framework.py 261.5 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
J
Jiabin Yang 已提交
57
    '_non_static_mode',
L
lujun 已提交
58
    'in_dygraph_mode',
59
    'is_compiled_with_cinn',
C
chengduo 已提交
60
    'is_compiled_with_cuda',
61
    'is_compiled_with_rocm',
62
    'is_compiled_with_xpu',
63
    'is_compiled_with_npu',
64
    'Variable',
65
    'require_version',
66
    'device_guard',
G
guofei 已提交
67 68
    'set_flags',
    'get_flags',
69
]
Y
Yu Yang 已提交
70

Q
qiaolongfei 已提交
71 72 73 74
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
75 76
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
77
_dygraph_tracer_ = None
L
Ligoml 已提交
78
_in_eager_mode_ = os.environ.get('FLAGS_enable_eager_mode', '1') == '1'
79
_global_expected_place_ = None
80
_current_device = None
81
global_prog_seed = 0
82
_current_pipeline_stage = None
83
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
84
_already_patch_varbase = False
85
_current_cuda_graph_mode = None
86
_global_flags_ = core.globals()
L
Ligoml 已提交
87 88 89 90 91 92
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 0
)
J
Jiabin Yang 已提交
93 94

# Some explanation of our execution system 2022.03
95
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
96
# build a fast execution system for dynamic mode. But we can't just remove all legacy
97
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
98
# these flags.
99
#
J
Jiabin Yang 已提交
100
# 1. _non_static_mode():
101
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
102 103 104 105
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
106
#
J
Jiabin Yang 已提交
107
# They have a relation ship as below:
108
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
109
# dygraph mode means you are not in _in_legacy_dygraph.
110
#
J
Jiabin Yang 已提交
111 112 113 114 115 116
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


117 118 119 120 121
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
122
    from paddle import _C_ops, _legacy_C_ops
123 124 125
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

126 127 128
    global _already_patch_eager_tensor
    global _already_patch_varbase

129
    assert isinstance(is_eager, bool)
130
    # switch into eager mode
131
    if is_eager:
132
        _legacy_C_ops.switch_to_eager_ops()
133 134 135 136 137 138
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
139
    else:
140
        _legacy_C_ops.switch_to_core_ops()
141 142 143 144 145
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
146

147 148 149 150 151 152
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
L
Ligoml 已提交
153

154 155 156 157 158
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
159 160


J
Jiabin Yang 已提交
161 162 163
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
164
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
165 166 167 168 169


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
170
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
171 172 173 174 175 176 177


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


178 179 180 181 182 183 184 185 186 187
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
L
Ligoml 已提交
188 189 190 191 192 193
    is_not_support = (
        core.is_compiled_with_xpu()
        or core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
251 252 253


@signature_safe_contextmanager
J
Jiabin Yang 已提交
254
def _test_eager_guard(place=None):
255 256 257 258 259
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
260
    try:
J
Jiabin Yang 已提交
261
        yield
262
    finally:
263 264
        if not already_fallback:
            _enable_legacy_dygraph()
265 266


267 268
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
269 270 271 272
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
273 274 275 276 277 278 279 280 281 282 283
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
284
@signature_safe_contextmanager
285
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
286 287 288 289
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
290
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
291
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
292
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
L
Ligoml 已提交
293
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
294
            which means no pipelining computation order and run Ops in terms of graph.
L
Ligoml 已提交
295

L
Ligoml 已提交
296 297 298 299 300 301 302
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


337 338 339 340
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

L
Ligoml 已提交
341 342 343 344 345
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

346 347 348 349 350
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
L
Ligoml 已提交
351
            The sharded model will be computed from small to large. The default value is -1,
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
L
Ligoml 已提交
378

379 380 381 382 383
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
L
Ligoml 已提交
384 385
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
386 387 388 389 390 391 392 393 394 395 396 397

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


398 399
def require_version(min_version, max_version=None):
    """
L
Ligoml 已提交
400 401 402
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
403

L
Ligoml 已提交
404 405 406 407
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
408

L
Ligoml 已提交
409 410
    Returns:
        None.
411

L
Ligoml 已提交
412 413 414 415 416 417
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
418

L
Ligoml 已提交
419 420
    Examples:
        .. code-block:: python
421

L
Ligoml 已提交
422
            import paddle.fluid as fluid
423

L
Ligoml 已提交
424 425
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
426

L
Ligoml 已提交
427 428 429
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
430 431 432
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
L
Ligoml 已提交
433 434
            % (type(min_version))
        )
435 436 437 438

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
L
Ligoml 已提交
439 440
            % (type(max_version))
        )
441 442 443 444 445

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
L
Ligoml 已提交
446 447
            "like '1.5.2.0', but received %s" % min_version
        )
448 449 450 451 452 453

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
L
Ligoml 已提交
454 455
                "like '1.5.2.0', but received %s" % max_version
            )
456 457

    version_installed = [
L
Ligoml 已提交
458 459 460 461
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
L
Ligoml 已提交
478 479 480
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
481 482 483 484
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
L
Ligoml 已提交
485 486 487
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
488 489 490
        return

    min_version_split = min_version.split('.')
L
Ligoml 已提交
491 492 493
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
494 495 496

    if max_version is not None:
        max_version_split = max_version.split('.')
L
Ligoml 已提交
497 498 499
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
500

L
Ligoml 已提交
501 502 503 504
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
505 506
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
L
Ligoml 已提交
507 508
                % (min_version, max_version, fluid_version.full_version)
            )
509 510 511 512 513
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
L
Ligoml 已提交
514 515
                % (min_version, fluid_version.full_version, min_version)
            )
516 517


518 519
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
L
Ligoml 已提交
520 521 522
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
523 524 525 526 527 528 529
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
L
Ligoml 已提交
530 531 532 533
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
534 535 536 537 538
        return func(*args, **kwargs)

    return __impl__


539 540 541
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
L
Ligoml 已提交
542 543 544 545 546

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
547 548 549 550 551
        return func(*args, **kwargs)

    return __impl__


552 553
def _static_only_(func):
    def __impl__(*args, **kwargs):
L
Ligoml 已提交
554 555 556 557
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
558 559 560 561 562
        return func(*args, **kwargs)

    return __impl__


563 564 565 566 567
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


568 569 570 571 572 573
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
574
# same base class.
575 576 577
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
578 579 580 581
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
L
Ligoml 已提交
582 583
            % (func.__name__, func.__name__)
        )
584 585 586 587

    return __impl__


T
tangwei12 已提交
588 589
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
590 591 592 593 594 595 596 597 598
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
L
Ligoml 已提交
599 600
                DeprecationWarning,
            )
601 602 603 604 605 606 607
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


608 609
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
610
static_only = wrap_decorator(_static_only_)
611
fake_interface_only = wrap_decorator(_fake_interface_only_)
612
non_static_only = wrap_decorator(_non_static_only_)
613 614


L
lujun 已提交
615 616
def _dygraph_tracer():
    return _dygraph_tracer_
617

W
Wu Yi 已提交
618

619 620 621 622
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
623
def _current_expected_place():
624 625 626
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
627 628 629 630 631
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
632
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
633 634 635 636 637
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
638 639 640 641 642 643
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
644
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
645 646 647 648 649
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
650 651 652 653 654 655
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
656
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
657 658 659 660 661
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
677
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
678 679


L
Leo Chen 已提交
680 681
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
L
Ligoml 已提交
682 683
    """
    convert VarBase tp numpy
T
tangwei12 已提交
684

L
Ligoml 已提交
685 686 687
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
688 689 690 691 692 693 694 695 696
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
697
def _cpu_num():
698
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
699 700 701 702 703 704 705
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
L
Ligoml 已提交
706 707 708
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
709
        os.environ['CPU_NUM'] = str(1)
710
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
711 712 713 714 715 716 717 718 719 720
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
721 722


723 724 725 726 727 728 729 730 731
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


732 733 734 735 736 737 738 739 740
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


741 742 743 744 745 746 747 748 749
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


780 781 782 783 784 785 786
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
L
Ligoml 已提交
787

788 789 790 791 792 793
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

L
Ligoml 已提交
794
    Returns: None
795 796 797 798 799 800 801 802 803 804

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
820 821 822 823
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

824
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
825 826 827 828

    Examples:
        .. code-block:: python

829
            import paddle
830
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
831 832 833 834
    """
    return core.is_compiled_with_cuda()


835 836 837 838 839 840 841 842 843 844
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
845
            support_gpu = paddle.device.is_compiled_with_rocm()
846 847 848 849
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
850
def cuda_places(device_ids=None):
L
lujun 已提交
851
    """
852
    Note:
853 854 855
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
856
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
857 858

    If :code:`device_ids` is None, environment variable of
859
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
860
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
861
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
862
    If :code:`FLAGS_selected_gpus` is not set, all visible
863
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
864 865

    If :code:`device_ids` is not None, it should be the device
866
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
L
Ligoml 已提交
867
    the returned list would be
C
Chen Weihang 已提交
868
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
869

870
    Parameters:
871
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
872 873

    Returns:
C
Chen Weihang 已提交
874
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
875 876

    Examples:
L
Ligoml 已提交
877

L
lujun 已提交
878 879
        .. code-block:: python

C
Chen Weihang 已提交
880 881
            import paddle
            import paddle.static as static
T
tangwei12 已提交
882

883
            # required: gpu
L
Ligoml 已提交
884

C
Chen Weihang 已提交
885 886 887
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
888 889

    """
L
Ligoml 已提交
890
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
891
    if device_ids is None:
C
chengduo 已提交
892
        device_ids = _cuda_ids()
S
sneaxiy 已提交
893 894 895 896 897
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


898 899 900 901
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
902 903 904 905 906 907 908 909 910
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
L
Ligoml 已提交
911
        the returned list would be
S
sunzhongkai588 已提交
912
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
L
Ligoml 已提交
913

914 915 916 917 918 919
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
920

921 922
            # required: xpu

923 924
            import paddle
            import paddle.static as static
L
Ligoml 已提交
925

926 927 928
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
L
Ligoml 已提交
929
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
930 931 932 933 934 935 936
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


937 938 939 940
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
L
Ligoml 已提交
941

942 943 944 945 946 947 948 949 950
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
L
Ligoml 已提交
951
    the returned list would be
952
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
L
Ligoml 已提交
953

954 955 956 957 958 959 960 961 962 963 964
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
L
Ligoml 已提交
965

966 967 968
            paddle.enable_static()
            npu_places = static.npu_places()
    """
L
Ligoml 已提交
969
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
970 971 972 973 974 975 976
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
977
def cpu_places(device_count=None):
L
lujun 已提交
978
    """
C
Chen Weihang 已提交
979
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
980

S
add doc  
sneaxiy 已提交
981
    If :code:`device_count` is None, the device count would
L
Ligoml 已提交
982
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
983 984
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
985 986
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
987

988 989
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
990 991

    Returns:
C
Chen Weihang 已提交
992
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
993 994

    Examples:
L
Ligoml 已提交
995

L
lujun 已提交
996 997
        .. code-block:: python

C
Chen Weihang 已提交
998 999
            import paddle
            import paddle.static as static
T
tangwei12 已提交
1000

C
Chen Weihang 已提交
1001 1002 1003
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
1004 1005
    """

S
sneaxiy 已提交
1006 1007 1008 1009 1010 1011
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1012
    """
1013
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1014 1015

    If :code:`device_count` is None, the device count would
L
Ligoml 已提交
1016
    be determined by environment variable :code:`CPU_NUM`.
1017 1018 1019 1020
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1021

1022 1023
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1024 1025

    Returns:
1026
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1027 1028 1029 1030

    Examples:
        .. code-block:: python

1031
            import paddle.fluid as fluid
L
lujun 已提交
1032 1033 1034 1035 1036
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
L
Ligoml 已提交
1037
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1038
    if device_count is None:
1039 1040
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1041 1042


1043 1044
def mlu_places(device_ids=None):
    """
L
Ligoml 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
L
Ligoml 已提交
1077
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1078 1079 1080 1081 1082 1083 1084
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
L
Ligoml 已提交
1096 1097 1098
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1112
@signature_safe_contextmanager
1113 1114
def name_scope(prefix=None):
    """
1115

1116
    Generate hierarchical name prefix for the operators in Static Graph.
1117

L
Ligoml 已提交
1118
    Note:
T
Tao Luo 已提交
1119 1120
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1121
        Don't use it in dygraph, since it will cause memory leak.
1122 1123

    Args:
T
Tao Luo 已提交
1124
        prefix(str, optional): prefix. Default is none.
1125 1126

    Examples:
L
Ligoml 已提交
1127

1128
        .. code-block:: python
T
Tink_Y 已提交
1129

1130 1131 1132
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1133
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1134
             b = a + 1
1135
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1136
                c = b * 1
1137
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1138
                d = c / 1
1139 1140 1141
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1142 1143
                g = f - 1

