compiler.py 43.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
X
polish  
Xin Pan 已提交
17
import sys
18
import warnings
X
Xin Pan 已提交
19
from . import framework
20
from .framework import _get_paddle_place, _get_paddle_place_list
21
from .framework import cuda_places, cpu_places, xpu_places
22 23
from . import core

J
jianghaicheng 已提交
24
__all__ = [
25 26 27 28 29
    'CompiledProgram',
    'ExecutionStrategy',
    'BuildStrategy',
    'IpuCompiledProgram',
    'IpuStrategy',
J
jianghaicheng 已提交
30
]
X
Xin Pan 已提交
31

32 33
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
34 35
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
36
DeviceType = core.DeviceType
37 38 39 40 41 42 43 44


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


45
def _is_pserver_mode(main_program):
46
    main = main_program if main_program else framework.default_main_program()
47 48 49 50 51 52
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


C
chengduo 已提交
53 54
def _has_backward_op(graph):
    for node in graph.nodes():
55 56 57 58 59
        if (
            node.is_op()
            and node.op() is not None
            and node.op().type().endswith("_grad")
        ):
C
chengduo 已提交
60 61 62 63
            return True
    return False


64 65 66 67
def _prune_feed_ops(program):
    # prune the feed ops in the program.
    pop_idx = []
    for i, op in enumerate(program.global_block().ops):
68 69
        if op.type == "feed":
            pop_idx.append(i)
70 71 72 73
    for index in pop_idx[::-1]:
        program.global_block()._remove_op(index)


74 75 76 77
def _has_optimize_op(block):
    for op in block.ops:
        op_maker = core.op_proto_and_checker_maker
        optimize = core.op_proto_and_checker_maker.OpRole.Optimize
78 79 80
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(optimize):
81 82 83 84
            return True
    return False


85 86 87 88 89 90
def _should_broadcast_or_not_exists(program, var_name):
    block = program.global_block()
    var = block.vars.get(var_name, None)
    if var is None:
        return True
    is_distributed = getattr(var, '_is_distributed', False) or getattr(
91 92
        var, 'is_distributed', False
    )
93 94 95
    return not is_distributed


96
class CompiledProgram:
X
polish  
Xin Pan 已提交
97
    """
98
    :api_attr: Static Graph
99

C
chengduo 已提交
100 101 102 103 104
    The CompiledProgram is used to transform a program or graph for
    various optimizations according to the configuration of build_strategy,
    for example, the operators' fusion in the computation graph, memory
    optimization during the execution of the computation graph, etc.
    For more information about build_strategy, please refer to
105
    :code:`paddle.static.BuildStrategy`.
X
polish  
Xin Pan 已提交
106

C
chengduo 已提交
107
    Args:
108
        program_or_graph (Graph|Program): This argument is the Program or Graph
C
chengduo 已提交
109
            being executed.
110
        build_strategy(BuildStrategy): This argument is used to compile the
C
chengduo 已提交
111 112 113
            program or graph with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
114
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
X
Xin Pan 已提交
115

C
chengduo 已提交
116 117
    Returns:
        CompiledProgram
X
polish  
Xin Pan 已提交
118 119

    Example:
X
Xin Pan 已提交
120
        .. code-block:: python
121

122 123 124
            import numpy
            import paddle
            import paddle.static as static
125

126
            paddle.enable_static()
127

128 129
            place = paddle.CUDAPlace(0) # paddle.CPUPlace()
            exe = static.Executor(place)
130

131
            data = static.data(name='X', shape=[None, 1], dtype='float32')
132
            hidden = static.nn.fc(x=data, size=10)
133 134
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
135

136 137 138 139 140 141 142 143
            exe.run(static.default_startup_program())
            compiled_prog = static.CompiledProgram(
                static.default_main_program())

            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(compiled_prog,
                                feed={"X": x},
                                fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
144 145
    """

C
chengduo 已提交
146
    def __init__(self, program_or_graph, build_strategy=None):
X
Xin Pan 已提交
147 148
        if isinstance(program_or_graph, core.Graph):
            self._graph = program_or_graph
149
            # don't not create a new program here.
X
Xin Pan 已提交
150 151
            self._program = None
        elif isinstance(program_or_graph, framework.Program):
152
            _prune_feed_ops(program_or_graph)
X
Xin Pan 已提交
153 154 155
            self._graph = core.Graph(program_or_graph.desc)
            self._program = program_or_graph
        else:
156 157
            raise TypeError(
                "The type of program_to_graph parameter is wrong, expected Graph or Program, but received %s"
158 159
                % type(program_or_graph)
            )
X
Xin Pan 已提交
160

X
polish  
Xin Pan 已提交
161 162 163
        self._scope = None
        self._place = None
        self._executor = None
164 165
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
166
        self._is_inference = False
C
chengduo 已提交
167 168 169 170 171
        self._loss_name = None
        self._share_vars_from = None
        self._places = None
        self._build_strategy = build_strategy
        self._exec_strategy = None
172

F
flame 已提交
173
    def _with_inference_optimize(self, config):
174
        """Add inference optimize
F
flame 已提交
175 176 177 178 179 180

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
181 182 183 184 185 186 187 188 189 190 191 192 193
        assert (
            not self._is_data_parallel
        ), "Cannot compile with both data parallel and inference"
        assert (
            not self._is_inference
        ), "Already compiled with inference, cannot be recompiled."

