrap_param_attr_default()
4977 4978
@wrap_name_default()
@layer_support()
4979 4980
def nce_layer(input,
              label,
C
caoying03 已提交
4981
              num_classes=None,
Y
Yu Yang 已提交
4982
              act=None,
4983
              param_attr=None,
4984 4985 4986 4987 4988 4989
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
4990 4991 4992 4993 4994 4995 4996 4997 4998
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
4999 5000
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5012
    :type num_classes: int
Y
Yu Yang 已提交
5013 5014
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5015 5016
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5017
    :param num_neg_samples: number of negative samples. Default is 10.
5018
    :type num_neg_samples: int
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5032 5033 5034 5035 5036 5037 5038 5039
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5040
    assert isinstance(input, collections.Sequence)
5041

5042 5043
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5044 5045
    if num_classes is None:
        num_classes = label.size
5046 5047 5048
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5049
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5050 5051
    if not isinstance(act, BaseActivation):
        raise TypeError()
5052

5053 5054
    ipts_for_layer = []
    parents = []
5055
    for each_input, attr in zip(input, param_attr):
5056
        assert isinstance(each_input, LayerOutput)
5057
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

5068
    l = Layer(
5069 5070 5071 5072
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5073
        active_type=act.name,
5074 5075 5076
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
5077 5078
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5079 5080 5081 5082 5083
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
5084

5085

5086 5087 5088
"""
following are cost Layers.
"""
5089 5090


5091
@wrap_name_default()
L
luotao1 已提交
5092
@layer_support()
5093 5094 5095 5096 5097 5098 5099
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
5100
    """
5101
    A cost Layer for learning to rank using gradient descent. Details can refer
5102 5103
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
5104 5105 5106 5107 5108
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

5109
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
5110

5111
       o_{i,j} & =  o_i - o_j
5112

5113
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

    The simple usage:

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5143 5144
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5145
    :return: LayerOutput object.
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

5158 5159 5160 5161 5162 5163
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5164

5165
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
5166

5167

5168
@wrap_name_default()
L
luotao1 已提交
5169
@layer_support()
5170 5171 5172 5173 5174 5175
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
    """
    lambdaCost for lambdaRank LTR approach.

    The simple usage:

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5188
    :param input: Samples of the same query should be loaded as sequence.
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
5200 5201 5202
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
5203 5204 5205
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5206 5207
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5208
    :return: LayerOutput object.
5209 5210
    :rtype: LayerOutput
    """
5211 5212 5213
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
5214 5215 5216 5217 5218 5219 5220
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5221

5222 5223
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
5224

5225

5226
@wrap_name_default()
L
luotao1 已提交
5227
@layer_support()
5228 5229 5230 5231 5232 5233
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
5234 5235 5236 5237 5238
    """
    A loss layer for multi class entropy.

    .. code-block:: python

X
xuwei06 已提交
5239
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5240
                            label=label_layer)
5241 5242 5243 5244 5245 5246 5247

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5248 5249
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
5250
    :type coeff: float.
5251 5252 5253 5254
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5255 5256
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5257
    :return: LayerOutput object.
5258 5259 5260
    :rtype: LayerOutput.
    """

5261
    ipts, parents = __cost_input__(input, label, weight)
5262 5263 5264
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5265
        inputs=ipts,
5266 5267
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5268
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
5269

5270

5271
@wrap_name_default()
L
luotao1 已提交
5272
@layer_support()
5273 5274 5275 5276
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5277 5278
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
5279 5280
    """
    A loss layer for multi class entropy with selfnorm.
5281
    Input should be a vector of positive numbers, without normalization.
5282 5283 5284

    .. code-block:: python

X
xuwei06 已提交
5285
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5286
                                          label=label_layer)
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5298 5299
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5300
    :return: LayerOutput object.
5301 5302
    :rtype: LayerOutput.
    """
5303 5304 5305 5306 5307 5308 5309
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5310

5311 5312 5313 5314 5315
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
5316

5317

X
xuwei06 已提交
5318 5319 5320 5321 5322 5323 5324 5325
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

    .. code-block:: python

L
Luo Tao 已提交
5326
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5337
    assert isinstance(input, LayerOutput)
5338 5339 5340 5341 5342
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5343

5344
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5345 5346


5347
@wrap_name_default()
L
luotao1 已提交
5348 5349
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
5350 5351 5352 5353 5354
    """
    A loss layer for huber loss.

    .. code-block:: python

X
xuwei06 已提交
5355
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5356
                         label=label_layer)
5357 5358 5359 5360 5361 5362 5363 5364 5365

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5366 5367
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5368
    :return: LayerOutput object.
5369 5370
    :rtype: LayerOutput.
    """
5371 5372 5373
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
5374 5375 5376 5377 5378 5379
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5380
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
5381

5382

5383
@wrap_name_default()
L
luotao1 已提交
5384
@layer_support()
5385 5386 5387 5388
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5389
                                     layer_attr=None):
5390 5391 5392 5393 5394
    """
    A loss layer for multi binary label cross entropy.

    .. code-block:: python

X
xuwei06 已提交
5395
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5396
                                               label=label_layer)
5397 5398 5399 5400 5401 5402 5403 5404 5405

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5406 5407
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5408
    :return: LayerOutput object.
5409 5410 5411
    :rtype: LayerOutput
    """

5412 5413
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5430 5431 5432 5433


@wrap_name_default()
@layer_support()
5434
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5435 5436
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5437
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5438 5439 5440 5441 5442 5443 5444 5445 5446

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5447
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5448

D
dangqingqing 已提交
5449 5450 5451
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

D
dangqingqing 已提交
5452 5453
    .. code-block:: python

5454 5455
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5456 5457 5458 5459 5460 5461 5462

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5463 5464
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5478
        coeff=coeff,
D
dangqingqing 已提交
5479 5480 5481
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606


@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
 
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
 
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)