L
Ligoml 已提交
1144
          # Op are created in the default main program.
1145
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1161 1162
    """
    # TODO(panyx0718): Only [0-9a-z].
1163
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1164
    if _non_static_mode():
L
Leo Chen 已提交
1165 1166
        yield
    else:
T
tianshuo78520a 已提交
1167
        assert prefix, "namescope prefix can not be empty."
1168 1169
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1170 1171 1172 1173
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1186 1187
def generate_control_dev_var_name():
    import random
L
Ligoml 已提交
1188

W
Wu Yi 已提交
1189
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1190 1191 1192 1193


def grad_var_name(var_name):
    """
1194 1195
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1196 1197 1198
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1199

1200
def convert_np_dtype_to_dtype_(np_dtype):
1201 1202
    """
    Convert the data type in numpy to the data type in Paddle
1203

1204
    Args:
1205
        np_dtype(np.dtype): the data type in numpy.
1206

1207 1208
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1209 1210

    """
1211 1212
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1213
        return core.VarDesc.VarType.FP32
1214
    elif dtype == np.float64:
1215
        return core.VarDesc.VarType.FP64
1216
    elif dtype == np.float16:
1217
        return core.VarDesc.VarType.FP16
1218
    elif dtype == np.int32:
1219
        return core.VarDesc.VarType.INT32
1220
    elif dtype == np.int16:
1221
        return core.VarDesc.VarType.INT16
1222
    elif dtype == np.int64:
1223
        return core.VarDesc.VarType.INT64
1224
    elif dtype == np.bool_:
1225
        return core.VarDesc.VarType.BOOL
1226
    elif dtype == np.uint16:
1227 1228 1229
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1230 1231
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1232 1233
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1234 1235 1236 1237
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1238
    else:
M
minqiyang 已提交
1239
        raise ValueError("Not supported numpy dtype %s" % dtype)
1240 1241 1242


def dtype_is_floating(dtype):
1243 1244 1245
    """
    Check the data type is floating or not.
    Args:
1246
        dtype(np.dtype|core.VarDesc.VarType): data type.
1247 1248 1249 1250 1251
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1252
    if not isinstance(dtype, core.VarDesc.VarType):
1253 1254
        dtype = convert_np_dtype_to_dtype_(dtype)

1255
    return dtype in [
L
Ligoml 已提交
1256 1257 1258
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1259
    ]
1260 1261


Y
Yang Yang(Tony) 已提交
1262
def _debug_string_(proto, throw_on_error=True):
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1274
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1275
    if not proto.IsInitialized(error_fields) and throw_on_error:
1276 1277
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
L
Ligoml 已提交
1278 1279 1280
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1281 1282 1283
    return proto.__str__()


L
Ligoml 已提交
1284 1285 1286 1287 1288 1289 1290 1291
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
    **kwargs
):
1292 1293 1294 1295
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1296
    if _in_eager_mode_:
1297
        eager_tensor = core.eager.Tensor(
1298
            dtype if dtype else core.VarDesc.VarType.FP32,
L
Ligoml 已提交
1299 1300
            list(shape) if shape else [],
            name,
1301
            type if type else core.VarDesc.VarType.LOD_TENSOR,
L
Ligoml 已提交
1302 1303
            True if persistable else False,
        )
1304 1305
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1306
    else:
L
Ligoml 已提交
1307 1308 1309 1310 1311 1312 1313
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1314 1315


1316 1317 1318 1319 1320 1321 1322
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
L
Ligoml 已提交
1323 1324
    if not vals:
        return False
1325 1326 1327
    return all(isinstance(v, expected_type) for v in vals)


1328 1329 1330 1331 1332
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1333
            return issubclass(t, core.eager.Tensor)
1334
        else:
J
Jiabin Yang 已提交
1335 1336
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1337 1338 1339 1340 1341 1342 1343 1344
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1345
            return issubclass(t, EagerParamBase)
1346
        else:
J
Jiabin Yang 已提交
1347 1348
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1349 1350 1351 1352
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1353
class Variable(object):
1354
    """
J
Jiabin Yang 已提交
1355

1356 1357 1358 1359
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1360

1361
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1362 1363

    In Fluid, every input and output of an OP is a variable. In most
1364
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1365 1366
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1367

1368
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1369
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1370

T
tianshuo78520a 已提交
1371
    Most of a Variable's member variables can be set to be None. It mean
1372
    it is not available or will be specified later.
1373

1374
    Examples:
1375 1376
        In Static Graph Mode:

1377 1378
        .. code-block:: python

1379
            import paddle.fluid as fluid
1380
            cur_program = fluid.Program()
1381 1382 1383 1384
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1385

J
Jiabin Yang 已提交
1386
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1387 1388 1389 1390 1391 1392 1393 1394 1395

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1396 1397
    """

L
Ligoml 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
        **kwargs
    ):
Y
Yu Yang 已提交
1415 1416
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1417
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1418

Y
Yu Yang 已提交
1419
        if dtype is not None:
1420
            if not isinstance(dtype, core.VarDesc.VarType):
1421
                dtype = convert_np_dtype_to_dtype_(dtype)
1422

S
Steffy-zxf 已提交
1423 1424 1425 1426
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1427 1428 1429
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1430 1431
        self.belong_to_optimizer = belong_to_optimizer

1432 1433 1434 1435 1436
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1437

1438 1439 1440
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1441

1442 1443 1444
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Ligoml 已提交
1445 1446 1447 1448 1449
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1450

1451
        if shape is not None:
1452
            if is_new_var:
1453 1454 1455 1456 1457 1458
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1459 1460
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
L
Ligoml 已提交
1461 1462
                        "matched.".format(self.name, old_shape, shape)
                    )
1463 1464 1465 1466 1467 1468
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Ligoml 已提交
1469 1470 1471 1472 1473 1474
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1475 1476 1477 1478 1479 1480

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Ligoml 已提交
1481 1482 1483 1484 1485 1486
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1487 1488 1489 1490 1491 1492
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1493 1494
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1495
                        "persistable is {2}. They are not matched".format(
L
Ligoml 已提交
1496 1497 1498
                            self.name, self.persistable, persistable
                        )
                    )
1499

1500 1501
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1502

1503 1504 1505 1506 1507 1508 1509
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1510

1511 1512
        self.block.vars[name] = self
        self.op = None
1513
        self.stop_gradient = stop_gradient
1514
        self.is_data = is_data
Y
Yu Yang 已提交
1515

1516 1517
    def detach(self):
        """
1518

1519
        Returns a new Variable, detached from the current graph.
1520 1521
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1522

1523
        Returns:
1524
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1525 1526 1527 1528

        Examples:
            .. code-block:: python

1529
                import paddle
1530

1531 1532 1533 1534
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1535

1536 1537
                # create a detached Variable
                y = x.detach()
1538

1539
        """
1540

L
Ligoml 已提交
1541 1542 1543 1544
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1545 1546 1547 1548 1549 1550

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
L
Ligoml 已提交
1551 1552
            stop_gradient=True,
        )
1553

L
Ligoml 已提交
1554 1555 1556
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1557
        return output
1558

1559
    @fake_interface_only
1560
    def numpy(self):
1561
        """
J
Jiabin Yang 已提交
1562
        **Notes**:
T
tianshuo78520a 已提交
1563
            **This API is ONLY available in Dygraph mode**
1564

J
Jiabin Yang 已提交
1565
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1566 1567 1568 1569 1570

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1571
            ndarray: dtype is same as current Variable
1572 1573 1574 1575 1576 1577

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1578
                from paddle.fluid.dygraph import Linear
1579 1580 1581 1582
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1583
                    linear = Linear(32, 64)
1584
                    data = to_variable(data)
1585
                    x = linear(data)
1586 1587 1588
                    print(x.numpy())

        """
1589
        pass
1590

1591
    @fake_interface_only
1592
    def backward(self, retain_graph=False):
1593
        """
J
Jiabin Yang 已提交
1594
        **Notes**:
T
tianshuo78520a 已提交
1595
            **This API is ONLY available in Dygraph mode**
1596

1597
        Run backward of current Graph which starts from current Tensor.
1598

J
Jiabin Yang 已提交
1599
        Args:
1600 1601 1602 1603
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1604

J
Jiabin Yang 已提交
1605 1606
        Returns:
            NoneType: None
1607 1608 1609 1610 1611

        Examples:
            .. code-block:: python

                import numpy as np
1612 1613
                import paddle
                paddle.disable_static()
1614 1615

                x = np.ones([2, 2], np.float32)
1616 1617 1618 1619 1620 1621 1622
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1623 1624
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1625
                loss.backward()
1626 1627

        """
1628
        pass
1629

1630
    @fake_interface_only
1631
    def gradient(self):
1632
        """
J
Jiabin Yang 已提交
1633
        **Notes**:
T
tianshuo78520a 已提交
1634
            **This API is ONLY available in Dygraph mode**
1635 1636 1637

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1638
        Returns:
1639
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1640 1641 1642 1643 1644 1645 1646

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1647
                # example1: return ndarray
1648 1649 1650 1651 1652 1653 1654 1655 1656
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1657
                    loss2.backward()
1658 1659
                    print(loss2.gradient())

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1673
        """
1674
        pass
1675

1676
    @fake_interface_only
1677
    def clear_gradient(self):
1678
        """
J
Jiabin Yang 已提交
1679
        **Notes**:
T
tianshuo78520a 已提交
1680
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1681 1682

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1683

J
Jiabin Yang 已提交
1684
        Clear  (set to ``0`` ) the Gradient of Current Variable
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1703
                    loss2.backward()
1704 1705 1706 1707 1708
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1709
        pass
X
Xin Pan 已提交
1710

1711 1712 1713 1714
    @fake_interface_only
    def register_hook(self, hook):
        pass

1715
    def __str__(self):
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1732 1733
                import paddle
                import paddle.static as static
1734

1735 1736 1737
                paddle.enable_static()

                cur_program = static.Program()
1738 1739 1740 1741 1742 1743
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1744 1745
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
L
Ligoml 已提交
1746 1747 1748 1749
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1750
            dtype_str = str(self.dtype).split('.')[1]
L
Ligoml 已提交
1751 1752 1753 1754 1755 1756 1757
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1758
        else:
L
Ligoml 已提交
1759
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1760

1761
        if self.is_parameter:
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

L
Ligoml 已提交
1772 1773 1774 1775
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1776
        dist_context = get_default_distributed_context()
1777 1778
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
L
Ligoml 已提交
1779 1780 1781
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1782

1783
        return var_str
Y
Yang Yang(Tony) 已提交
1784

F
update  
fengjiayi 已提交
1785
    def to_string(self, throw_on_error, with_details=False):
1786 1787 1788
        """
        Get debug string.

J
Jiabin Yang 已提交
1789 1790 1791 1792 1793
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1794

1795 1796
        Returns:
            str: The debug string.
1797 1798 1799 1800 1801

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1802
                import paddle
1803

1804
                paddle.enable_static()
1805 1806 1807 1808 1809
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1810
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1811
                print("=============with detail===============")
1812
                print(new_variable.to_string(True, True))
1813
        """
1814
        assert isinstance(throw_on_error, bool) and isinstance(
L
Ligoml 已提交
1815 1816
            with_details, bool
        )
1817
        protostr = self.desc.serialize_to_string()
1818
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1819 1820
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
L
Ligoml 已提交
1821
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1822
            for attr_name in additional_attr:
L
Ligoml 已提交
1823 1824 1825 1826
                res_str += "%s: %s\n" % (
                    attr_name,
                    cpt.to_text(getattr(self, attr_name)),
                )
1827

F
update  
fengjiayi 已提交
1828
        return res_str
1829 1830 1831

    __repr__ = __str__

1832 1833 1834
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
L
Ligoml 已提交
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1859
    @property
1860
    def stop_gradient(self):
J
Jiabin Yang 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1876 1877
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1878 1879 1880
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1881 1882
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1883 1884 1885 1886
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1887
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1888 1889
                assert (out1.gradient() == 0).all()
        """
1890
        return self.desc.stop_gradient()
1891

1892 1893
    @stop_gradient.setter
    def stop_gradient(self, s):
1894
        self.desc.set_stop_gradient(s)
1895

1896 1897
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1919
        return self.desc.persistable()
1920

Y
Yu Yang 已提交
1921 1922
    @persistable.setter
    def persistable(self, p):
1923
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1950 1951
    @property
    def name(self):
J
Jiabin Yang 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1968
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1969

1970 1971 1972 1973 1974 1975
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1976 1977
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1990 1991
    @name.setter
    def name(self, new_name):
1992
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1993

Y
Yu Yang 已提交
1994 1995
    @property
    def shape(self):
J
Jiabin Yang 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2013
        # convert to tuple, make it as same as numpy API.
2014
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2015 2016