        assert any(
            [
                isinstance(config, InferNativeConfig),
                isinstance(config, InferAnalysisConfig),
            ]
        )
F
flame 已提交
194 195 196
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
197

F
flame 已提交
198
    def _with_distributed(self):
199 200 201
        raise NotImplementedError(
            "Subclass of CompiledProgram should implement _with_distributed method."
        )
X
polish  
Xin Pan 已提交
202

203
    def _compile_data_parallel(self, places, use_device, scope=None):
X
polish  
Xin Pan 已提交
204
        if self._share_vars_from:
205
            if scope:
X
polish  
Xin Pan 已提交
206 207
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
208 209
                raise ValueError(
                    "The shared Program is not data parallel, cannot "
210 211
                    "share variables from it."
                )
X
polish  
Xin Pan 已提交
212 213
            if self._share_vars_from._executor is None:
                raise ValueError(
214
                    "The shared Program is not compiled and executed, so there is no "
215 216
                    "variables to share."
                )
X
polish  
Xin Pan 已提交
217 218
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
219
            assert scope is not None, ""
X
polish  
Xin Pan 已提交
220
            self._local_scopes = []
221

222 223 224 225 226
        assert isinstance(places, tuple) or isinstance(
            places, list
        ), "Currently , The places type can only be list or tuple, but the input type is {}.".format(
            type(places)
        )
C
chengduo 已提交
227 228 229 230 231 232 233

        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
        self._build_strategy.is_distribution = _is_pserver_mode(self._program)

        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
234
        self._exec_strategy._use_device = use_device
235 236

        if self._exec_strategy.num_threads == 0:
237
            if self._exec_strategy._use_device == DeviceType.CUDA:
238 239
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
C
chengduo 已提交
240
                self._exec_strategy.num_threads = len(places) * 4
241
            elif self._exec_strategy._use_device == DeviceType.XPU:
242 243
                # Currently only single thread is supported in Kunlun XPU.
                self._exec_strategy.num_threads = 1
244
            else:
C
chengduo 已提交
245 246
                self._exec_strategy.num_threads = len(places) * 2

247 248 249 250 251 252 253 254 255
        if (
            "FLAGS_use_cinn" in core.globals()
            and core.globals()["FLAGS_use_cinn"]
            and self._exec_strategy.num_threads != 1
        ):
            warnings.warn(
                "At present, when CINN is turned on, each process can "
                "only contain one thread, so reset the number of threads to 1 here."
            )
256 257
            self._exec_strategy.num_threads = 1

X
Xin Pan 已提交
258 259
        # TODO(wuyi): trainer endpoings should be passed in through
        # build_strategy, not program.xxx.
260
        # TODO(gongwb): let user to set them once.
261 262 263 264 265
        if (
            self._program
            and self._build_strategy.num_trainers > 1
            and self._program._trainers_endpoints
        ):
X
Xin Pan 已提交
266
            tps = self._program._trainers_endpoints
D
dzhwinter 已提交
267

268
            assert self._build_strategy.num_trainers == len(
269 270
                tps
            ), "The trainer numbers is not equal to endpoint numbers."
X
Xin Pan 已提交
271 272
            self._build_strategy.trainers_endpoints = tps

273 274
        if self._program:
            self._build_strategy.nccl_comm_num = self._program._nccl_comm_num
275 276 277 278 279 280
            self._build_strategy.use_hierarchical_allreduce = (
                self._program._use_hierarchical_allreduce
            )
            self._build_strategy.hierarchical_allreduce_inter_nranks = (
                self._program._hierarchical_allreduce_inter_nranks
            )
281

Q
qingqing01 已提交
282 283 284
        if self._build_strategy.sync_batch_norm:
            self._build_strategy.enable_sequential_execution = True

285
        if self._program is not None and self._program._enable_dgc:
286 287 288 289 290 291 292 293 294 295
            assert (
                self._exec_strategy._use_device == DeviceType.CUDA
            ), "DGC only used under CUDA environment."
            assert (
                self._build_strategy.num_trainers * len(places) > 1
            ), "DGC is not avaliable for single card training."
            assert (
                self._build_strategy.reduce_strategy
                == BuildStrategy.ReduceStrategy.AllReduce
            ), "DGC \
296
                only can be used for AllReduce BuildStrategy."
297 298 299 300

            # DGC doesn't support fuse for now, close fuse.
            self._build_strategy.fuse_all_reduce_ops = False

X
Xin Pan 已提交
301
        self._persistable_vars = []
Z
Zhen Wang 已提交
302
        for node in self._graph.nodes():
303 304 305 306 307 308
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
                and node.var().type() != core.VarDesc.VarType.RAW
            ):
309
                name = node.name()
310 311 312 313
                if (
                    self._program is not None
                    and _should_broadcast_or_not_exists(self._program, name)
                ):
314
                    self._persistable_vars.append(node.name())
315

C
chengduo 已提交
316 317
        places = list(map(_place_obj, places))

Y
Yan Xu 已提交
318 319 320 321 322 323
        # ParallelExecutor would broadcast all the parameters during initializing.
        # The parameters of each process should be in the same ordered for the data-parallelism
        # distributed training to keep the broadcast correct.
        self._persistable_vars = list(set(self._persistable_vars))
        self._persistable_vars.sort()