    @property
F
fengjiayi 已提交
2017
    def dtype(self):
J
Jiabin Yang 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2034
        return self.desc.dtype()
Y
Yu Yang 已提交
2035 2036 2037

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

2051
            import paddle
J
Jiabin Yang 已提交
2052
            import paddle.fluid as fluid
2053 2054

            paddle.enable_static()
J
Jiabin Yang 已提交
2055 2056 2057 2058 2059 2060 2061
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2062 2063
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2064 2065
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2066
        return self.desc.lod_level()
Y
Yu Yang 已提交
2067

Y
Yu Yang 已提交
2068 2069
    @property
    def type(self):
J
Jiabin Yang 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2086
        return self.desc.type()
Y
Yu Yang 已提交
2087

2088 2089 2090
    @property
    def T(self):
        """
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
L
Ligoml 已提交
2123 2124
            stop_gradient=False,
        )
2125 2126 2127 2128 2129
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
L
Ligoml 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2139 2140
        return out

2141 2142 2143
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
L
Ligoml 已提交
2144
        Variable. It remains in the current graph, that is, the cloned Variable
2145 2146 2147 2148
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
2149
            Variable, The cloned Variable.
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
L
Ligoml 已提交
2169 2170
            stop_gradient=self.stop_gradient,
        )
2171

L
Ligoml 已提交
2172 2173 2174
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2175 2176
        return output

W
Wu Yi 已提交
2177
    def _set_error_clip(self, error_clip):
2178
        """
2179

2180 2181 2182 2183 2184 2185 2186
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
2187

2188
        """
2189 2190
        self.error_clip = error_clip

2191 2192
    def _set_info(self, key, value):
        """
2193

2194 2195 2196 2197 2198 2199
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

L
Ligoml 已提交
2200
        Returns:
2201
            None
2202

2203 2204 2205 2206 2207 2208 2209
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
2210

2211 2212 2213 2214 2215
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

L
Ligoml 已提交
2216
        Returns:
2217
            object
2218

2219 2220 2221 2222 2223
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2224 2225
    def _slice_indices(self, slice, length):
        """
2226

2227
        Reference implementation for the slice.indices method.
2228

2229 2230 2231 2232 2233 2234 2235 2236
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2237
            raise ValueError("slice step can not be zero")
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
L
Ligoml 已提交
2248 2249 2250
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
L
Ligoml 已提交
2296 2297 2298
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2299
                    raise IndexError("invalid index")
L
Ligoml 已提交
2300 2301 2302 2303 2304
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2318
    def _cloneVar(self, copy=False):
2319 2320
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2321
                name=unique_name.generate_with_ignorable_key(self.name),
L
Ligoml 已提交
2322 2323
                dtype=self.dtype,
            )
2324 2325 2326 2327
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2328
        new_var = self._cloneVar()
L
Ligoml 已提交
2329 2330 2331 2332 2333 2334
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2335 2336 2337
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2338
        new_var = self._cloneVar()
L
Ligoml 已提交
2339 2340 2341 2342 2343 2344 2345 2346
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2347 2348 2349 2350 2351
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2352
                return self._cloneVar(True)
2353 2354 2355 2356 2357 2358 2359
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
L
Ligoml 已提交
2360 2361 2362
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2363 2364 2365
                        start += step
                else:
                    while start > stop:
L
Ligoml 已提交
2366 2367 2368
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2369 2370 2371 2372
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2373
                return self._cloneVar(True)
2374
            index = int(item)
L
Ligoml 已提交
2375 2376 2377
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2378 2379 2380 2381 2382 2383
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2384
        return _getitem_impl_(self, item)
2385

2386
    def __setitem__(self, item, value):
2387
        return _setitem_impl_(self, item, value)
2388

2389 2390
    def get_value(self, scope=None):
        """
L
Ligoml 已提交
2391
        Get the value of variable in given scope.
2392 2393

        Args:
L
Ligoml 已提交
2394
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2395 2396 2397 2398
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
2399
            Tensor, the value in given scope.
2400 2401 2402 2403 2404

        Examples:
            .. code-block:: python

                import paddle
L
Ligoml 已提交
2405
                import paddle.static as static
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2430 2431
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2432 2433
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
L
Ligoml 已提交
2434

2435 2436
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
L
Ligoml 已提交
2437 2438 2439 2440
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2441 2442 2443 2444 2445

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
L
Ligoml 已提交
2446 2447 2448
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2449 2450 2451 2452 2453
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
2454

L
Ligoml 已提交
2455
        Set the value to the tensor in given scope.
2456 2457 2458

        Args:
            value(Tensor/ndarray) : The value to be set.
L
Ligoml 已提交
2459
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2460 2461 2462 2463 2464
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
L
Ligoml 已提交
2465

2466 2467 2468 2469
        Examples:
            .. code-block:: python

                import paddle
L
Ligoml 已提交
2470
                import paddle.static as static
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
2494

2495 2496 2497
        '''

        # The 'framework' is a low-level module, and 'executor'
2498
        # can not be imported at the begainning of this file.
2499 2500 2501 2502 2503
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
L
Ligoml 已提交
2504 2505 2506 2507
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2508 2509 2510

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
L
Ligoml 已提交
2511 2512 2513 2514
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2515 2516 2517 2518 2519 2520

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
L
Ligoml 已提交
2521 2522 2523
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
L
Ligoml 已提交
2534 2535 2536 2537
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2548 2549 2550 2551
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2552 2553 2554 2555
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2556 2557 2558 2559 2560 2561 2562
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2563 2564
    def size(self):
        """
2565

2566 2567 2568
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
2569
            Variable, the number of elements for current Variable
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
2583

2584 2585 2586 2587
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
L
Ligoml 已提交
2588 2589
            dtype=core.VarDesc.VarType.INT64,
        )
2590

L
Ligoml 已提交
2591 2592 2593
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2594 2595
        return output

2596 2597
    def _set_attr(self, name, val):
        """
2598

2599 2600 2601 2602 2603
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
2604

2605 2606 2607 2608 2609
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
2610

2611 2612 2613 2614 2615 2616
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
2617 2618
            bool, True if has this attribute.

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
2648
            int|str|list, The attribute value. The return value
2649 2650 2651 2652 2653
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2654
    def dist_attr(self):
2655
        """
2656
        Get distributed attribute of this Variable.
2657
        """
2658
        return self.desc.dist_attr
2659

2660 2661
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2662
        """
2663
        Set distributed attribute of this Variable.
2664
        """
2665
        self.desc.dist_attr = dist_attr
2666

Y
Yu Yang 已提交
2667

F
fengjiayi 已提交
2668 2669 2670
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2671

2672 2673
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2674 2675 2676 2677
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2678
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2679 2680 2681 2682 2683
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2684 2685 2686 2687
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2688 2689 2690 2691 2692 2693 2694 2695
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
L
Ligoml 已提交
2696 2697
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2698 2699 2700 2701 2702 2703
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2704 2705 2706 2707 2708 2709 2710 2711
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2712 2713
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2714 2715
        return self.op_proto_map[type]

2716 2717
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2718
        custom_op_names = []
2719 2720 2721
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2722 2723 2724
                custom_op_names.append(proto.type)

        return custom_op_names
2725

2726 2727 2728 2729
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2730
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2731
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2732
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
L
Ligoml 已提交
2733
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2734 2735
        }

F
fengjiayi 已提交
2736

X
Xin Pan 已提交
2737
class Operator(object):
2738
    """
2739 2740 2741 2742 2743 2744 2745
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2746
        type(str): The type of operator. Default None.
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2767
        Block.append_op or Block._prepend_op instead.
2768 2769 2770 2771

    Examples:
        .. code-block:: python

2772
            import paddle.fluid as fluid
2773
            cur_program = fluid.Program()
2774 2775 2776 2777 2778
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2779
    """
L
Ligoml 已提交
2780

2781
    OP_WITHOUT_KERNEL_SET = {
L
Ligoml 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2813
    }
2814

L
Ligoml 已提交
2815 2816 2817
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2828
        if _non_static_mode():
2829 2830
            if type is None:
                raise ValueError(
L
Ligoml 已提交
2831 2832
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2833
            self._type = type
M
minqiyang 已提交
2834
            self.attrs = attrs if attrs else {}
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2845 2846 2847
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2848 2849 2850
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2851
                op_attrs[
L
Ligoml 已提交
2852 2853
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2854 2855

            role_var_name = op_maker.kOpRoleVarAttrName()
L
Ligoml 已提交
2856 2857 2858 2859
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2860
                op_attrs[role_var_name] = self.block.program._op_role_var
2861 2862 2863 2864 2865

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2866 2867 2868 2869 2870
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2871 2872 2873
                return
            if type is None:
                raise ValueError(
L
Ligoml 已提交
2874 2875
                    "`type` to initialized an Operator can not be None."
                )
2876 2877
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2878 2879 2880
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2881
                        '  File "{}", line {}, in {}'.format(
L
Ligoml 已提交
2882 2883 2884 2885 2886 2887
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2888 2889 2890 2891 2892 2893 2894

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2895 2896 2897 2898 2899 2900 2901 2902
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
L
Ligoml 已提交
2903 2904 2905
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2906
                if 'force_cpu' in op_attrs:
L
Ligoml 已提交
2907 2908 2909
                    if (
                        type == 'less_than' and op_attrs['force_cpu'] != None
                    ) or op_attrs['force_cpu'] != False:
2910 2911 2912
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
L
Ligoml 已提交
2913 2914
                            "used at the same time." % type
                        )
2915
            if _current_pipeline_stage is not None:
L
Ligoml 已提交
2916 2917 2918 2919 2920
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2921
                )
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
L
Ligoml 已提交
2932 2933 2934
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2935 2936
                    if found:
                        in_args = inputs[in_proto.name]
2937
                        if not isinstance(in_args, (list, tuple)):
2938 2939 2940 2941
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
L
Ligoml 已提交
2942 2943
                                % (in_proto.name, len(in_args))
                            )
2944
                        in_arg_names = []
2945
                        for index, arg in enumerate(in_args):
2946 2947 2948 2949
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2950
                            elif isinstance(arg, (Variable, core.VarBase)):
2951
                                in_arg_names.append(cpt.to_text(arg.name))
2952
                            else:
2953 2954 2955 2956
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
L
Ligoml 已提交
2957 2958 2959
                                    "but received : %s"
                                    % (in_proto.name, type, arg)
                                )
2960 2961 2962 2963 2964 2965 2966 2967 2968
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2969
                        raise ValueError(
L
Ligoml 已提交
2970 2971 2972 2973 2974 2975
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2976 2977 2978 2979 2980 2981 2982 2983 2984
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
L
Ligoml 已提交
2985 2986
                            % (out_proto.name, len(out_args))
                        )
2987 2988
                    out_arg_names = []
                    for arg in out_args:
2989 2990 2991 2992
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2993
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2994
                        if not _non_static_mode():
2995 2996 2997 2998
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2999 3000
                    self.desc.set_output(out_proto.name, out_arg_names)

3001
            extra_attrs_map = core.get_op_extra_attrs(type)
3002 3003 3004 3005 3006
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
L
Ligoml 已提交
3007 3008 3009
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3010 3011 3012
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3013
                for attr_name in extra_attrs_map.keys():
L
Ligoml 已提交
3014 3015 3016 3017 3018 3019
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3020 3021
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3022

J
jianghaicheng 已提交
3023 3024
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3025
                if global_ipu_index >= 0:
L
Ligoml 已提交
3026 3027 3028
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3029
                if global_ipu_stage >= 0:
L
Ligoml 已提交
3030 3031 3032
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3033

3034 3035 3036 3037 3038
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3039
    def _has_kernel(self, op_type):
3040 3041
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3042
    def to_string(self, throw_on_error):
3043
        """
3044 3045
        Get debug string.