324 325 326 327
        if core.is_cuda_graph_capturing():
            raise RuntimeError(
                "CUDA Graph is not allowed to capture when running the first batch."
            )
328 329 330 331 332 333 334 335 336 337
        return core.ParallelExecutor(
            places,
            self._persistable_vars,
            self._loss_name if self._loss_name else '',
            self._scope,
            self._local_scopes,
            self._exec_strategy,
            self._build_strategy,
            self._graph,
        )
338

F
flame 已提交
339 340 341
    def _compile_inference(self):
        return core.create_paddle_predictor(self._infer_config)

342
    def _compile(self, scope, place):
X
Xin Pan 已提交
343 344 345 346 347 348 349 350 351 352
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
353
        if self._compiled:
X
polish  
Xin Pan 已提交
354
            if scope and self._scope != scope:
355
                raise ValueError("Cannot compile program with different scope.")
S
sneaxiy 已提交
356
            if place and not self._place._equals(place):
357
                raise ValueError("Cannot compile program with different place.")
358
            return self
X
fix  
Xin Pan 已提交
359
        self._compiled = True
360 361 362

        self._scope = scope
        self._place = place
C
chengduo 已提交
363 364

        if self._is_inference:
F
flame 已提交
365
            self._executor = self._compile_inference()
366
        else:
C
chengduo 已提交
367 368 369 370
            if self._is_data_parallel:
                self._places = self._get_places(self._place, self._places)
            else:
                self._places = [self._place]
371

372
            if isinstance(self._place, core.CUDAPlace):
373
                use_device = DeviceType.CUDA
374
            elif isinstance(self._place, core.XPUPlace):
375
                use_device = DeviceType.XPU
376
            else:
377
                use_device = DeviceType.CPU
378 379 380
            self._executor = self._compile_data_parallel(
                use_device=use_device, scope=self._scope, places=self._places
            )
381
        return self
C
chengduo 已提交
382 383

    def _get_places(self, place, place_list):
384
        has_set_place = place_list is not None
C
chengduo 已提交
385 386
        if has_set_place:
            for p in place_list:
387 388 389
                assert (
                    p._type() == place._type()
                ), "Place type not match. You may set wrong type of places."
C
chengduo 已提交
390
        else:
391 392 393 394 395 396
            if isinstance(place, core.CUDAPlace):
                place_list = cuda_places()
            elif isinstance(place, core.XPUPlace):
                place_list = xpu_places()
            else:
                place_list = cpu_places()
397
        assert place_list, "No places for execution."
C
chengduo 已提交
398
        return place_list
J
jianghaicheng 已提交
399 400


401
class IpuDynamicPatcher:
402 403 404 405 406 407 408 409 410 411
    """
    Patcher for IPU dynamic2static support.
    """

    patcher_cache = []

    def __init__(self):
        pass

    @staticmethod
412 413 414
    def convert_concrete_program(
        ipu_strategy, concrete_program, class_instance=None
    ):
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        """
        Convert the ConcreteProgram to IPUConcreteProgram.
        """
        from ..fluid.dygraph.base import switch_to_static_graph
        from ..fluid import backward
        from ..fluid.framework import device_guard
        import paddle

        inputs = concrete_program.inputs
        outputs = concrete_program.outputs
        startup_program = concrete_program.startup_program

        scope = paddle.static.global_scope()

        @switch_to_static_graph
        def append_backward_desc():
            program = concrete_program.main_program

            # backward with optimizer to add backward graph to program
            backward.gradients_with_optimizer(program, ipu_strategy._optimizer)

            # initialize backward parameters
            exe = paddle.static.Executor(paddle.CPUPlace())
            startup_program = paddle.static.default_startup_program()
            exe.run(startup_program)

            return program

        if ipu_strategy.enable_fp16:
            class_instance.to(dtype="float16")

        # copy the bias and filters
        for param_or_buffer in concrete_program.parameters:
            param_or_buffer_tensor = scope.var(
449 450
                param_or_buffer.name
            ).get_tensor()
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            src_tensor = param_or_buffer.value().get_tensor()
            param_or_buffer_tensor._share_data_with(src_tensor)

        # TODO(czr): feed and fetch list needs to consider more type
        if class_instance:
            feed_list = [elem.name for elem in inputs[1:] if elem is not None]
        else:
            feed_list = [elem.name for elem in inputs if elem is not None]
        fetch_list = [elem.name for elem in outputs]

        if ipu_strategy.is_training:
            concrete_program.main_program = append_backward_desc()
            # copy optimizer parameters
            optimizer = ipu_strategy._optimizer
            for k, v in optimizer._accumulators.items():
                for param_name, var_tmp in v.items():
                    var = optimizer.helper.create_global_variable(
                        name=var_tmp.name,
                        persistable=True,
                        dtype=var_tmp.dtype,
                        type=var_tmp.type,
                        shape=var_tmp.shape,
473 474
                        belong_to_optimizer=True,
                    )
475 476 477
                    device = optimizer._get_device_for_param(param_name)
                    with device_guard(device):
                        optimizer.helper.set_variable_initializer(
478 479 480 481
                            var,
                            initializer=paddle.nn.initializer.Constant(
                                value=0.0
                            ),
482
                        )
483
                    param_or_lr_tensor = scope.find_var(
484 485
                        var_tmp.name
                    ).get_tensor()
486 487 488 489 490 491 492 493 494 495 496 497
                    optim_tensor = var.value().get_tensor()
                    param_or_lr_tensor._share_data_with(optim_tensor)
                    optimizer._accumulators[k][param_name] = var

        @switch_to_static_graph
        def func_compile():
            if ipu_strategy.enable_fp16:
                amp_list = paddle.static.amp.CustomOpLists()
                amp_list.unsupported_list = {"cumsum"}
                to_fp16_var_names = paddle.static.amp.cast_model_to_fp16(
                    concrete_program.main_program,
                    amp_list,
498 499
                    use_fp16_guard=False,
                )
500 501 502
                paddle.static.amp.cast_parameters_to_fp16(
                    paddle.CPUPlace(),
                    concrete_program.main_program,
503 504 505 506 507 508 509 510
                    to_fp16_var_names=to_fp16_var_names,
                )

            program = IpuCompiledProgram(
                concrete_program.main_program,
                ipu_strategy=ipu_strategy,
                scope=scope,
            ).compile(feed_list, fetch_list)
511 512 513 514 515 516 517 518
            return program

        main_program = func_compile()
        concrete_program.main_program = main_program
        return concrete_program

    @staticmethod
    def patch_program_cache(ipu_strategy):
519
        """Monkey patch ProgramCache discriptor to support dynamic2static in IPU.
520 521 522 523 524 525 526

        Args:
            ipu_strategy: The ipu_strategy used in dynamic graph.

        Returns:
            None
        """
527
        from paddle.jit.dy2static.program_translator import (
528
            CacheKey,
529
            ProgramCache,
530 531
            MAX_TRACED_PROGRAM_COUNT,
        )
532
        from paddle.jit.dy2static import logging_utils
533
        from paddle.jit.dy2static.partial_program import (
534 535
            partial_program_from,
        )
536 537 538 539 540 541

        old_getter = ProgramCache.__getitem__

        def patch_getter(self, item):
            if not isinstance(item, CacheKey):
                raise ValueError(
542 543 544
                    'type(item) should be CacheKey, but received %s'
                    % type(item).__name__
                )
545 546 547 548 549
            item_id = hash(item)
            self._recent_key = item_id
            if item_id not in self._caches or ipu_strategy.need_compile:
                if item_id in self._caches:
                    logging_utils.warn(
550 551
                        "ipu_strategy chances detected. Please sync weights."
                    )
552 553 554
                if self._caches and not ipu_strategy.need_compile:
                    logging_utils.warn(
                        "dynamic2static on IPU doesn't support mutiple caches. Please make sure"
555 556
                        "dynamic inputs is not used."
                    )
557 558
                concrete_program, _ = self._build_once(item)
                concrete_program = IpuDynamicPatcher.convert_concrete_program(
559 560
                    ipu_strategy, concrete_program, item.class_instance
                )
561

562 563 564 565
                self._caches[item_id] = (
                    concrete_program,
                    partial_program_from(concrete_program),
                )
566 567 568 569 570
                # Note: raise warnings if number of traced program is more than `max_tracing_count`
                current_tracing_count = len(self._caches)
                if current_tracing_count > MAX_TRACED_PROGRAM_COUNT:
                    logging_utils.warn(
                        "Current traced program number: {} > `max_tracing_count`:{}. Too much cached programs will bring expensive overhead. "
571 572 573 574
                        "The reason may be: (1) passing tensors with different shapes, (2) passing python objects instead of tensors.".format(
                            current_tracing_count, MAX_TRACED_PROGRAM_COUNT
                        )
                    )
575 576 577 578 579

            return self._caches[item_id]

        setattr(ProgramCache, '__getitem__', patch_getter)
        IpuDynamicPatcher.patcher_cache.append(
580 581
            [ProgramCache, '__getitem__', old_getter]
        )
582 583 584 585

    @staticmethod
    def patch_lr_scheduler(ipu_strategy):
        from paddle.optimizer.lr import LRScheduler
586

587
        # For IPU dynamic graph usage, lr_var is not synced in executor as static graph mode do.
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        # Manually set lr to ipu_strategy to update the lr.
        old_step = LRScheduler.step

        def patch_step(self, epoch=None):
            old_step(self, epoch)
            ipu_strategy.set_options({"lr": self.last_lr})

        setattr(LRScheduler, 'step', patch_step)
        IpuDynamicPatcher.patcher_cache.append([LRScheduler, 'step', old_step])

    @staticmethod
    def register_patch(ipu_strategy):
        IpuDynamicPatcher.patch_program_cache(ipu_strategy)
        IpuDynamicPatcher.patch_lr_scheduler(ipu_strategy)

    @staticmethod
    def release_patch():
        for module, key, attr in IpuDynamicPatcher.patcher_cache:
            setattr(module, key, attr)


609
class IpuStrategy:
J
jianghaicheng 已提交
610 611 612 613 614 615 616 617
    """
    Help users precisely control the graph building in :code:`paddle.static.IpuCompiledProgram` .

    Returns:
        The IpuStrategy instance.