3046
        Args:
3047 3048
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3049

3050 3051
        Returns:
            str: The debug string.
3052 3053

        """
3054
        protostr = self.desc.serialize_to_string()
3055
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
3056 3057
        return _debug_string_(proto, throw_on_error)

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3090
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
L
Ligoml 已提交
3091 3092
            type(skip_op_callstack)
        )
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3119 3120 3121
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
L
Ligoml 已提交
3122 3123 3124
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
L
Ligoml 已提交
3135 3136
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3137 3138 3139 3140 3141
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3142 3143
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
L
Ligoml 已提交
3144 3145
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3146 3147 3148 3149 3150 3151 3152
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
L
Ligoml 已提交
3153 3154
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3155 3156 3157 3158 3159
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3160
            # it is bytes of serialized protobuf
L
Ligoml 已提交
3161 3162 3163 3164 3165
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3166 3167
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3168 3169 3170 3171 3172 3173 3174 3175 3176
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

L
Ligoml 已提交
3177 3178 3179
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3180

3181 3182 3183 3184
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

L
Ligoml 已提交
3185 3186 3187 3188
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3189
        dist_context = get_default_distributed_context()
3190 3191
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
L
Ligoml 已提交
3192 3193 3194
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3195

3196
        if outputs_str != "{}":
L
Ligoml 已提交
3197 3198 3199 3200 3201 3202
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3203
        else:
L
Ligoml 已提交
3204 3205 3206
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3207 3208
        return op_str

Y
Yang Yang(Tony) 已提交
3209
    def __str__(self):
3210
        return self._to_readable_code()
3211 3212 3213

    __repr__ = __str__

F
fengjiayi 已提交
3214 3215
    @property
    def type(self):
3216
        return self.desc.type()
F
fengjiayi 已提交
3217 3218

    def input(self, name):
3219
        r"""
3220

3221
        Get the input arguments according to the input parameter name.
3222

3223 3224
        Args:
            name(str): The input parameter name.
3225

3226
        Returns:
3227
            list, return the list of argument names that associated with \
3228
                the specific parameter name.
3229

3230
        """
F
fengjiayi 已提交
3231 3232
        return self.desc.input(name)

W
Wu Yi 已提交
3233
    def _rename_input(self, old_name, new_name):
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3244
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3245

W
Wu Yi 已提交
3246
    def _rename_output(self, old_name, new_name):
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3257
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3258

F
fengjiayi 已提交
3259 3260 3261 3262
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3263 3264 3265 3266 3267 3268 3269 3270
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3271
    def output(self, name):
3272
        r"""
3273
        Get output arguments by the output parameter name.
3274

3275 3276
        Args:
            name(str): The output parameter name.
3277

3278 3279 3280
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3281
        """
F
fengjiayi 已提交
3282 3283 3284 3285 3286 3287
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3288 3289 3290 3291 3292 3293
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
L
Ligoml 已提交
3294 3295
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3296

F
fengjiayi 已提交
3297
    def has_attr(self, name):
3298
        """
3299 3300
        Whether this Operator has the attribute with name or not.

3301
        Args:
3302
            name(str): the attribute name.
3303

3304 3305
        Returns:
            bool: True if has this attribute.
3306 3307

        """
F
fengjiayi 已提交
3308 3309 3310
        return self.desc.has_attr(name)

    def attr_type(self, name):
3311
        """
3312
        Get the type of attribute by attribute's name.
3313

3314 3315
        Args:
            name(str): the attribute name.
3316

3317 3318
        Returns:
            core.AttrType: the attribute type.
3319
        """
3320
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3321

W
Wu Yi 已提交
3322
    def _set_attr(self, name, val):
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3333 3334
        self._update_desc_attr(name, val)

3335 3336 3337
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3349 3350 3351 3352 3353
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3354
            self.desc.set_block_attr(name, val.desc)
3355
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3356
            self.desc.set_blocks_attr(name, [v.desc for v in val])
L
Ligoml 已提交
3357 3358 3359
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3360 3361
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3398

F
fengjiayi 已提交
3399 3400
    @property
    def attr_names(self):
3401
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3402 3403

    def attr(self, name):
3404
        """
3405 3406
        Get the attribute by name.

3407
        Args:
3408
            name(str): the attribute name.
3409

3410 3411
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3412 3413
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3414
        return self.desc.attr(name)
Y
Yu Yang 已提交
3415

W
Wu Yi 已提交
3416
    def _block_attr_id(self, name):
3417
        """
G
gongweibao 已提交
3418
        Get the block attribute's id by name.
3419

3420 3421
        Args:
            name(str): the attribute name.
3422

3423 3424
        Returns:
            int: the block index.
3425
        """
W
Wu Yi 已提交
3426
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3427

W
Wu Yi 已提交
3428
    def _block_attr(self, name):
G
gongweibao 已提交
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3439
        id = self._block_attr_id(name)
L
Ligoml 已提交
3440
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3441 3442
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3443
    def _blocks_attr(self, name):
G
gongweibao 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3454
        for i in self._blocks_attr_ids(name):
L
Ligoml 已提交
3455
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3456 3457 3458 3459
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3460
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3471
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3472

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
L
Ligoml 已提交
3484 3485 3486 3487 3488
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
L
Ligoml 已提交
3503 3504 3505 3506 3507
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3508 3509 3510 3511 3512 3513
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3514
    def all_attrs(self):
F
fengjiayi 已提交
3515
        """
3516 3517 3518
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3519
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3520 3521 3522 3523
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3524
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3525
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3526
                attr_map[n] = self._block_attr(n)
3527
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3528
                attr_map[n] = self._blocks_attr(n)
3529 3530 3531 3532 3533 3534
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3535

F
fengjiayi 已提交
3536 3537
        return attr_map

3538 3539 3540
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3541 3542 3543 3544

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3545 3546 3547
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3548 3549 3550 3551 3552 3553 3554 3555

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3556 3557
            return False

3558 3559 3560 3561 3562 3563
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3564
    @property
3565
    def dist_attr(self):
3566
        """
3567
        Get distributed attribute of this Variable.
3568
        """
3569
        return self.desc.dist_attr
3570

3571 3572
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3573
        """
3574
        Set distributed attribute of this Variable.
3575
        """
3576
        self.desc.dist_attr = dist_attr
3577

Y
Yu Yang 已提交
3578

Y
Yu Yang 已提交
3579
class Block(object):
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3594
        use `Program._create_block()` to create a block.
3595 3596 3597 3598

    Examples:
        .. code-block:: python

3599 3600 3601
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3602 3603 3604 3605 3606 3607 3608 3609 3610
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3611
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3612
        self.desc = program.desc.block(idx)
3613
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3614
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3615
        self.program = program
3616
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3617

3618
    def __str__(self):
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3653
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
L
Ligoml 已提交
3654 3655
            type(skip_op_callstack)
        )
3656 3657 3658 3659 3660 3661 3662
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
L
Ligoml 已提交
3663 3664
                op._to_readable_code(skip_op_callstack)
            )
3665 3666
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3667

F
fengjiayi 已提交
3668 3669
    def to_string(self, throw_on_error, with_details=False):
        """
3670 3671
        Get debug string.

F
fengjiayi 已提交
3672 3673
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3674
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3675
            with_details(bool): more details about variables and parameters
3676 3677
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3678

3679 3680
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3681
        """
3682
        assert isinstance(throw_on_error, bool) and isinstance(
L
Ligoml 已提交
3683 3684
            with_details, bool
        )
F
fengjiayi 已提交
3685
        if with_details:
F
fengjiayi 已提交
3686
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3687
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
L
Ligoml 已提交
3688 3689 3690
                self.idx,
                self.parent_idx,
            )
3691
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3692
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
L
Ligoml 已提交
3693 3694
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3695
            for op in self.ops:
F
fengjiayi 已提交
3696
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
L
Ligoml 已提交
3697 3698
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3699 3700 3701
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3702
            proto = framework_pb2.BlockDesc.FromString(
L
Ligoml 已提交
3703 3704
                six.binary_type(protostr)
            )
F
fengjiayi 已提交
3705 3706
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3707 3708 3709

    __repr__ = __str__

Y
Yu Yang 已提交
3710 3711
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3712
        return self.desc.parent
Y
Yu Yang 已提交
3713

Y
Yu Yang 已提交
3714 3715 3716 3717
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3718
    def _set_forward_block_idx(self, idx):
3719 3720 3721 3722 3723 3724 3725 3726 3727
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3728
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3729

3730 3731 3732 3733 3734 3735 3736 3737
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3738 3739
    @property
    def idx(self):
Y
Yu Yang 已提交
3740
        return self.desc.id
Y
Yu Yang 已提交
3741

Q
Qiao Longfei 已提交
3742
    def var(self, name):
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3756
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3757
            raise TypeError(
L
Ligoml 已提交
3758 3759 3760
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3761 3762
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3763
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3764
        return v
Q
Qiao Longfei 已提交
3765

X
Xin Pan 已提交
3766
    def _find_var_recursive(self, name):
3767 3768 3769 3770 3771 3772 3773
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3774
            Variable: the Variable with the giving name. Or None if not found.
3775
        """
Y
Yu Yang 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3800
        return None
Y
Yu Yang 已提交
3801

X
Xin Pan 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3821

Q
Qiao Longfei 已提交
3822
    def all_parameters(self):
3823
        return list(self.iter_parameters())
3824

3825
    def iter_parameters(self):
L
Ligoml 已提交
3826 3827 3828 3829 3830
        return (
            item[1]
            for item in six.iteritems(self.vars)
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3831

Y
Yu Yang 已提交
3832
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3833
        if _non_static_mode():
L
Leo Chen 已提交
3834 3835
            var = _varbase_creator(*args, **kwargs)
        else:
3836 3837 3838
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3839
        return var
Y
Yu Yang 已提交
3840

Q
Qiao Longfei 已提交
3841 3842 3843
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3844
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3845 3846
        """
        Rename variable in vars and ops' inputs and outputs
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3859
        """
M
minqiyang 已提交
3860 3861
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3862

T
typhoonzero 已提交
3863
        if not self.has_var(name):
3864
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3865 3866
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3867
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3868 3869 3870 3871 3872 3873
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3874
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3875 3876 3877 3878
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3879
        orig_var_type = v.type
M
minqiyang 已提交
3880
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3881
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3882
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3883
        if var_type == "Parameter":
L
Leo Chen 已提交
3884
            if in_dygraph_mode():
L
Ligoml 已提交
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3896
            else:
J
Jiabin Yang 已提交
3897
                if _in_legacy_dygraph():
L
Ligoml 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
J
Jiabin Yang 已提交
3909
                else:
L
Ligoml 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
T
typhoonzero 已提交
3922
        elif var_type == "Variable":
L
Ligoml 已提交
3923 3924 3925 3926 3927 3928 3929
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3930

W
Wu Yi 已提交
3931
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3932 3933 3934
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3935
        self._sync_with_cpp()
3936
        return var
T
typhoonzero 已提交
3937

3938 3939 3940
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3941
        self.desc._remove_var(cpt.to_bytes(name))
3942 3943
        del self.vars[name]

Y
Yu Yang 已提交
3944 3945
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3946
        param = None
L
Leo Chen 已提交
3947
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3948
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3949
        else:
J
Jiabin Yang 已提交
3950 3951 3952 3953
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3954

3955
        if 'initializer' in kwargs:
3956 3957 3958 3959 3960

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3961
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3962
                        # are treated as initialization ops that cause error.
3963
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3964 3965
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
L
Ligoml 已提交
3966 3967 3968
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3969
                        ]:
3970
                            continue
3971 3972 3973 3974 3975 3976 3977
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
L
Ligoml 已提交
3978 3979 3980 3981 3982 3983
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3984
            elif init_ops_len == 1:
3985
                # TODO already inited, do nothing, should log a warning
3986 3987 3988
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3989
        return param
Y
Yu Yang 已提交
3990

Y
Yu Yang 已提交
3991
    def append_op(self, *args, **kwargs):
3992 3993 3994 3995 3996 3997
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3998
        if _non_static_mode():
3999
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
4000
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
4001
            type = kwargs.get("type", None)
4002 4003 4004
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
L
Ligoml 已提交
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4016

M
minqiyang 已提交
4017 4018 4019
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
4020
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4021

L
Ligoml 已提交
4022 4023 4024 4025 4026 4027 4028 4029
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4030
        else:
4031 4032
            from paddle.fluid.dygraph.base import param_guard

4033
            op_desc = self.desc.append_op()
4034 4035 4036 4037 4038 4039
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
L
Ligoml 已提交
4040 4041 4042 4043 4044 4045 4046 4047
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4048

M
minqiyang 已提交
4049
            self.ops.append(op)
M
minqiyang 已提交
4050

4051 4052
        return op

W
Wu Yi 已提交
4053
    def _insert_op(self, index, *args, **kwargs):
4054 4055 4056 4057 4058 4059 4060 4061 4062
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4063
        self._sync_with_cpp()
F
fangshuixun007 已提交
4064
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4065

4066 4067
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
L
Ligoml 已提交
4068
        Insert an Operator according to the giving arguments,
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4083 4084 4085 4086 4087 4088 4089 4090 4091
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4092 4093
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4094
        self.desc._remove_op(index, index + 1)
4095 4096
        del self.ops[index]

W
Wu Yi 已提交
4097
    def _slice_ops(self, start, end):
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4108
        return self.ops[start:end]
Y
Yancey1989 已提交
4109

W
Wu Yi 已提交
4110
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4111
        if _non_static_mode():
J
Jiabin Yang 已提交
4112 4113
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
L
Ligoml 已提交
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4125
        else:
4126
            op_desc = self.desc._prepend_op()
L
Ligoml 已提交
4127 4128 4129 4130 4131 4132 4133 4134
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4135
            self.ops.insert(0, op)
4136

Y
Yu Yang 已提交
4137 4138
        return op

W
Wu Yi 已提交
4139
    def _sync_with_cpp(self):
4140
        """
4141 4142
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4143
        """
Q
Qiao Longfei 已提交
4144 4145 4146
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4147 4148 4149 4150
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
L
Ligoml 已提交
4151 4152 4153 4154 4155 4156 4157 4158
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4159
                else:
L
Ligoml 已提交
4160 4161 4162 4163 4164 4165
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4166

4167
        # sync variables removed from c++ end
4168
        for var in list(self.vars.keys()):
M
minqiyang 已提交
4169
            if not self.desc.find_var(cpt.to_bytes(var)):
4170 4171
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4172
        # sync operators from cpp
4173 4174 4175 4176
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4193 4194 4195 4196 4197

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4198
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4199 4200 4201 4202 4203 4204 4205

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4206 4207 4208 4209 4210
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
L
Ligoml 已提交
4211 4212 4213 4214 4215 4216
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4217 4218 4219 4220 4221
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4222 4223 4224 4225
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4226
    def _copy_param_info_from(self, other):
4227
        """
4228 4229
        Copy the information of parameters from the other block.