    Examples:
        .. code-block:: python
618

J
jianghaicheng 已提交
619 620 621 622 623 624
            # required: ipu

            import paddle
            import paddle.static as static

            paddle.enable_static()
625

J
jianghaicheng 已提交
626 627 628 629 630 631
            ipu_strategy = static.IpuStrategy()
    """

    def __init__(self):
        if core.is_compiled_with_ipu():
            self._ipu_strategy = core.IpuStrategy()
632 633 634 635 636
            default_options = {
                'location_optimizer': {
                    'on_chip': 0,
                    'use_replicated_tensor_sharding': 1,
                },  # set optimizer location
637 638
                'accumulation_and_replication_reduction_type': 1,  # popart::ReductionType::Mean
                'mean_accumulation_and_replication_reduction_strategy': 1,  # popart::MeanReductionStrategy::Post
639 640 641 642
            }
            self._ipu_strategy.set_options(default_options)
            self.has_custom_ops = False
            self.custom_op_names = []
643
            self.need_compile = True
J
jianghaicheng 已提交
644 645 646 647
        else:
            raise RuntimeError(
                "Can not use IpuStrategy in non IPU compiled environment, please re-compile with WITH_IPU=ON."
            )
648
        from paddle import in_dynamic_mode
649

650 651 652 653 654 655 656 657 658 659
        if in_dynamic_mode():
            self.register_patch()

    def register_patch(self):
        """
        Register patchs function to support dynamic to static on IPU. This operation would break the dy2static functionality on CPU.
        Use `release_patch` to release the patch.

        Examples:
            .. code-block:: python
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
                # required: ipu

                import paddle
                import paddle.static as static

                ipu_strategy = static.IpuStrategy()

                ipu_strategy.register_patch()
        """
        IpuDynamicPatcher.register_patch(self)

    def release_patch(self):
        """
        Release the registered IPU functions.

        Examples:
            .. code-block:: python
678

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
                # required: ipu

                import paddle
                import paddle.static as static

                ipu_strategy = static.IpuStrategy()

                ipu_strategy.release_patch()
        """
        IpuDynamicPatcher.release_patch()

    def set_optimizer(self, optimizer):
        """
        Set optimizer to ipu_strategy in dynamic mode.

          Args:
              optimizer (Optimizer): Optimizer to be used in training.
696

697 698 699 700 701
          Returns:
              None.

          Examples:
              .. code-block:: python
702

703 704 705 706 707 708 709 710 711 712 713 714
                  # required: ipu

                  import paddle
                  import paddle.static as static

                  linear = paddle.nn.Linear(10, 10)
                  optimizer = paddle.optimizer.SGD(learning_rate=0.01,
                                                   parameters=linear.parameters())
                  ipu_strategy = static.IpuStrategy()
                  ipu_strategy.set_optimizer(optimizer)
        """
        from paddle import in_dynamic_mode
715

716 717 718 719 720 721 722 723 724 725 726 727 728
        if in_dynamic_mode():
            self._optimizer = optimizer
            optimizer_attrs = self.parse_optimizer(optimizer)
            self._ipu_strategy.set_options(optimizer_attrs)
        else:
            raise RuntimeError("Only needs to set optimizer in dynamic mode.")

    def parse_optimizer(self, optimizer):
        """
        Parse optimizer attributes for IPU dynamic to static support. Currently only support parse lr.

          Args:
              optimizer (Optimizer): Optimizer to be parsed.
729

730 731 732 733 734
          Returns:
              Dict.

          Examples:
              .. code-block:: python
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749
                  # required: ipu

                  import paddle
                  import paddle.static as static

                  linear = paddle.nn.Linear(10, 10)
                  optimizer = paddle.optimizer.SGD(learning_rate=0.01,
                                                   parameters=linear.parameters())
                  ipu_strategy = static.IpuStrategy()
                  attrs = ipu_strategy.parse_optimizer(optimizer)
        """

        def get_lr():
            from paddle.optimizer.lr import LRScheduler
750

751 752 753 754 755 756 757 758 759 760
            if isinstance(optimizer._learning_rate, float):
                return {"lr": optimizer._learning_rate}
            elif isinstance(optimizer._learning_rate, LRScheduler):
                return {"lr": optimizer._learning_rate()}

        attr_fn = [get_lr]
        optimizer_attrs = {"is_dynamic": True}
        for fn in attr_fn:
            optimizer_attrs.update(fn())
        return optimizer_attrs
J
jianghaicheng 已提交
761

762 763 764 765 766 767 768
    def set_graph_config(
        self,
        num_ipus=1,
        is_training=True,
        micro_batch_size=1,
        enable_manual_shard=False,
    ):
J
jianghaicheng 已提交
769 770 771 772 773 774 775 776
        """
        Set graph configuration to the IpuStrategy instance.

        Args:
            num_ipus (int, optional): Number of IPU devices. Default 1, which means only use 1 IPU.
            is_training (bool, optional): True is training graph, False is inference graph. Default True, which means is training mode.
            batch_size (int, optional): The batch-size in the graph. Used to make the graph batch-size fixed,
                if the batch-size in the graph is dynamic. Default 1, which means the batch-size would be set 1, if the batch-size is dynamice.
777 778 779
            enable_manual_shard (bool, optional): Enable graph sharding or not. Only if num_ipus > 1, enable_manual_shard is able to be set True.
                Default False, which means disabled.

J
jianghaicheng 已提交
780 781 782 783 784
        Returns:
            None.

        Examples:
            .. code-block:: python
785

J
jianghaicheng 已提交
786 787 788 789 790 791
                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()
792

J
jianghaicheng 已提交
793
                ipu_strategy = static.IpuStrategy()
794
                ipu_strategy.set_graph_config(num_ipus=1,
J
jianghaicheng 已提交
795
                                            is_training=True,
A
Allen Guo 已提交
796
                                            micro_batch_size=1,
797
                                            enable_manual_shard=False)
J
jianghaicheng 已提交
798
        """
799
        if num_ipus == 1 and enable_manual_shard:
J
jianghaicheng 已提交
800 801 802
            raise RuntimeError(
                "Only if num_ipus > 1, enable_manual_shard is able to be set True."
            )
803 804 805
        options = {
            'num_ipus': num_ipus,
            'is_training': is_training,
A
Allen Guo 已提交
806
            'micro_batch_size': micro_batch_size,
807 808 809 810
            'enable_manual_shard': enable_manual_shard,
        }
        self.set_options(options)

811 812 813 814 815 816 817
    def set_pipelining_config(
        self,
        enable_pipelining=False,
        batches_per_step=1,
        enable_gradient_accumulation=False,
        accumulation_factor=1,
    ):
J
jianghaicheng 已提交
818 819 820 821
        """
        Set pipelining configuration to the IpuStrategy instance. Used to optimize the throughput performance.

        Args:
822
            enable_pipelining (bool, optional): Enable data pipelining between subgraphs. Only if enable_manual_shard=True, enable_pipelining is able to be set True.
J
jianghaicheng 已提交
823 824 825
                Default False, which means disabled.
            batches_per_step (int, optional): Set the batches per run in data pipelining mode. Only if enable_pipelining=True, batches_per_step is able to be set > 1.
                Default 1, which means no data pipelining.
A
Allen Guo 已提交
826
            enable_gradient_accumulation (bool, optional): Enable to accumulate gradients before updating the weights in training mode. Only if enable_pipelining=True,
827 828
                enable_gradient_accumulation is able to be set True. Default False, which means no gradient accumulation.
            accumulation_factor (int, optional): Specify the number of micro-batches to accumulate
J
jianghaicheng 已提交
829
                before applying the varUpdate. Default 1, which means disable the accumulation.
830

J
jianghaicheng 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
845 846
                ipu_strategy.set_pipelining_config(enable_pipelining=False,
                                                    batches_per_step=1,
A
Allen Guo 已提交
847
                                                    enable_gradient_accumulation=False,
848
                                                    accumulation_factor=1)
J
jianghaicheng 已提交
849
        """
850 851
        enable_manual_shard = self.get_option('enable_manual_shard')
        if not enable_manual_shard and enable_pipelining:
J
jianghaicheng 已提交
852 853 854
            raise RuntimeError(
                "Only if enable_manual_shard=True, enable_pipelining is able to be set True."
            )
855 856 857
        options = {
            'enable_pipelining': enable_pipelining,
            'batches_per_step': batches_per_step,
A
Allen Guo 已提交
858
            'enable_gradient_accumulation': enable_gradient_accumulation,
859 860 861 862 863
            'accumulation_factor': accumulation_factor,
        }
        self.set_options(options)

    def set_precision_config(self, enable_fp16=False):
J
jianghaicheng 已提交
864 865 866 867 868
        """
        Set half computation configuration to the IpuStrategy instance. Used to optimize the performance.

        Args:
            enable_fp16 (bool, optional): Enable FLOAT16 mode and transform FLOAT32 to FLOAT16. Default False, which means disable FLOAT16 mode.
869

J
jianghaicheng 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
884 885
                ipu_strategy.set_precision_config(enable_fp16=False)
        """
886 887 888
        options = {
            'enable_fp16': enable_fp16,
        }
889 890
        self.set_options(options)

891 892 893
    def add_custom_op(
        self, paddle_op, popart_op=None, domain='custom.ops', version=1
    ):
J
jianghaicheng 已提交
894
        """
895
        Add a mapping to use popart custom ops running on the IPU.
J
jianghaicheng 已提交
896

897 898
        Args:
            paddle_op(str): the name of custom op in paddle.
J
jianghaicheng 已提交
899

900
            popart_op(str): the name of custom op in popart.
J
jianghaicheng 已提交
901

902
            domain(str): domain name of custom op in popart.
J
jianghaicheng 已提交
903

904
            version(int): version of custom op in popart.
905

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
                ipu_strategy.add_custom_op('paddle_relu', 'popart_relu')
J
jianghaicheng 已提交
921
        """
922 923 924 925 926 927 928 929 930 931 932 933 934 935
        if popart_op is None:
            popart_op = paddle_op
        custom_op = {
            'paddle_op': paddle_op,
            'popart_op': popart_op,
            'domain': domain,
            'version': version,
        }
        self.set_options({'custom_op': custom_op})
        self.custom_op_names.append(paddle_op)
        if not self.has_custom_ops:
            self.has_custom_ops = True

    def set_options(self, options):
J
jianghaicheng 已提交
936
        """
937
        Set options from dict.
J
jianghaicheng 已提交
938

939 940
        Args:
            options(dict): dict of options.
941

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
                options = {'num_ipus':1, 'enable_fp16': True}
                ipu_strategy.set_options(options)
J
jianghaicheng 已提交
958
        """
959
        self._ipu_strategy.set_options(options)
960 961 962 963
        # check whether to recompile program with updated ipu options.
        recompile_white_list = {'lr'}
        if options.keys() - recompile_white_list:
            self.need_compile = True
J
jianghaicheng 已提交
964

965
    def get_option(self, option):
J
jianghaicheng 已提交
966
        """
967 968 969 970
        Get option.

        Args:
            option(str): name of option.
971

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
        Returns:
            option value.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
                num_ipus = ipu_strategy.get_option('num_ipus')
J
jianghaicheng 已提交
987
        """
988
        return self._ipu_strategy.get_option(option)['value']
J
jianghaicheng 已提交
989

A
Allen Guo 已提交
990 991 992 993 994 995
    def enable_pattern(self, pattern):
        """
        Enable PopART pattern to optimize the graph.

        Args:
            pattern(string): the name of the pattern.
996

A
Allen Guo 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
                ipu_strategy.enable_pattern("ViewSimplifyPattern")
        """
        self._ipu_strategy.enable_pattern(pattern)

    def disable_pattern(self, pattern):
        """
        Disable PopART pattern.

        Args:
            pattern(string): the name of the pattern.
1021

A
Allen Guo 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        Returns:
            None.

        Examples:
            .. code-block:: python

                # required: ipu

                import paddle
                import paddle.static as static

                paddle.enable_static()

                ipu_strategy = static.IpuStrategy()
                ipu_strategy.disable_pattern("ViewSimplifyPattern")
        """
        self._ipu_strategy.disable_pattern(pattern)

J
jianghaicheng 已提交
1040
    @property
1041
    def num_ipus(self):
J
jianghaicheng 已提交
1042
        """
1043
        Get the number of IPU devices from IpuStrategy instance.
J
jianghaicheng 已提交
1044
        """
1045
        return self.get_option('num_ipus')
J
jianghaicheng 已提交
1046 1047

    @property
1048
    def is_training(self):
J
jianghaicheng 已提交
1049
        """
1050
        Get the boolean of training or inference from IpuStrategy instance.
J
jianghaicheng 已提交
1051
        """
1052
        return self.get_option('is_training')
J
jianghaicheng 已提交
1053 1054

    @property
1055
    def enable_pipelining(self):
J
jianghaicheng 已提交
1056
        """
1057
        Get the boolean of enable pipelining or not from IpuStrategy instance.
J
jianghaicheng 已提交
1058
        """
1059
        return self.get_option('enable_pipelining')
J
jianghaicheng 已提交
1060 1061 1062 1063 1064 1065

    @property
    def enable_fp16(self):
        """
        Get the boolean of float16 mode or not from IpuStrategy instance.
        """
1066
        return self.get_option('enable_fp16')
J
jianghaicheng 已提交
1067 1068


1069
class IpuCompiledProgram:
J
jianghaicheng 已提交
1070 1071 1072 1073 1074 1075
    """
    The IpuCompiledProgram is used to transform a program to a ipu-target program,
    such as forward graph extraction, computing graph transformation, useless scale Ops clean, etc.

    Args:
        program(Program, optional): This parameter represents the :code:`Program`
1076
            to be executed. Default is None, which means the program will be set to
J
jianghaicheng 已提交
1077 1078
            the default program :code:`paddle.static.default_main_program()` .
        scope(Scope, optional): The scope used to run this program, you can switch
1079
            it to different scope. Default is None, which means use the global
J
jianghaicheng 已提交
1080 1081 1082
            scope :code:`paddle.static.global_scope()` .
        ipu_strategy(IpuStrategy, optional): This argument is used to build the program with the
            specified options, such as half computation, training or inference session, the number of IPUs, etc.
1083
            Default is None, which means build the program based on the default `ipu_strategy`.
J
jianghaicheng 已提交
1084 1085 1086 1087 1088 1089

    Returns:
        IpuCompiledProgram

    Example:
        .. code-block:: python
1090

J
jianghaicheng 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
            # required: ipu

            import paddle
            import paddle.static as static

            paddle.enable_static()

            a = static.data(name='data', shape=[None, 1], dtype='int32')
            b = a + 1
            main_prog = static.default_main_program()
1101

J
jianghaicheng 已提交
1102
            ipu_strategy = static.IpuStrategy()
A
Allen Guo 已提交
1103 1104
            ipu_strategy.set_graph_config(num_ipus=1, is_training=True, micro_batch_size=1)
            ipu_strategy.set_pipelining_config(enable_pipelining=False, batches_per_step=1, enable_gradient_accumulation=False, accumulation_factor=1)
1105
            ipu_strategy.set_precision_config(enable_fp16=False)
1106

J
jianghaicheng 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
            ipu_compiled_program = static.IpuCompiledProgram(
                main_prog,
                ipu_strategy=ipu_strategy)
    """

    def __init__(self, program=None, scope=None, ipu_strategy=None):
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "Can not use this function since PaddlePaddle is not compiled with IPU"
            )

        if program is None:
1119
            program = framework.default_main_program()
J
jianghaicheng 已提交
1120 1121 1122

        if not isinstance(program, framework.Program):
            raise TypeError(
1123 1124 1125
                "The type of program is wrong, expected Program, but got %s"
                % type(program)
            )
J
jianghaicheng 已提交
1126 1127 1128 1129 1130 1131 1132

        self._program = program
        self._compiled = False

        if scope is not None:
            self._scope = scope
        else:
1133 1134
            # import here to avoiding confused
            import paddle
1135

J
jianghaicheng 已提交
1136 1137 1138
            self._scope = paddle.static.global_scope()

        if ipu_strategy is not None:
1139
            self._ipu_strategy = ipu_strategy
J
jianghaicheng 已提交
1140
        else:
1141
            self._ipu_strategy = IpuStrategy()
J
jianghaicheng 已提交
1142

1143 1144 1145 1146 1147 1148
        if ipu_strategy.has_custom_ops:
            self._custom_op_names = set(ipu_strategy.custom_op_names)
        else:
            self._custom_op_names = ()

        self._backend = core.IpuBackend.get_instance()
J
jianghaicheng 已提交
1149 1150 1151 1152 1153

    def compile(self, feed_list, fetch_list):
        """
        This interface is used to compile the input Program to a program
        to run the model on the ipu.
1154

J
jianghaicheng 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
        Args:
            feed_list(list): This parameter represents the input Tensors of the model.

            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model.

        Returns:
            Program

        Example:
            .. code-block:: python
1166

J
jianghaicheng 已提交
1167
                # required: ipu
1168

J
jianghaicheng 已提交
1169 1170
                import paddle
                import paddle.static as static
1171

J
jianghaicheng 已提交
1172
                paddle.enable_static()
1173

J
jianghaicheng 已提交
1174 1175 1176 1177 1178
                a = static.data(name='data', shape=[None, 1], dtype='int32')
                b = a + 1
                main_prog = static.default_main_program()

                ipu_strategy = static.IpuStrategy()
A
Allen Guo 已提交
1179 1180
                ipu_strategy.set_graph_config(num_ipus=1, is_training=True, micro_batch_size=1)
                ipu_strategy.set_pipelining_config(enable_pipelining=False, batches_per_step=1, enable_gradient_accumulation=False, accumulation_factor=1)
1181
                ipu_strategy.set_precision_config(enable_fp16=False)
1182

J
jianghaicheng 已提交
1183 1184 1185 1186
                program = static.IpuCompiledProgram(
                    main_prog,
                    ipu_strategy=ipu_strategy).compile([a.name], [b.name])
        """
1187 1188 1189
        self._backend.set_scope(self._scope)
        self._backend.set_ipu_strategy(self._ipu_strategy._ipu_strategy)

J
jianghaicheng 已提交
1190 1191 1192 1193 1194
        # feed and fetch doesn't have corresponding popart op, so we rm both here
        global_block = self._program.global_block()
        need_to_remove_op_index = []
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
1195
            if op.type == 'feed' or op.type == 'fetch':
J
jianghaicheng 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

        for var in ['feed', 'fetch']:
            if global_block.has_var(var):
                global_block._remove_var(var)

        self._program.desc.flush()
        self._graph = core.Graph(self._program.desc)

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        if self._ipu_strategy.is_training:
            passes = [
                'optimizer_extract_pass',
                'optimizer_state_align_pass',
            ]
            for pass_name in passes:
                a_pass = core.get_pass(pass_name)
                a_pass.apply(self._graph)

        passes = [
            'forward_graph_extract_pass',
            'infer_shape_pass',
            'avg_shard_pass',
            'delete_scale_op_pass',
        ]
        for pass_name in passes:
            a_pass = core.get_pass(pass_name)
            if pass_name == 'infer_shape_pass':
                a_pass.set('feed_list', feed_list)
            a_pass.apply(self._graph)

        a_pass = core.get_pass('popart_canonicalization_pass')
        if self._custom_op_names:
            a_pass.set('custom_ops', self._custom_op_names)
        a_pass.apply(self._graph)

        passes = [
            'ipu_inplace_pass',
            'ipu_graph_builder_pass',
            'ipu_runtime_replacer_pass',
        ]
        for pass_name in passes:
            a_pass = core.get_pass(pass_name)
            a_pass.set('feed_list', feed_list)
            a_pass.set('fetch_list', fetch_list)
            a_pass.apply(self._graph)
J
jianghaicheng 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

        convert_pass = core.get_pass('graph_to_program_pass')
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
        convert_pass.apply(self._graph)
        program = framework.Program._construct_from_desc(desc)

        if hasattr(self._program, 'lr_sheduler'):
            # how to share var between two different block ?
            lr_var_name = self._program.lr_sheduler._var_name

            program.lr_sheduler = self._program.lr_sheduler
            # Program.clone will clone lr_sheduler, so i set lr_var as
            # lr_sheduler attribute
            global_block = self._program.global_block()
            program.lr_sheduler.lr_var = global_block.vars[lr_var_name]

        # with popart, we need to support batches_per_step, what means
        # the shape of feed_var and feed_tensor(maybe numpy array) will
        # mismatch, so we set need_check_feed to False. Thus we can avoid
        # modify logic of run.
        program_global_block = program.global_block()
        for feed_name in feed_list:
            feed_var = program_global_block.var(feed_name)
            feed_var.desc.set_need_check_feed(False)

        if not hasattr(program, 'org_program'):
            program.org_program = self._program

1273 1274
        self._ipu_strategy.need_compile = False

J
jianghaicheng 已提交
1275
        return program