4230
        Args:
4231 4232 4233 4234 4235
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4236 4237 4238 4239 4240

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4241
            raise TypeError(
L
Ligoml 已提交
4242 4243
                "_copy_param_info_from should be invoked with Block"
            )
4244
        for p in other.iter_parameters():
4245 4246 4247
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4248 4249
                # if the Parameter is pruned, v may be None
                continue
4250
            assert isinstance(v, Variable)
4251
            new_p = None
L
Leo Chen 已提交
4252
            if in_dygraph_mode():
L
Ligoml 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4265
            else:
J
Jiabin Yang 已提交
4266
                if _in_legacy_dygraph():
L
Ligoml 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name,
                    )
J
Jiabin Yang 已提交
4279 4280 4281 4282 4283 4284 4285
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
L
Ligoml 已提交
4286 4287
                        if v.type == core.VarDesc.VarType.LOD_TENSOR
                        else None,
J
Jiabin Yang 已提交
4288 4289 4290 4291 4292
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
L
Ligoml 已提交
4293 4294
                        name=v.name,
                    )
4295 4296
            self.vars[new_p.name] = new_p

4297
    def _clone_variable(self, var, force_persistable=True):
4298 4299
        """
        Clone a variable into current block.
4300

4301 4302
        Args:
            var: the variable to be cloned.
4303 4304 4305
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4306 4307

        Returns:
4308
            Variable: the new  variable cloned from 'var' in current block.
4309 4310
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4311 4312 4313
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
L
Ligoml 已提交
4314 4315 4316
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4317
        elif var.type == core.VarDesc.VarType.RAW:
L
Ligoml 已提交
4318 4319 4320
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4321 4322 4323 4324 4325 4326
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4327
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4328
                is_data=var.is_data,
L
Ligoml 已提交
4329 4330
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4331 4332 4333 4334 4335 4336 4337
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4338
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4339
                is_data=var.is_data,
L
Ligoml 已提交
4340 4341
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4342
        return ret_var
4343

Y
Yu Yang 已提交
4344

4345 4346 4347 4348
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4349
# of some old Python Variables(all old Python Operators) may have
4350
# been destructed.
L
Ligoml 已提交
4351 4352 4353
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4354 4355 4356 4357
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
L
Ligoml 已提交
4358 4359 4360 4361 4362 4363 4364
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4365 4366 4367 4368 4369
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
L
Ligoml 已提交
4382 4383 4384
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4466
    def remove_input_by_id(self, node_id):
4467 4468 4469 4470 4471 4472
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4473
        self.node.remove_input(node_id)
4474

4475
    def remove_input(self, node):
4476 4477 4478 4479
        """
        Remove a node from inputs.

        Args:
4480
            node(IrNode): the node being removed.
4481
        """
4482
        self.node.remove_input(node.node)
4483

4484
    def append_input(self, node):
4485 4486 4487 4488
        """
        Append a node in inputs.

        Args:
4489
            node(IrNode): the node being appended.
4490
        """
4491
        self.node.append_input(node.node)
4492 4493 4494 4495 4496 4497 4498 4499

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4500
    def remove_output_by_id(self, node_id):
4501 4502 4503 4504 4505 4506
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4507
        self.node.remove_output(node_id)
4508

4509
    def remove_output(self, node):
4510 4511 4512 4513
        """
        Remove a node from outputs.

        Args:
4514
            node(IrNode): the node being removed.
4515
        """
4516
        self.node.remove_output(node.node)
4517

4518
    def append_output(self, node):
4519 4520 4521 4522
        """
        Append a node in outputs.

        Args:
4523
            node(IrNode): the node being appended.
4524
        """
4525
        self.node.append_output(node.node)
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
L
Ligoml 已提交
4560 4561 4562
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
L
Ligoml 已提交
4573 4574 4575
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4576 4577 4578 4579 4580 4581 4582 4583 4584
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
L
Ligoml 已提交
4585 4586 4587
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4588 4589
        return self.node.var().persistable()

4590 4591 4592 4593 4594 4595 4596
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
L
Ligoml 已提交
4597 4598 4599
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4600 4601 4602 4603 4604 4605 4606 4607 4608
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
L
Ligoml 已提交
4609 4610 4611
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4612 4613 4614 4615 4616 4617 4618 4619 4620
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
L
Ligoml 已提交
4621 4622 4623
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4624 4625
        return self.node.var().shape()

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
L
Ligoml 已提交
4659 4660 4661
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
L
Ligoml 已提交
4673 4674 4675
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4676 4677
        self.node.op()._rename_input(old_input_name, new_input_name)

4678 4679 4680 4681 4682 4683 4684 4685
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
L
Ligoml 已提交
4686 4687 4688
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4689 4690
        self.node.op()._rename_output(old_output_name, new_output_name)

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
L
Ligoml 已提交
4701 4702 4703
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
L
Ligoml 已提交
4716 4717 4718
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4719 4720 4721 4722 4723 4724 4725 4726 4727
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
L
Ligoml 已提交
4728 4729 4730
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4731 4732
        return self.node.op().set_type(new_type)

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
L
Ligoml 已提交
4747 4748 4749
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4750
        desc = self.node.op()
4751 4752 4753 4754 4755
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4756
            desc.set_block_attr(name, val.desc)
4757
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4758
            desc.set_blocks_attr(name, [v.desc for v in val])
L
Ligoml 已提交
4759 4760 4761
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4762 4763 4764 4765
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4766 4767 4768 4769 4770 4771 4772
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
L
Ligoml 已提交
4773 4774 4775
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4776 4777 4778 4779 4780 4781 4782 4783 4784
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
L
Ligoml 已提交
4785 4786 4787
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4788 4789
        return self.node.op().output_arg_names()

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4811 4812
class IrGraph(object):
    """
4813
    Python IrGraph. Beneath it is a core.Graph, which is used for
4814
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4815 4816
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4817 4818 4819 4820
    """

    def __init__(self, graph, for_test=False):
        """
4821 4822
        Construct an IrGraph using core.Graph.

4823 4824 4825 4826 4827
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
L
Ligoml 已提交
4828 4829
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4830 4831 4832
        self.graph = graph
        self._for_test = for_test

4833 4834 4835 4836
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4837 4838 4839
        Warns:
            The method only clones the graph structure, not its attributes.

4840 4841 4842
        Returns:
            IrGraph: A new and duplicated graph.
        """
4843
        g = self.graph.clone()
4844 4845
        return IrGraph(g, self._for_test)

4846
    def is_test(self):
4847 4848 4849
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4850 4851
        return self._for_test

W
WangZhen 已提交
4852
    def all_nodes(self):
4853 4854 4855
        """
        Return all nodes included in the graph as a set.
        """
4856
        return {IrNode(node) for node in self.graph.nodes()}
4857

4858
    def all_var_nodes(self):
4859 4860 4861
        """
        Return all variable nodes included in the graph as a set.
        """
4862
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4863

4864
    def all_persistable_nodes(self):
4865 4866 4867
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4868 4869
        persistable_nodes = set()
        for node in self.graph.nodes():
L
Ligoml 已提交
4870 4871 4872 4873 4874
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4875
                persistable_nodes.add(node)
4876
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4877

4878
    def all_op_nodes(self):
4879 4880 4881
        """
        Return all operator nodes included in the graph as a set.
        """
4882
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4883

4884 4885 4886 4887 4888 4889
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4890
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4891 4892 4893 4894 4895 4896 4897 4898 4899
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4900
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4912
            IrVarNode: the created persistable variable node.
4913
        """
4914 4915 4916 4917 4918
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4919
        return IrVarNode(self.graph.create_var_node(var_desc))
4920 4921

    def create_var_node(self, name, var_type, shape, var_dtype):
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4933
            IrVarNode: the created variable node.
4934 4935
        """

4936 4937 4938 4939
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4940
        return IrVarNode(self.graph.create_var_node(var_desc))
4941

4942 4943 4944 4945 4946 4947
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4948
    def create_var_node_from_desc(self, var_desc):
4949 4950 4951 4952 4953 4954 4955 4956
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4957
            IrVarNode: the created variable node.
4958
        """
4959
        return IrVarNode(self.graph.create_var_node(var_desc))
4960 4961

    def create_op_node(self, op_type, attrs, inputs, outputs):
4962 4963 4964 4965 4966 4967 4968
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4969
            outputs(dict): the outputs of the operator node.
4970 4971

        Returns:
4972
            IrOpNode: the created operator node.
4973
        """
4974 4975
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4976
        for attr, value in six.iteritems(attrs):
4977
            self._update_desc_attr(op_desc, attr, value)
4978
        for input_name, var_nodes in six.iteritems(inputs):
4979 4980
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
L
Ligoml 已提交
4981 4982 4983
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4984
        for output_name, var_nodes in six.iteritems(outputs):
4985 4986
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
L
Ligoml 已提交
4987 4988 4989
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4990
        return IrOpNode(self.graph.create_op_node(op_desc))
4991 4992

    def create_op_node_from_desc(self, op_desc):
4993 4994 4995 4996 4997 4998 4999
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5000
            IrOpNode: the created operator node.
5001
        """
5002
        return IrOpNode(self.graph.create_op_node(op_desc))
5003 5004

    def update_input_link(self, old_input_node, new_input_node, op_node):
5005 5006 5007 5008
        """
        Update the input's link of a operator node.

        Args:
5009 5010 5011
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5012
        """
L
Ligoml 已提交
5013 5014 5015 5016 5017
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5018 5019 5020 5021
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5022
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5023

5024 5025 5026 5027 5028 5029 5030 5031 5032
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
L
Ligoml 已提交
5033 5034 5035 5036 5037
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5038 5039 5040 5041 5042 5043
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5044
    def link_to(self, node_in, node_out):
5045 5046 5047 5048
        """
        Connect two nodes.

        Args:
5049 5050
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5051
        """
5052
        assert node_in.node in self.graph.nodes(), (
L
Ligoml 已提交
5053 5054
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5055
        assert node_out.node in self.graph.nodes(), (
L
Ligoml 已提交
5056 5057
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5058 5059
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5060 5061

    def safe_remove_nodes(self, remove_nodes):
5062 5063 5064 5065 5066 5067 5068
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5069
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5070 5071 5072 5073
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5074 5075
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5076

Z
Zhen Wang 已提交
5077 5078 5079 5080 5081 5082 5083 5084
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5085
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5086 5087 5088 5089
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5090
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5091 5092 5093
                        ]
                    else:
                        var_nodes[each_var_name].append(
L
Ligoml 已提交
5094 5095
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5096 5097
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5098
    def has_circle(self):
5099 5100 5101 5102 5103 5104
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5105 5106 5107
        return core.has_circle(self.graph)

    def graph_num(self):
5108 5109 5110 5111 5112 5113
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5114 5115 5116
        return core.graph_num(self.graph)

    def topology_sort(self):
5117 5118 5119
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5120
        Notes: the `graph` can not contain a circle.
5121 5122

        Returns:
Z
Zhen Wang 已提交
5123
            list(IrNode): nodes in topology order.
5124
        """
5125
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5126
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5127 5128

    def build_adjacency_list(self):
5129 5130 5131 5132
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5133
            dict{IrNode: set(IrNode)}: the adjacency list.
5134
        """
5135 5136 5137 5138 5139
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5140

5141 5142 5143 5144 5145 5146 5147 5148
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5149
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5150 5151 5152 5153 5154
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5155 5156
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
L
Ligoml 已提交
5157 5158 5159 5160
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5161 5162
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
L
Ligoml 已提交
5163 5164 5165
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5166

5167
        remove_ctr_vars = set()
5168
        if remove_ctr_var:
5169
            for node in self.all_var_nodes():
5170 5171 5172
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5173 5174
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5175 5176
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5177 5178 5179 5180 5181 5182
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5183 5184 5185 5186
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5187 5188
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5189 5190 5191 5192 5193 5194 5195
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5196 5197 5198
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5199
        WARN: When the graph includes backward operator nodes, the
5200 5201 5202 5203 5204 5205
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5206
        convert_pass = core.get_pass('graph_to_program_pass')
5207 5208
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5209 5210 5211 5212
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5213 5214 5215 5216 5217 5218 5219 5220
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5221
        assert target_node is not None, (
L
Ligoml 已提交
5222 5223
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5224 5225
        return target_node

5226 5227 5228 5229
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5230 5231 5232 5233 5234
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5235
            desc.set_block_attr(name, val.desc)
5236
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5237
            desc.set_blocks_attr(name, [v.desc for v in val])
L
Ligoml 已提交
5238 5239 5240
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5241 5242 5243 5244 5245
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
5246
class Program(object):
D
dzhwinter 已提交
5247
    """
5248
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5249
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5250
    it will contain nested block.
5251

J
Jiabin Yang 已提交
5252 5253 5254
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5255

J
Jiabin Yang 已提交
5256
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5257
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5258 5259 5260 5261 5262 5263 5264
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5265
    **Notes**:
5266 5267 5268
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5269 5270

    Returns:
J
Jiabin Yang 已提交
5271
        Program: An empty Program.
D
dzhwinter 已提交
5272 5273

    Examples:
5274 5275
        .. code-block:: python

5276 5277 5278 5279
            import paddle
            import paddle.static as static

            paddle.enable_static()
5280

5281 5282 5283 5284 5285
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5286
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5287 5288 5289

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5290 5291 5292

    """

5293 5294
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5295 5296
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5297 5298
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5299
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5300
        self.__op_role_var = []
T
tangwei12 已提交
5301

5302 5303
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5304
        self._is_distributed = False
5305
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5306
        self._is_chief = False
5307 5308 5309
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5310
        self._endpoints = []
5311 5312 5313
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5314
        self._trainers_endpoints = []
5315
        # the distributed lookup table names
T
tangwei12 已提交
5316
        self._distributed_lookup_table = None
5317 5318 5319

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5320 5321
        self._use_lamb = False

5322 5323 5324
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5325

5326 5327 5328
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5329
        self._program_config = None
5330

H
hutuxian 已提交
5331 5332 5333
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5334 5335 5336
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5337 5338 5339
        # appending gradients times
        self._appending_grad_times = 0

5340 5341
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
L
Ligoml 已提交
5342 5343
            "__auto_checkpoint_program__"
        )
5344

5345 5346
        # compiled program, i.e. Graph
        self._graph = None
5347 5348
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5349

5350
    def _find_var_class_kwargs(self, new_desc):
5351 5352 5353 5354 5355 5356 5357 5358
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5359 5360 5361 5362
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
L
Ligoml 已提交
5363
            if idx > (len(self.blocks) - 1):
5364
                self._create_block()
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
L
Ligoml 已提交
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5416 5417 5418
                }

                if isinstance(old_var, Parameter):
L
Ligoml 已提交
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5436 5437
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
L
Ligoml 已提交
5438 5439 5440 5441 5442 5443
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5444 5445 5446 5447 5448 5449 5450

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5451
        assert block_num == self.desc.num_blocks()
5452 5453

        # clear old blocks and desc
5454 5455 5456 5457 5458 5459 5460 5461 5462
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5463

5464
        del desc
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5494 5495
                import paddle
                import paddle.static as static
5496

5497 5498 5499
                paddle.enable_static()

                prog = static.default_main_program()
5500 5501 5502 5503 5504
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5505
                prog1 = static.default_main_program()
5506 5507 5508 5509 5510 5511 5512 5513
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5514
    @property
5515
    def _op_role(self):
Y
yuyang18 已提交
5516 5517 5518 5519 5520 5521 5522 5523
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5524
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5525 5526 5527 5528
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5529 5530
        return self._current_role

5531 5532
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5533 5534 5535
        self._current_role = role

    @property
5536
    def _op_role_var(self):
Y
yuyang18 已提交
5537
        """
5538
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5539

5540
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5541 5542 5543

        Notes: This is a very low-level API. Users should not use it directly.
        """
5544
        return self.__op_role_var
Y
yuyang18 已提交
5545

5546
    @signature_safe_contextmanager
5547 5548 5549 5550 5551
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5552 5553 5554 5555
        try:
            yield
        finally:
            self._current_role = tmp_role
5556

S
rename  
sneaxiy 已提交
5557
    @signature_safe_contextmanager
W
Wu Yi 已提交
5558
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5559 5560 5561 5562 5563 5564 5565
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5566
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5567 5568 5569

        Examples:

5570
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5571
            >>> p, g = backward(...)
W
Wu Yi 已提交
5572
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5573 5574
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5575
        tmp_role = self._current_role
5576
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5577

Y
yuyang18 已提交
5578 5579
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5580
        self.__op_role_var = [
5581 5582 5583
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5584 5585 5586 5587 5588
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5589

S
rename  
sneaxiy 已提交
5590
    @signature_safe_contextmanager
X
Xin Pan 已提交
5591
    def _lr_schedule_guard(self, is_with_opt=False):
5592 5593 5594 5595 5596 5597 5598
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5599 5600 5601 5602
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5603 5604 5605

        Examples:

5606
            >>> import paddle.fluid as fluid
5607 5608 5609 5610
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5611 5612

        tmp_role = self._current_role
5613
        tmp_var = self.__op_role_var
5614

5615 5616
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5617 5618
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5619
        # TODO(typhoonzero): how to set target learning rate var
5620
        self.__op_role_var = []
5621 5622 5623 5624 5625
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5626

5627
    def __str__(self):
Y
yuyang18 已提交
5628 5629 5630 5631 5632 5633 5634 5635 5636
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5657 5658
            import paddle
            import paddle.static as static
5659

5660 5661 5662
            paddle.enable_static()

            cur_program = static.Program()
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5674
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
L
Ligoml 已提交
5675 5676
            type(skip_op_callstack)
        )
5677 5678 5679
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5680
            program_str += '\n'
5681
        return program_str
Y
Yang Yang(Tony) 已提交
5682

F
fengjiayi 已提交
5683 5684 5685
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5686

J
Jiabin Yang 已提交
5687 5688 5689
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5690

J
Jiabin Yang 已提交
5691
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5692

H
haowang101779990 已提交
5693
        Returns:
J
Jiabin Yang 已提交
5694
            str: The debug string describe current Program.
Y
yuyang18 已提交
5695 5696

        Raises:
J
Jiabin Yang 已提交
5697
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5698

5699 5700 5701
        Examples:
            .. code-block:: python

5702 5703 5704 5705
                import paddle
                import paddle.static as static

                paddle.enable_static()
5706

5707 5708 5709
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5710
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5711
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5712
                print("program string without detail: {}".format(prog_string))
5713
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5714
        """
5715 5716 5717
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
L
Ligoml 已提交
5718 5719
            type(throw_on_error)
        )
5720 5721 5722
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
L
Ligoml 已提交
5723 5724
            type(with_details)
        )
5725

F
fengjiayi 已提交
5726 5727 5728 5729 5730 5731
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5732
            proto = framework_pb2.ProgramDesc.FromString(
L
Ligoml 已提交
5733 5734
                six.binary_type(protostr)
            )
F
fengjiayi 已提交
5735 5736
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5737

W
Wu Yi 已提交
5738
    def _get_desc(self):
Y
yuyang18 已提交
5739 5740 5741 5742 5743 5744 5745
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5746 5747
        return self.desc

X
version  
Xin Pan 已提交
5748 5749 5750
    def _version(self):
        return self.desc._version()

5751
    def clone(self, for_test=False):
Y
yuyang18 已提交
5752
        """
5753
        .. note:::
L
Ligoml 已提交
5754 5755
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5756
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5757

5758
        Create a new Program with forward content of original one when ``for_test=True``.
5759
        Create a new Program as same as the original one when ``for_test=False``.
5760

5761
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5762 5763 5764
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5765

5766 5767
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5768 5769
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5770
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5771

J
Jiabin Yang 已提交
5772
        For Example:
5773
          ::
L
Luo Tao 已提交
5774

5775 5776 5777 5778 5779 5780
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5781
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5782
            loss = paddle.mean(pred)
5783
            # Here we use clone before Momentum
5784 5785
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5786
            optimizer.minimize(loss)
5787

J
Jiabin Yang 已提交
5788
        Args:
5789

5790 5791
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5792

J
Jiabin Yang 已提交
5793
        Returns:
5794
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5795

Y
yuyang18 已提交
5796 5797 5798

        Examples:

5799 5800 5801 5802 5803 5804 5805
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5822
            1. To clone a test program, the sample code is:
5823 5824 5825
                .. code-block:: python

                    import six
5826 5827 5828 5829 5830 5831
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5844 5845
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5846 5847 5848

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5849 5850 5851
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5852
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5853 5854
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5855
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5856 5857
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5858
                            test_program = train_program.clone(for_test=True)
5859
                    print_prog(test_program)
J
Jiabin Yang 已提交
5860 5861 5862 5863

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5864
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5865 5866 5867 5868
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5869 5870 5871
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5872 5873 5874
                            sgd.minimize(avg_loss)


5875
            2. The clone method can be avoid if you create program for training and program for testing individually.
5876 5877 5878
                .. code-block:: python

                    import six
5879 5880 5881 5882 5883 5884
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5896

5897
                    def network():
5898
                        img = static.data(name='image', shape=[None, 784])
5899
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5900 5901
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5902
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5903 5904
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5905 5906
                        return avg_loss

5907 5908 5909 5910 5911
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5912
                            avg_loss = network()
5913
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5914
                            sgd.minimize(avg_loss)
5915
                    # the test startup program is not used.
5916 5917
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5918 5919
                            avg_loss = network()
                    print_prog(test_program_2)
5920

5921
            The two code snippets above will generate and print same programs.
5922
        """
5923

T
tangwei12 已提交
5924
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5925 5926 5927
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5928
        pruned_origin_block_id_map = None
5929
        if for_test:
5930 5931
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
L
Ligoml 已提交
5932 5933
                self.desc
            )
5934 5935 5936 5937 5938 5939
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5940
        else:
5941
            p = Program()
G
gongweibao 已提交
5942 5943
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5944
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5945 5946 5947
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5948 5949

            p._current_role = self._current_role
5950
            p.__op_role_var = self.__op_role_var
5951
            p._appending_grad_times = self._appending_grad_times
5952 5953
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5954

T
tangwei12 已提交
5955
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5956
            # its desc.
W
Wu Yi 已提交
5957
            p._sync_with_cpp()
5958

W
Wu Yi 已提交
5959
        p._copy_param_info_from(self)
5960
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5961
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5962
        return p
5963

5964
    def _prune(self, targets):
Y
yuyang18 已提交
5965 5966 5967 5968 5969 5970 5971 5972
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5973
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5974 5975 5976 5977
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5978
        """
5979
        return self._prune_with_input([], targets)
5980 5981

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5982
        """
5983
        Prune operators and variables which are not needed to generate
L
Ligoml 已提交
5984 5985
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5986 5987 5988 5989 5990 5991 5992

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5993
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5994 5995 5996 5997 5998 5999
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6000
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6001 6002 6003
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6004 6005
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6006 6007
        if not isinstance(targets, list):
            targets = [targets]
6008 6009 6010

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
6011 6012
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
L
Ligoml 已提交
6013 6014
                    "str, but received %s." % type(var)
                )
6015

6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6032 6033 6034 6035
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6036 6037 6038
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
6039
                else:
6040 6041
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
L
Ligoml 已提交
6042 6043
                        "Variable or Operator, but received %s." % type(t)
                    )
6044 6045 6046 6047 6048 6049

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6050 6051 6052
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6053

6054 6055 6056 6057 6058 6059 6060 6061 6062
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6063
                        # Skip optimize op except for optimize op in targets,
6064 6065 6066 6067 6068
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6069

6070
                if target_op is not None:
6071 6072 6073
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6074

6075
        res = Program()
6076
        res.desc, pruned_origin_block_id_map = core.prune(
L
Ligoml 已提交
6077 6078
            self.desc, set(feeded_var_names), targets_idx
        )
M
minqiyang 已提交
6079 6080 6081
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
6082
        res._sync_with_cpp()
6083 6084 6085 6086 6087

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6088 6089
        return res

X
Xin Pan 已提交
6090
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6091
        """
F
fengjiayi 已提交
6092 6093 6094 6095 6096
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6097
        3. change the :code:`is_test`
Y
yuyang18 已提交
6098 6099 6100
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6101
        Args:
X
Xin Pan 已提交
6102 6103
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6104

Y
yuyang18 已提交
6105 6106 6107 6108 6109 6110
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6111
        res = Program()
6112
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6113 6114 6115 6116

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6117
        if prune_read_op:
6118
            while True:
L
Ligoml 已提交
6119 6120 6121 6122
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6123 6124 6125 6126 6127 6128
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
6129
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
6130 6131

        # change all `is_test` attributes to True
M
minqiyang 已提交
6132
        for i in six.moves.range(res.desc.num_blocks()):
6133
            block = res.desc.block(i)
M
minqiyang 已提交
6134
            for j in six.moves.range(block.op_size()):
6135 6136
                op = block.op(j)
                if op.has_attr('is_test'):
6137
                    op._set_bool_attr('is_test', True)
6138 6139 6140
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
6141 6142 6143
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
6144
        res._sync_with_cpp()
6145 6146
        return res

6147
    def _remove_training_info(self, clip_extra=True):
6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

6167 6168
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6169
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6170

6171 6172 6173 6174 6175
        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6176 6177
            if not clip_extra:
                continue
6178 6179 6180 6181
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6182 6183 6184

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6198 6199 6200
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6214 6215 6216
                # The extra output of op will be removed in the future
                # for name in remove_output_list:
                #     op.remove_output(name)
6217

L
Ligoml 已提交
6218 6219 6220 6221 6222 6223 6224
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6225 6226
                )
                quant_attrs = [
L
Ligoml 已提交
6227 6228 6229 6230 6231 6232 6233
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6234
                ]
6235 6236 6237
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
                remove_attr_list = []
6238 6239 6240 6241 6242 6243
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6244
                    if len(extra_attrs_map) > 0:
6245
                        if name in common_clipped_attrs_list:
6246
                            op.remove_attr(name)
6247
                        continue
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6258 6259
        return res

6260 6261
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6262
        """
6263
        .. note::
L
Ligoml 已提交
6264
            1. All information about parameters will be lost after serialization;
6265
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6266

6267 6268
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6269

J
Jiabin Yang 已提交
6270
        Args:
Y
yuyang18 已提交
6271

J
Jiabin Yang 已提交
6272
            binary_str_type (str): the binary prootbuf string.
6273

J
Jiabin Yang 已提交
6274 6275
        Returns:
            Program: A deserialized Program.
6276 6277 6278 6279

        Examples:
            .. code-block:: python

6280 6281 6282 6283
                import paddle
                import paddle.static as static

                paddle.enable_static()
6284

6285 6286 6287 6288
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6289

6290
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6291

6292
                    z = paddle.matmul(x=x, y=y)
6293

6294 6295
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6296

6297
                    print(static.default_main_program())
6298
                    print(prog_restored)
Y
yuyang18 已提交
6299
        """
6300 6301
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
6302
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
6303
        p._sync_with_cpp()
6304
        return p
Y
Yu Yang 已提交
6305

6306
    @staticmethod
6307
    def _construct_from_desc(desc):
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6323 6324
    @property
    def random_seed(self):
Y
yuyang18 已提交
6325
        """
J
Jiabin Yang 已提交
6326
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6327 6328
        the random seed from random device.

L
Ligoml 已提交
6329
        .. note::
6330
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6331 6332 6333

        Returns:
            int64: Random seed in current Program
6334

6335 6336 6337 6338

        Examples:
            .. code-block:: python

6339 6340 6341
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6342

6343 6344 6345
                paddle.enable_static()

                prog = static.default_main_program()
6346
                random_seed = prog.random_seed
6347
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6348 6349 6350
                print(random_seed)
                ## 0
                ## the default random seed is 0
6351

6352
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6353
                prog.random_seed = 1
6354
                z_var = F.dropout(x_var, 0.7)
6355

6356
                print(prog.random_seed)
6357 6358
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6359
        """
D
dzhwinter 已提交
6360 6361
        return self._seed

Q
qiaolongfei 已提交
6362 6363
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6364
        """
6365 6366
        The number of :ref:`api_guide_Block_en`  in this Program.

L
Ligoml 已提交
6367
        .. note::
6368
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6369 6370 6371

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6372

6373 6374 6375 6376

        Examples:
            .. code-block:: python

6377 6378 6379 6380
                import paddle
                import paddle.static as static

                paddle.enable_static()
6381

6382
                prog = static.default_main_program()
6383 6384
                num_blocks = prog.num_blocks
                print(num_blocks)
6385

6386 6387
                # print result:
                # 1
Y
yuyang18 已提交
6388
        """
Q
qiaolongfei 已提交
6389 6390
        return self.desc.num_blocks()

D
dzhwinter 已提交
6391 6392 6393
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6394 6395
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
L
Ligoml 已提交
6396 6397
                % type(seed)
            )
D
dzhwinter 已提交
6398 6399
        self._seed = seed

Y
Yu Yang 已提交
6400
    def __repr__(self):
6401
        return self.__str__()
6402

Y
Yu Yang 已提交
6403
    def global_block(self):
Y
yuyang18 已提交
6404
        """
6405 6406
        .. note::
            This API has no effect in Dygraph mode.
6407 6408 6409

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6410 6411
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6412

6413 6414 6415 6416

        Examples:
            .. code-block:: python

6417 6418 6419 6420
                import paddle
                import paddle.static as static

                paddle.enable_static()
6421

6422
                prog = static.default_main_program()
6423 6424
                gb_block = prog.global_block()
                print(gb_block)
6425

Y
yuyang18 已提交
6426
        """
Y
Yu Yang 已提交
6427 6428
        return self.blocks[0]

Q
Qiao Longfei 已提交
6429
    def block(self, index):
Y
yuyang18 已提交
6430
        """
6431 6432
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6433

6434 6435
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6436 6437
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6438

J
Jiabin Yang 已提交
6439 6440
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6441 6442 6443 6444

        Examples:
            .. code-block:: python

6445 6446 6447 6448
                import paddle
                import paddle.static as static

                paddle.enable_static()
6449

6450
                prog = static.default_main_program()
6451 6452
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6453
        """
Q
Qiao Longfei 已提交
6454 6455
        return self.blocks[index]

Y
Yu Yang 已提交
6456
    def current_block(self):
Y
yuyang18 已提交
6457
        """
6458 6459
        .. note::
            This API has no effect in Dygraph mode.
6460

J
Jiabin Yang 已提交
6461 6462
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6463

J
Jiabin Yang 已提交
6464 6465
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6466

6467 6468 6469
        Examples:
            .. code-block:: python

6470 6471 6472 6473
                import paddle
                import paddle.static as static

                paddle.enable_static()
6474

6475
                prog = static.default_main_program()
6476 6477
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6478
        """
Y
Yu Yang 已提交
6479 6480
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6481
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6482 6483 6484 6485 6486
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6487

Y
yuyang18 已提交
6488 6489 6490 6491 6492
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6493
        new_block_idx = len(self.blocks)
L
Ligoml 已提交
6494 6495 6496 6497 6498
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6499
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6500 6501 6502 6503
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6504
    def _rollback(self):
Y
yuyang18 已提交
6505 6506 6507 6508 6509
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6510 6511
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6512
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6523 6524 6525
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6526
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6527

W
Wu Yi 已提交
6528
    def _copy_param_info_from(self, other):
6529
        """
6530
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6531

Y
yuyang18 已提交
6532 6533 6534
        Notes: This is a very low level API. Users should not invoke it
        directly.

6535 6536 6537 6538 6539 6540 6541
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6542 6543
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
L
Ligoml 已提交
6544 6545
                % type(other)
            )
6546

W
Wu Yi 已提交
6547
        self.global_block()._copy_param_info_from(other.global_block())
6548

6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6560 6561
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
L
Ligoml 已提交
6562 6563
                % type(other)
            )
6564 6565
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6566
        self._parameters_on_pservers = other._parameters_on_pservers
6567
        self._endpoints = other._endpoints
6568
        self._ps_endpoint = other._ps_endpoint
6569 6570
        self._distributed_lookup_table = other._distributed_lookup_table

6571
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6572 6573
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6574

Y
yuyang18 已提交
6575 6576 6577
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6578 6579
        Args:
            other(Program): Other program
6580
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
L
Ligoml 已提交
6581 6582
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6583
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6584 6585 6586 6587 6588

        Returns:
            None
        """
        if not isinstance(other, Program):
6589 6590
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
L
Ligoml 已提交
6591 6592
                % type(other)
            )
F
fengjiayi 已提交
6593

6594 6595
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
L
Ligoml 已提交
6596
                i: i for i in six.moves.range(self.desc.num_blocks())
6597
            }
6598 6599 6600

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6601 6602
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6603
            for var in list(block.vars.values()):
6604 6605 6606 6607 6608 6609 6610
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6611

6612
    def list_vars(self):
Y
yuyang18 已提交
6613
        """
6614
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6615

J
Jiabin Yang 已提交
6616
        Returns:
6617
            iterable Tensors: The Generator will yield every Tensor in this program.
6618 6619 6620 6621

        Examples:
            .. code-block:: python

6622 6623
                import paddle
                import paddle.static as static
6624

6625 6626 6627 6628 6629
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6630 6631
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6632

6633 6634
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6635
        """
6636
        for each_block in self.blocks:
6637
            for each_var in list(each_block.vars.values()):
6638 6639
                yield each_var

6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6650 6651 6652 6653
                import paddle
                import paddle.static as static

                paddle.enable_static()
6654

6655 6656
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6657
                hidden = static.nn.fc(x=data, size=10)
6658 6659
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6660 6661 6662 6663 6664 6665 6666

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6667 6668
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6679 6680 6681 6682 6683 6684 6685 6686 6687
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
L
Ligoml 已提交
6688 6689 6690
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6691 6692
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
L
Ligoml 已提交
6693
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6721
        # can not be imported at the begainning of this file.
6722 6723
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
L
Ligoml 已提交
6724

6725 6726
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
L
Ligoml 已提交
6727 6728 6729 6730
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6731 6732 6733 6734 6735

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6736 6737
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
L
Ligoml 已提交
6738 6739 6740
                    type(mode)
                )
            )
6741 6742 6743 6744 6745

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
L
Ligoml 已提交
6746 6747 6748 6749 6750
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
L
Ligoml 已提交
6769 6770 6771 6772
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6773 6774 6775 6776 6777 6778 6779 6780

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
L
Ligoml 已提交
6781 6782 6783 6784
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6785 6786 6787 6788 6789 6790
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
L
Ligoml 已提交
6791
        Set parameters and persistable buffers in state_dict to program.
6792
        An exception will throw if shape or dtype of the parameters is not match.
L
Ligoml 已提交
6793

6794 6795 6796 6797
        .. note::
            This function MUST called after run start_up_program

        Args:
L
Ligoml 已提交
6798
            state_dict(dict): the dict store parameters and persistable buffers.
6799 6800
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
L
Ligoml 已提交
6801
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6802 6803
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
L
Ligoml 已提交
6804

6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
L
Ligoml 已提交
6834 6835 6836
                    type(state_dict)
                )
            )
6837 6838

        vars_dict = {var.name: var for var in self.list_vars()}
L
Ligoml 已提交
6839 6840 6841
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
L
Ligoml 已提交
6853 6854
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6855 6856
                except TypeError as err:
                    warnings.warn(
L
Ligoml 已提交
6857 6858
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6859
            else:
6860
                warnings.warn(
L
Ligoml 已提交
6861 6862 6863 6864 6865 6866
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6867

Y
Yu Yang 已提交
6868

6869
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6870
class Parameter(Variable):
6871
    """
6872
    Parameter is derived from Variable. A parameter is a persistable
6873
    Variable, and will be updated by optimizers after each iteration.
6874
    The training of a neural network is essentially the updating of
6875 6876
    its parameters.

6877
    Relative to a general Variable, a Parameter has several its own
6878 6879
    member variables:

6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
L
Ligoml 已提交
6890
        need_clip (bool): Whether the parameter gradient need to be cliped
6891
            in optimizer. Default is True.
6892 6893
    """

L
Ligoml 已提交
6894 6895 6896 6897 6898 6899 6900 6901
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        **kwargs
    ):
6902 6903 6904 6905 6906
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6907
        if len(shape) == 0:
6908
            raise ValueError(
L
Ligoml 已提交
6909 6910
                "The dimensions of shape for Parameter must be greater than 0"
            )
Y
Yu Yang 已提交
6911 6912 6913

        for each in shape:
            if each < 0:
6914 6915
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
L
Ligoml 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs
        )
Y
Yu Yang 已提交
6928 6929 6930 6931
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6932 6933
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6934
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6935

6936 6937
        self.need_clip = kwargs.get('need_clip', True)

6938 6939
        self.is_distributed = False

6940 6941
        self.is_parameter = True

F
fengjiayi 已提交
6942
    def __str__(self):
6943
        return self._to_readable_code()
F
fengjiayi 已提交
6944

F
update  
fengjiayi 已提交
6945 6946 6947
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6948

F
update  
fengjiayi 已提交
6949 6950 6951 6952 6953 6954 6955 6956
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6957 6958 6959 6960 6961 6962 6963 6964 6965
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6966
        """
6967
        assert isinstance(throw_on_error, bool) and isinstance(
L
Ligoml 已提交
6968 6969
            with_details, bool
        )
F
update  
fengjiayi 已提交
6970 6971
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
L
Ligoml 已提交
6972 6973 6974 6975 6976 6977 6978
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6979
            for attr_name in additional_attr:
L
Ligoml 已提交
6980 6981 6982 6983
                res_str += "%s: %s\n" % (
                    attr_name,
                    cpt.to_text(getattr(self, attr_name)),
                )
F
update  
fengjiayi 已提交
6984 6985
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6986 6987 6988 6989
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6990

6991 6992
class ParamBase(core.VarBase):
    """
L
Ligoml 已提交
6993 6994
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6995
    after each iteration.
6996 6997 6998
    The training of a neural network is essentially the updating of
    its ParamBase.

6999
    Relative to a general Tensor, a ParamBase has several its own
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
L
Ligoml 已提交
7012
        need_clip (bool): Whether the parameter gradient need to be cliped
7013
            in optimizer. Default is True.
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
L
Ligoml 已提交
7025 7026
                "The dimensions of shape for Parameter must be greater than 0"
            )
7027 7028 7029 7030 7031

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
L
Ligoml 已提交
7032 7033
                    % list(shape)
                )
7034 7035 7036 7037 7038 7039 7040

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

L
Ligoml 已提交
7041 7042 7043 7044 7045 7046 7047
        super(ParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7048

7049 7050
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7051 7052 7053 7054 7055 7056 7057

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7058 7059
        self.need_clip = kwargs.get('need_clip', True)

7060
        self.is_distributed = kwargs.get('is_distributed', False)
7061
        # self.block = default_main_program().global_block()
7062

7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
L
Ligoml 已提交
7074 7075
                type(trainable),
            )
7076

7077
    def __str__(self):
7078
        """
7079
        Convert a ParamBase object to a readable string.
7080

7081
        Returns(str): A readable string.
7082 7083 7084 7085

        Examples:
            .. code-block:: python

7086
                import paddle
7087 7088 7089 7090 7091 7092 7093
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7094
        """
7095
        return "Parameter containing:\n{tensor}".format(
L
Ligoml 已提交
7096 7097
            tensor=super(ParamBase, self).__str__()
        )
7098

7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7110

7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7129 7130 7131 7132
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7133 7134 7135 7136 7137 7138
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7139
    _core_eager_eagertensor = core.eager.Tensor
7140 7141 7142 7143 7144 7145
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
L
Ligoml 已提交
7146 7147
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
L
Ligoml 已提交
7165
        need_clip (bool): Whether the parameter gradient need to be cliped
7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
L
Ligoml 已提交
7178 7179
                "The dimensions of shape for Parameter must be greater than 0"
            )
7180 7181 7182 7183 7184

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
L
Ligoml 已提交
7185 7186
                    % list(shape)
                )
7187 7188 7189 7190 7191 7192 7193

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7194 7195 7196
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

L
Ligoml 已提交
7197 7198 7199 7200 7201 7202 7203
        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7218 7219 7220
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7221 7222

    def set_init_func(self, obj):
7223
        self._init_func = obj
7224 7225 7226

    @dygraph_only
    def initialize(self):
L
Ligoml 已提交
7227 7228 7229
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7230
        self._init_func()
7231
        # clear function handle to release resource
7232
        self._init_func = None
7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
L
Ligoml 已提交
7245 7246
                type(trainable),
            )
7247

7248 7249 7250 7251
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
L
Ligoml 已提交
7252 7253 7254
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7255 7256
        self._init_op_creator(block)

7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
L
Ligoml 已提交
7276 7277
            tensor=super(EagerParamBase, self).__str__()
        )
7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7313 7314
        return new_param

7315 7316 7317
    __repr__ = __str__


Y
Yu Yang 已提交
7318
# program is a global instance.
Y
Yu Yang 已提交
7319 7320
_main_program_ = Program()
_startup_program_ = Program()
7321
_startup_program_._is_start_up_program_ = True
7322

7323

7324
def default_startup_program():
Y
Yu Yang 已提交
7325
    """
Y
yuyang18 已提交
7326 7327
    Get default/global startup program.

7328
    The :code:`paddle.nn` function will append the initialization operators into startup program.
L
Ligoml 已提交
7329
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7330

7331 7332
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7333

7334 7335
    Returns:
        Program: current default startup program.
7336

L
Ligoml 已提交
7337
    Returns type:
7338 7339 7340 7341

    Examples:
        .. code-block:: python

7342
            import paddle
7343

7344
            paddle.enable_static()
7345 7346 7347 7348
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7349
    """
Y
Yu Yang 已提交
7350
    return _startup_program_
7351

7352

7353
def default_main_program():
Y
Yu Yang 已提交
7354
    """
L
Ligoml 已提交
7355
    This API can be used to get ``default main program`` which store the
7356
    descriptions of Ops and tensors.
T
tangwei12 已提交
7357

L
Ligoml 已提交
7358 7359
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7360

L
Ligoml 已提交
7361
    The ``default main program`` is the default value for ``Program`` parameter in
7362
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7363
    :code:`default_main_program` when the program is not specified.
7364

7365
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7366

Y
Yu Yang 已提交
7367
    Returns:
7368
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7369 7370 7371 7372

    Examples:
        ..  code-block:: python

7373
            import paddle
7374

7375
            paddle.enable_static()
7376
            # Sample Network:
7377 7378 7379
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7380

7381 7382 7383
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7384
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7385
    """
Y
Yu Yang 已提交
7386
    return _main_program_
Y
Yu Yang 已提交
7387 7388 7389 7390 7391


def switch_main_program(program):
    """
    Switch the main program to a new program.
7392

Y
Yu Yang 已提交
7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7407
    Switch the startup program to a new program
Y
Yu Yang 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7420
@signature_safe_contextmanager
Y
Yu Yang 已提交
7421 7422
def program_guard(main_program, startup_program=None):
    """
7423 7424
    :api_attr: Static Graph

7425 7426 7427
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7428

G
guofei 已提交
7429
    Args:
7430
        main_program(Program): New main program inside ``with`` statement.
L
Ligoml 已提交
7431 7432
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7433 7434 7435
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7436
    Examples:
7437
       .. code-block:: python
T
tangwei12 已提交
7438

7439
          import paddle
Y
yuyang18 已提交
7440

7441 7442 7443 7444 7445
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7446
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7447 7448 7449

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7450

Y
Yu Yang 已提交
7451
    Examples:
7452
       .. code-block:: python
Y
yuyang18 已提交
7453

7454
          import paddle
7455

7456 7457 7458 7459 7460
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7461

Y
Yu Yang 已提交
7462
    """
7463
    from .data_feeder import check_type
L
Ligoml 已提交
7464 7465 7466 7467

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7468 7469
    main_program = switch_main_program(main_program)
    if startup_program is not None:
L
Ligoml 已提交
7470 7471 7472 7473 7474 7475
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7476 7477
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7478
        startup_program = switch_startup_program(startup_program)
7479 7480 7481 7482 7483 7484
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7485 7486


W
Wu Yi 已提交
7487
def _get_var(name, program=None):
X
xuwei06 已提交
7488
    """
Y
yuyang18 已提交
7489
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7490

X
xuwei06 已提交
7491 7492 7493
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7494
        If None, default_global_program() will be used.
X
xuwei06 已提交
7495 7496 7497 7498 7499 7500 7501

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7502
    assert isinstance(program, Program)
X
xuwei06 已提交
7503 7504

    return program.global_block().var(name)
7505 7506


S
rename  
sneaxiy 已提交
7507
@signature_safe_contextmanager
L
lujun 已提交
7508 7509
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7510
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7511
    _dygraph_tracer_ = tracer
7512
    core._switch_tracer(tracer)
M
minqiyang 已提交
7513

7514 7515 7516
    try:
        yield
    finally:
7517 7518
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7519 7520


S
rename  
sneaxiy 已提交
7521
@signature_safe_contextmanager
L
lujun 已提交
7522
def _dygraph_place_guard(place):
7523 7524 7525
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7526 7527
    _set_dygraph_tracer_expected_place(place)

7528 7529 7530
    try:
        yield
    finally:
7531
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7532
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7533 7534


7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
L
Ligoml 已提交
7545

7546 7547
    Note:
        The API only supports static mode.
7548 7549 7550 7551

    A context manager that specifies the device on which the OP will be placed.

    Args:
7552
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
L
Ligoml 已提交
7553
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7554 7555 7556 7557 7558 7559 7560
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
L
Ligoml 已提交
7561

7562
        .. code-block:: python
L
Ligoml 已提交
7563

7564
            # required: gpu
Z
Zhang Ting 已提交
7565
            import paddle
7566

Z
Zhang Ting 已提交
7567 7568 7569
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7570
            if support_gpu:
Z
Zhang Ting 已提交
7571
                place = paddle.CUDAPlace(0)
7572 7573

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7574 7575 7576
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7577

Z
Zhang Ting 已提交
7578
            with paddle.static.device_guard("cpu"):
7579
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7580 7581
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7582
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7583
                out = paddle.reshape(data1, shape=shape)
7584

Z
Zhang Ting 已提交
7585 7586
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7587 7588 7589
            result = exe.run(fetch_list=[out])
    """

7590 7591 7592 7593 7594
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7595
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7596
        raise ValueError(
7597
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
L
Ligoml 已提交
7598 7599
            "when there is no need to specify device. But received %s" % device
        )
7600 7601
    if index:
        device = ":".join([device, index])
7602
    pre_device = switch_device(device)
7603 7604 7605 7606
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7607 7608


7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
L
Ligoml 已提交
7629 7630
    assert (
        not _non_static_mode()
7631
    ), "cuda_graph_guard only works under static mode"
L
Ligoml 已提交
7632 7633
    assert (
        core.is_compiled_with_cuda()
7634 7635 7636 7637 7638 7639 7640 7641
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7642 7643 7644
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7645
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7646 7647 7648 7649 7650 7651 7652

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7653 7654
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7655 7656 7657 7658
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7659 7660
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7661 7662
        else:
            raise ValueError(
L
Ligoml 已提交
7663 7664
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7665 7666 7667 7668 7669


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7670
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7671 7672 7673 7674 7675 7676 7677 7678 7679 7680

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7681
            import paddle
G
guofei 已提交
7682 7683

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7684
            res = paddle.get_flags(flags)
G
guofei 已提交
7685 7686 7687 7688 7689 7690
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
L
Ligoml 已提交
7691
            if _global_flags().is_public(key):
7692
                value = _global_flags()[key]
G
guofei 已提交
7693 7694 7695 7696
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
L
Ligoml 已提交
7697 7698 7699
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7700
    elif isinstance(flags, str):
L
Ligoml 已提交
7701
        if _global_flags().is_public(flags):
7702
            value = _global_flags()[flags]
G
guofei 已提交
7703 7704 7705 7706
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
L
Ligoml 已提交
7707 7708
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7709 7710 7711
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7712 7713 7714 7715 7716 7717


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
L
Ligoml 已提交
7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7732 7733 7734 7735
        return place

    if not isinstance(place, str):
        raise ValueError(
L
Ligoml 已提交
7736 7737
            "place only support string which is 'Place' and so on."
        )
7738 7739

    place = place.lower()
L
Ligoml 已提交
7740
    if place == "cpu":
7741
        return core.CPUPlace()
7742

L
Ligoml 已提交
7743
    if place == "device":
7744 7745
        return core.Place()

7746
    # GPU
7747 7748 7749 7750
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
L
Ligoml 已提交
7751 7752 7753
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7754 7755 7756 7757 7758 7759 7760 7761 7762
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7763 7764

    # XPU
7765 7766 7767 7768
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
L
Ligoml 已提交
7769 7770 7771
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7772 7773 7774 7775
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7776 7777 7778 7779 7780 7781

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
L
Ligoml 已提交
7782 7783 7784
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7785 7786 7787 7788 7789
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7790 7791 7792 7793 7794
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
L
Ligoml 已提交
7795 7796 7797
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7798 7799 7800 7801 7802
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7803 7804 7805 7806 7807
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
L
Ligoml 已提交
7808 7809 7810
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7811 7812 7813 7814 7815
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7816
    raise ValueError(
L
Ligoml 已提交
7817 7818 7819 7820
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret