graph_pattern_detector.cc 177.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
16

17
#include "paddle/fluid/framework/ir/graph_traits.h"
18
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
C
chengduo 已提交
19
#include "paddle/fluid/framework/operator.h"
20
#include "paddle/fluid/platform/enforce.h"
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/string/pretty_log.h"
22

23 24 25 26
namespace paddle {
namespace framework {
namespace ir {

27 28
size_t PDPattern::id_ = 0UL;

29 30 31 32 33 34
#ifdef PADDLE_WITH_TENSORRT
namespace patterns {
thread_local std::unordered_map<std::string, size_t> KeyCounter::dic_;
}
#endif

C
chengduo 已提交
35
PDNode *PDPattern::NewNode(const std::string &name) {
Y
Yan Chunwei 已提交
36
  if (!name.empty()) {
37
    PADDLE_ENFORCE_EQ(
38 39
        node_map_.count(name),
        0UL,
40 41
        platform::errors::PreconditionNotMet(
            "PDNode's name should be unique, get duplicate [%s]", name));
Y
Yan Chunwei 已提交
42 43 44
  }

  nodes_.emplace_back(new PDNode(this, name));
C
chengduo 已提交
45
  auto *cur = nodes_.back().get();
Y
Yan Chunwei 已提交
46 47 48 49
  node_map_[name] = cur;
  return cur;
}

C
chengduo 已提交
50
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
51
  if (!name.empty()) {
52
    PADDLE_ENFORCE_EQ(
53 54
        node_map_.count(name),
        0UL,
55 56
        platform::errors::PreconditionNotMet(
            "PDNode's name should be unique, get duplicate [%s]", name));
57 58
  }

59
  nodes_.emplace_back(new PDNode(std::move(teller), this, name));
C
chengduo 已提交
60
  auto *cur = nodes_.back().get();
61
  node_map_[name] = cur;
62 63 64
  return cur;
}

C
chengduo 已提交
65
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
66 67 68 69 70 71 72 73
  auto it = node_map_.find(id);
  if (it == node_map_.end()) {
    return nullptr;
  }

  return it->second;
}

C
chengduo 已提交
74
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
75 76 77 78
  PADDLE_ENFORCE_NOT_NULL(
      a, platform::errors::NotFound("PDNode %s is not found.", a->name()));
  PADDLE_ENFORCE_NOT_NULL(
      b, platform::errors::NotFound("PDNode %s is not found.", b->name()));
79 80
  PADDLE_ENFORCE_NE(a,
                    b,
81 82
                    platform::errors::PermissionDenied(
                        "Cannot connect the same node in the graph."));
83 84 85
  edges_.emplace_back(a, b);
}

C
chengduo 已提交
86
void GraphPatternDetector::operator()(Graph *graph,
87
                                      GraphPatternDetector::handle_t handler) {
88 89 90
  if (!MarkPDNodesInGraph(*graph)) {
    return;
  }
91 92
  auto subgraphs = DetectPatterns();
  UniquePatterns(&subgraphs);
Z
Zhang Ting 已提交
93
  SortSubgraphs(&subgraphs);
94
  RemoveOverlappedMatch(&subgraphs);
Y
Yan Chunwei 已提交
95
  ValidateByNodeRole(&subgraphs);
96

Y
Yan Chunwei 已提交
97
  if (subgraphs.empty()) return;
98
  int id = 0;
C
chengduo 已提交
99
  for (auto &g : subgraphs) {
M
minqiyang 已提交
100
    VLOG(3) << "optimizing #" << id++ << " subgraph";
101 102 103 104
    handler(g, graph);
  }
}

C
chengduo 已提交
105
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
M
minqiyang 已提交
106
  VLOG(3) << "mark pdnodes in graph";
107 108
  if (graph.Nodes().empty()) return false;

C
chengduo 已提交
109
  for (auto &node : GraphTraits::DFS(graph)) {
110
    if (node.Name().rfind("__control_var") == 0) continue;
C
chengduo 已提交
111
    for (const auto &pdnode : pattern_.nodes()) {
112
      if (pdnode->Tell(&node)) {
113 114
        VLOG(4) << "Node " << node.Name() << "(" << node.id() << ")"
                << " marked as " << pdnode->name();
115 116 117 118
        pdnodes2nodes_[pdnode.get()].insert(&node);
      }
    }
  }
Y
Yan Chunwei 已提交
119
  // Check to early stop if some PDNode can't find matched Node.
C
chengduo 已提交
120
  for (auto &pdnode : pattern_.nodes()) {
Y
Yan Chunwei 已提交
121
    if (!pdnodes2nodes_.count(pdnode.get())) {
M
minqiyang 已提交
122
      VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
Y
Yan Chunwei 已提交
123
      // return false;
Y
Yan Chunwei 已提交
124 125
    }
  }
M
minqiyang 已提交
126
  VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
127

128 129 130
  return !pdnodes2nodes_.empty();
}

Y
Yan Chunwei 已提交
131
// The intermediate Nodes can only link to the nodes inside the pattern, or this
T
tianshuo78520a 已提交
132
// subgraph will be dropped.
Y
Yan Chunwei 已提交
133
void GraphPatternDetector::ValidateByNodeRole(
C
chengduo 已提交
134
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
Y
Yan Chunwei 已提交
135 136 137 138
  std::vector<GraphPatternDetector::subgraph_t> result;

  subgraphs->erase(
      std::remove_if(
139 140
          subgraphs->begin(),
          subgraphs->end(),
C
chengduo 已提交
141
          [](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
Y
Yan Chunwei 已提交
142
            // Collect the inputs and outputs.
143
            std::set<Node *> ios;
C
chengduo 已提交
144
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
145 146 147 148
              if (!item.first->IsIntermediate()) {
                ios.insert(item.second);
              }
            }
C
chengduo 已提交
149
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
150
              if (item.first->IsIntermediate()) {
C
chengduo 已提交
151
                for (auto *x : item.second->inputs) {
Y
Yan Chunwei 已提交
152 153 154 155
                  if (!ios.count(x)) {
                    return true;
                  }
                }
C
chengduo 已提交
156
                for (auto *x : item.second->outputs) {
Y
Yan Chunwei 已提交
157 158 159 160 161 162 163 164 165 166 167
                  if (!ios.count(x)) {
                    return true;
                  }
                }
              }
            }
            return false;
          }),
      subgraphs->end());
}

168
struct HitGroup {
169
  std::map<PDNode *, Node *> roles;
170

C
chengduo 已提交
171
  bool Match(Node *node, PDNode *pat) {
172
    if (nodes_.count(node)) {
T
Tao Luo 已提交
173 174 175 176 177
      if (roles.count(pat) && roles[pat] == node) return true;
      return false;
    } else {
      if (roles.count(pat) && roles[pat] != node) return false;
      return true;
178
    }
179 180
  }

C
chengduo 已提交
181
  void Register(Node *node, PDNode *pat) {
182 183 184 185 186
    roles[pat] = node;
    nodes_.insert(node);
  }

 private:
187
  std::set<Node *> nodes_;
188 189 190
};

// Tell whether Node a links to b.
C
chengduo 已提交
191 192
bool IsNodesLink(Node *a, Node *b) {
  for (auto *node : a->outputs) {
193 194 195 196 197 198 199
    if (b == node) {
      return true;
    }
  }
  return false;
}

200 201
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
202
  // Init empty subgraphs.
203
  std::vector<GraphPatternDetector::subgraph_t> result;
204
  std::vector<HitGroup> init_groups;
205
  std::array<std::vector<HitGroup>, 2> bi_records;
C
chengduo 已提交
206
  auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
207
                                               : pattern_.edges().front().first;
208
  if (!pdnodes2nodes_.count(first_pnode)) return result;
C
chengduo 已提交
209
  for (auto *node : pdnodes2nodes_[first_pnode]) {
210 211 212 213 214 215 216 217 218 219
    HitGroup group;
    group.roles[first_pnode] = node;
    init_groups.emplace_back(group);
  }

  int step = 0;
  bi_records[0] = std::move(init_groups);

  // Extend a PDNode to subgraphs by deducing the connection relations defined
  // in edges of PDNodes.
C
chengduo 已提交
220
  for (const auto &edge : pattern_.edges()) {
M
minqiyang 已提交
221
    VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name();
Y
Yan Chunwei 已提交
222
    // TODO(Superjomn) Fix bug here, the groups might be duplicate here.
223 224
    // Each role has two PDNodes, which indicates two roles.
    // Detect two Nodes that can match these two roles and they are connected.
C
chengduo 已提交
225 226
    auto &pre_groups = bi_records[step % 2];
    auto &cur_groups = bi_records[1 - (step++ % 2)];
227
    cur_groups.clear();
228
    if (pre_groups.empty()) break;
229
    // source -> target
C
chengduo 已提交
230 231
    for (Node *source : pdnodes2nodes_[edge.first]) {
      for (Node *target : pdnodes2nodes_[edge.second]) {
232 233
        VLOG(8) << "check " << source->Name() << "(" << source->id() << ")"
                << " -- " << target->Name() << "(" << target->id() << ")";
234
        // TODO(Superjomn) add some prune strategies.
C
chengduo 已提交
235
        for (const auto &group : pre_groups) {
T
Tao Luo 已提交
236 237 238 239 240 241
          if (IsNodesLink(source, target)) {
            HitGroup new_group = group;
            bool flag = new_group.Match(source, edge.first) &&
                        new_group.Match(target, edge.second);
            if (flag) {
              new_group.Register(source, edge.first);
242 243 244 245 246 247 248 249
              new_group.Register(target, edge.second);
              cur_groups.push_back(new_group);
              // TODO(Superjomn) need to unique
            }
          }
        }
      }
    }
M
minqiyang 已提交
250
    VLOG(3) << "step " << step << " get records: " << cur_groups.size();
C
chengduo 已提交
251 252
    for (auto &group : cur_groups) {
      for (auto &item : group.roles) {
253 254 255
        VLOG(4) << "node " << item.second->Name() << "(" << item.second->id()
                << ")"
                << " as " << item.first->name();
Y
Yan Chunwei 已提交
256
      }
M
minqiyang 已提交
257
      VLOG(4) << "=========================================================";
Y
Yan Chunwei 已提交
258
    }
259 260
  }

C
chengduo 已提交
261
  for (auto &group : bi_records[step % 2]) {
262
    GraphPatternDetector::subgraph_t subgraph;
C
chengduo 已提交
263
    for (auto &role : group.roles) {
264 265 266 267 268 269 270
      subgraph.emplace(role.first, role.second);
    }
    result.emplace_back(subgraph);
  }
  return result;
}

Y
Yan Chunwei 已提交
271 272
struct GraphItemLessThan {
  bool operator()(const std::pair<PDNode *, Node *> &a,
Y
Yan Chunwei 已提交
273
                  const std::pair<PDNode *, Node *> &b) {
Y
Yan Chunwei 已提交
274 275 276 277 278
    if (a.first != b.first) {
      return a.first < b.first;
    } else {
      return a.second < b.second;
    }
Y
Yan Chunwei 已提交
279
  }
Y
Yan Chunwei 已提交
280
};
Y
Yan Chunwei 已提交
281

282 283
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
284
void GraphPatternDetector::UniquePatterns(
C
chengduo 已提交
285
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
286
  if (subgraphs->empty()) return;
287
  std::vector<GraphPatternDetector::subgraph_t> result;
288

289
  std::set<size_t> set;
Y
Yan Chunwei 已提交
290
  std::hash<std::string> hasher;
C
chengduo 已提交
291
  for (auto &g : *subgraphs) {
Y
Yan Chunwei 已提交
292 293
    // Sort the items in the sub-graph, and transform to a string key.
    std::vector<std::pair<PDNode *, Node *>> sorted_keys(g.begin(), g.end());
Y
Yan Chunwei 已提交
294
    std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan());
Y
Yan Chunwei 已提交
295 296 297
    std::stringstream ss;
    for (auto &item : sorted_keys) {
      ss << item.first << ":" << item.second;
298
    }
Y
Yan Chunwei 已提交
299
    auto key = hasher(ss.str());
300 301 302 303 304 305 306 307
    if (!set.count(key)) {
      result.emplace_back(g);
      set.insert(key);
    }
  }
  *subgraphs = result;
}

Z
Zhang Ting 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
void GraphPatternDetector::SortSubgraphs(
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
  if (subgraphs->empty()) return;
  bool has_bn_add_act = false;
  for (auto &subgraph : *subgraphs) {
    for (auto &item : subgraph) {
      if (item.first->name().find("bn_add_act") != std::string::npos) {
        has_bn_add_act = true;
        break;
      }
    }
  }
  if (!has_bn_add_act) {
    return;
  }

  std::sort(
325 326
      subgraphs->begin(),
      subgraphs->end(),
Z
Zhang Ting 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
      [](const GraphPatternDetector::subgraph_t &a,
         const GraphPatternDetector::subgraph_t &b) {
        for (auto &item : a) {
          if (item.first->name().find("bn_add_act") != std::string::npos &&
              item.first->name().find("bn_reserve_space") !=
                  std::string::npos) {
            auto it_b = b.find(item.first);
            if (it_b != b.end()) {
              if (item.second->Name() != it_b->second->Name()) {
                return item.second->Name() < it_b->second->Name();
              } else {
                return false;
              }
            } else {
              return false;
            }
          }
        }
        return false;
      });
}

349
void GraphPatternDetector::RemoveOverlappedMatch(
C
chengduo 已提交
350
    std::vector<subgraph_t> *subgraphs) {
351
  std::vector<subgraph_t> result;
352
  std::set<Node *> node_set;
353

C
chengduo 已提交
354
  for (const auto &subgraph : *subgraphs) {
355
    bool valid = true;
C
chengduo 已提交
356
    for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
357
      if (item.first->IsIntermediate() && node_set.count(item.second)) {
358 359 360 361 362
        valid = false;
        break;
      }
    }
    if (valid) {
C
chengduo 已提交
363
      for (auto &item : subgraph) {
364 365 366 367 368 369 370 371
        node_set.insert(item.second);
      }
      result.push_back(subgraph);
    }
  }
  *subgraphs = result;
}

372 373 374 375 376
std::string PDPattern::DotString() const {
  using inference::analysis::Dot;
  Dot dot;
  int id = 0;
  // Create Nodes
C
chengduo 已提交
377 378
  std::unordered_map<PDNode *, std::string> node2dot;
  for (const auto &node : nodes()) {
379 380 381 382 383
    std::string node_id = "Node" + std::to_string(id++);
    dot.AddNode(node_id, {}, node->name());
    node2dot[node.get()] = node_id;
  }
  // Create Edges
C
chengduo 已提交
384
  for (const auto &edge : edges()) {
385 386 387
    if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
      continue;
    }
C
chengduo 已提交
388 389
    auto &src = node2dot.at(edge.first);
    auto &trg = node2dot.at(edge.second);
390 391 392 393 394
    dot.AddEdge(src, trg, {});
  }
  return dot.Build();
}

C
chengduo 已提交
395
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
396
  // extend outlinks.
C
chengduo 已提交
397
  for (PDNode *x : others) {
398 399 400 401 402
    pattern_->AddEdge(this, x);
  }
  return *this;
}

C
chengduo 已提交
403
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
404
  // extend outlinks.
C
chengduo 已提交
405
  for (PDNode *x : others) {
406 407 408 409 410
    pattern_->AddEdge(x, this);
  }
  return *this;
}

C
chengduo 已提交
411 412
PDNode *PDNode::assert_is_op() {
  asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
Y
Yan Chunwei 已提交
413 414
  return this;
}
C
chengduo 已提交
415 416 417

PDNode *PDNode::assert_is_op(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
Y
Yan Chunwei 已提交
418 419 420 421
    return x && x->IsOp() && x->Op()->Type() == op_type;
  });
  return this;
}
C
chengduo 已提交
422

S
shentanyue 已提交
423 424 425 426 427 428 429
PDNode *PDNode::assert_is_not_op_type(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
    return x && x->IsOp() && x->Op()->Type() != op_type;
  });
  return this;
}

C
chengduo 已提交
430 431 432 433 434
PDNode *PDNode::assert_is_var() {
  asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
  return this;
}

Z
Zhen Wang 已提交
435 436 437 438 439 440 441
PDNode *PDNode::assert_var_dtype(proto::VarType::Type dtype) {
  assert_is_var();
  asserts_.emplace_back(
      [dtype](Node *x) { return x->Var()->GetDataType() == dtype; });
  return this;
}

C
chengduo 已提交
442 443
PDNode *PDNode::assert_is_not_ctrl_var() {
  asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
Y
Yan Chunwei 已提交
444 445
  return this;
}
C
chengduo 已提交
446 447

PDNode *PDNode::assert_var_not_persistable() {
Y
Yan Chunwei 已提交
448
  assert_is_var();
C
chengduo 已提交
449
  asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
450 451
  return this;
}
C
chengduo 已提交
452 453

PDNode *PDNode::assert_is_persistable_var() {
Y
Yan Chunwei 已提交
454
  assert_is_var();
455 456
  asserts_.emplace_back(
      [=](Node *x) { return x->Var() && x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
457 458
  return this;
}
C
chengduo 已提交
459 460

PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
461 462
                                       const std::string &argument,
                                       int nth) {
Y
Yan Chunwei 已提交
463 464
  assert_is_var();
  assert_is_op_input(op_type);
C
chengduo 已提交
465 466
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
467 468 469
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthInput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
470 471 472 473 474
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
475 476

PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
477 478
                                        const std::string &argument,
                                        int nth) {
Y
Yan Chunwei 已提交
479
  assert_is_var();
C
chengduo 已提交
480 481
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
482 483 484
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthOutput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
485 486 487 488 489
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
490 491

PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
492
  assert_is_var();
C
chengduo 已提交
493 494
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
495 496 497 498 499 500 501 502 503
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
504 505

PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
506
  assert_is_var();
C
chengduo 已提交
507 508
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
509 510 511 512 513 514 515 516 517
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
518 519

PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
Y
Yan Chunwei 已提交
520
  assert_is_var();
C
chengduo 已提交
521 522
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
523 524 525 526 527 528 529 530
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
531 532 533

PDNode *PDNode::assert_is_op_output(const std::string &op_type,
                                    const std::string &argument) {
534 535 536 537
  assert_is_var();
  assert_is_op_nth_output(op_type, argument, 0);
  return this;
}
Z
Zhen Wang 已提交
538

C
chengduo 已提交
539
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
Y
Yan Chunwei 已提交
540
  assert_is_var();
C
chengduo 已提交
541 542
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
543 544 545 546 547 548 549 550
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
551

Z
Zhen Wang 已提交
552 553 554 555 556 557 558 559 560 561
PDNode *PDNode::assert_is_not_op_input(const std::string &argument) {
  assert_is_op();
  asserts_.emplace_back([=](Node *x) {
    auto &ins = x->Op()->Inputs();
    auto iter = ins.find(argument);
    return iter == ins.end() || iter->second.empty();
  });
  return this;
}

C
chengduo 已提交
562 563
PDNode *PDNode::assert_is_op_input(const std::string &op_type,
                                   const std::string &argument) {
564 565 566 567
  assert_is_var();
  assert_is_op_nth_input(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
568 569

PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
570
  assert_is_op(op_type);
C
chengduo 已提交
571
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
Y
Yan Chunwei 已提交
572 573
  return this;
}
C
chengduo 已提交
574 575

PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
576
  assert_is_op(op_type);
C
chengduo 已提交
577
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
Y
Yan Chunwei 已提交
578 579
  return this;
}
C
chengduo 已提交
580

581 582 583 584 585 586 587 588 589 590
PDNode *PDNode::assert_has_n_inputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
  return this;
}

PDNode *PDNode::assert_has_n_outputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
  return this;
}

C
chengduo 已提交
591
PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
Y
Yan Chunwei 已提交
592 593 594 595
  asserts_.emplace_back(std::move(teller));
  return this;
}

C
chengduo 已提交
596 597 598 599 600 601 602 603 604
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
  asserts_.emplace_back([op_types](Node *x) {
    return x && x->IsOp() && op_types.count(x->Op()->Type());
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_input(
    const std::unordered_set<std::string> &op_types,
605 606
    const std::string &argument,
    int nth) {
C
chengduo 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
  assert_is_var();
  assert_is_ops_input(op_types);
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthInput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_output(
    const std::unordered_set<std::string> &op_types,
622 623
    const std::string &argument,
    int nth) {
C
chengduo 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthOutput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}
PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_output(op_types, argument, 0);
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_input(op_types, argument, 0);
  return this;
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
PDNode *PDNode::assert_is_only_input_of_ops(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type()) &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_only_output_of_ops(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type()) &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}

C
chengduo 已提交
709 710
bool VarLinksToOp(Node *node, const std::string &op_type) {
  for (auto *out : node->outputs) {
711 712 713 714 715 716
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}
C
chengduo 已提交
717 718

bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
719
  PADDLE_ENFORCE_EQ(
720 721
      var->IsVar(),
      true,
722 723 724
      platform::errors::InvalidArgument(
          "First parameter of function IsNthInput must be Node::Var"));
  PADDLE_ENFORCE_EQ(
725 726
      op->IsOp(),
      true,
727 728
      platform::errors::InvalidArgument(
          "Second parameter of function IsNthInput must be Node::Op"));
729 730
  if (!HasInput(op, argument) || op->Op()->Input(argument).size() <= nth)
    return false;
731 732
  return var->Name() == op->Op()->Input(argument)[nth];
}
C
chengduo 已提交
733

734
bool HasInput(Node *op, const std::string &argument) {
735
  PADDLE_ENFORCE_EQ(
736 737
      op->IsOp(),
      true,
738 739
      platform::errors::InvalidArgument(
          "First parameter of function HasInput must be Node::Op"));
740 741 742 743 744 745
  auto const &names = op->Op()->InputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

746 747
bool HasOutput(Node *op, const std::string &argument) {
  PADDLE_ENFORCE_EQ(
748 749
      op->IsOp(),
      true,
750
      platform::errors::InvalidArgument(
751
          "First parameter of function HasOutput must be Node::Op"));
752 753 754 755 756 757
  auto const &names = op->Op()->OutputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

C
chengduo 已提交
758
bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
759
  PADDLE_ENFORCE_EQ(
760 761
      var->IsVar(),
      true,
762 763 764
      platform::errors::InvalidArgument(
          "First parameter of function IsNthOutput must be Node::Var"));
  PADDLE_ENFORCE_EQ(
765 766
      op->IsOp(),
      true,
767 768
      platform::errors::InvalidArgument(
          "Second parameter of function IsNthOutput must be Node::Op"));
769 770
  if (!HasOutput(op, argument) || op->Op()->Output(argument).size() <= nth)
    return false;
771 772
  return var->Name() == op->Op()->Output(argument)[nth];
}
C
chengduo 已提交
773

774 775 776 777
void GraphSafeRemoveNodes(
    Graph *graph,
    const std::unordered_set<const Node *> &nodes,
    std::unordered_set<std::shared_ptr<Node>> *saved_nodes) {
C
chengduo 已提交
778
  for (auto *node : nodes) {
779 780 781 782 783 784 785
    if (saved_nodes != nullptr) {
      // prevent unique_ptr node from being released
      saved_nodes->insert(
          std::move(graph->RemoveNode(const_cast<Node *>(node))));
    } else {
      graph->RemoveNode(const_cast<Node *>(node));
    }
786 787
  }

C
chengduo 已提交
788
  for (auto *node : graph->Nodes()) {
789 790
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
791
        it = const_cast<Node *>(node)->inputs.erase(it);
792
      } else {
793
        it++;
794
      }
795 796 797
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
798
        it = const_cast<Node *>(node)->outputs.erase(it);
799
      } else {
800
        it++;
801
      }
802 803 804
    }
  }
}
C
chengduo 已提交
805 806 807

bool VarLinksFromOp(Node *node, const std::string &op_type) {
  for (auto *out : node->inputs) {
808 809 810 811 812 813 814
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

S
Sylwester Fraczek 已提交
815
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
816
                                     const std::string &conv_type,
S
Sylwester Fraczek 已提交
817 818
                                     bool with_eltwise_add) {
  // Create Operators
819 820
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
S
Sylwester Fraczek 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }
  auto *batch_norm_op =
      pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
834
                              ->assert_is_op_input(conv_type, "Filter");
S
Sylwester Fraczek 已提交
835 836 837

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
838
                           ->assert_is_only_output_of_op(conv_type);
S
Sylwester Fraczek 已提交
839 840 841 842 843 844 845 846 847

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
848
                           ->assert_is_persistable_var()
S
Sylwester Fraczek 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as BN input
    conv_out_var->assert_is_op_input("batch_norm", "X");
  }

  // BN Scale
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
862 863
                           ->assert_is_op_input("batch_norm", "Scale")
                           ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
864 865 866 867
  // BN Bias
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
868 869
                          ->assert_is_op_input("batch_norm", "Bias")
                          ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
870 871 872 873
  // BN Mean
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
874 875
                          ->assert_is_op_input("batch_norm", "Mean")
                          ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
876 877 878 879
  // BN Variance
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
880 881
                              ->assert_is_op_input("batch_norm", "Variance")
                              ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
882 883 884 885

  // BN output
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->AsOutput()
886
                         ->assert_is_op_output("batch_norm", "Y");
S
Sylwester Fraczek 已提交
887 888 889

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->AsOutput()
890 891
                              ->assert_is_op_output("batch_norm", "MeanOut")
                              ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
892 893 894 895

  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->AsOutput()
896 897
          ->assert_is_op_output("batch_norm", "VarianceOut")
          ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
898

899 900 901 902
  auto *bn_saved_mean_var = pattern->NewNode(bn_saved_mean_repr())
                                ->AsOutput()
                                ->assert_is_op_output("batch_norm", "SavedMean")
                                ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
903 904 905 906

  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->AsOutput()
907 908
          ->assert_is_op_output("batch_norm", "SavedVariance")
          ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
909 910 911 912 913 914 915

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    batch_norm_op
916 917 918 919
        ->LinksFrom({eltwise_out_var,
                     bn_scale_var,
                     bn_bias_var,
                     bn_mean_var,
S
Sylwester Fraczek 已提交
920
                     bn_variance_var})
921 922 923 924 925
        .LinksTo({bn_out_var,
                  bn_mean_out_var,
                  bn_variance_out_var,
                  bn_saved_mean_var,
                  bn_saved_variance_var});
S
Sylwester Fraczek 已提交
926 927
  } else {
    batch_norm_op
928 929 930 931
        ->LinksFrom({conv_out_var,
                     bn_scale_var,
                     bn_bias_var,
                     bn_mean_var,
S
Sylwester Fraczek 已提交
932
                     bn_variance_var})
933 934 935 936 937
        .LinksTo({bn_out_var,
                  bn_mean_out_var,
                  bn_variance_out_var,
                  bn_saved_mean_var,
                  bn_saved_variance_var});
S
Sylwester Fraczek 已提交
938 939 940 941
  }
  return bn_out_var;
}

942 943 944 945 946 947 948 949
PDNode *patterns::OperatorActivation::operator()(
    const std::string &operator_type, const std::string &activation_type) {
  auto *preceding_op =
      pattern->NewNode(preceding_op_repr())->assert_is_op(operator_type);
  auto *preceding_op_out = pattern->NewNode(preceding_op_out_repr())
                               ->AsIntermediate()
                               ->assert_is_only_output_of_op(operator_type)
                               ->assert_is_op_input(activation_type);
950 951
  auto *activation_op =
      pattern->NewNode(activation_repr())->assert_is_op(activation_type);
952 953 954 955 956 957
  auto *activation_out = pattern->NewNode(activation_out_repr())
                             ->AsOutput()
                             ->assert_is_op_output(activation_type);
  preceding_op->LinksTo({preceding_op_out});
  activation_op->LinksFrom({preceding_op_out}).LinksTo({activation_out});
  return activation_out;
958 959
}

960 961
PDNode *patterns::QuantTranspose::operator()(
    const std::string &transpose_type) {
962 963 964 965 966 967 968 969 970
  auto *quant_in = pattern->NewNode(quant_in_repr())
                       ->AsInput()
                       ->assert_is_op_input("quantize", "Input");
  auto *quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");
  auto *quant_out = pattern->NewNode(quant_out_repr())
                        ->AsOutput()
                        ->AsIntermediate()
                        ->assert_has_n_outputs(1)
                        ->assert_is_op_output("quantize")
971 972 973
                        ->assert_is_op_input(transpose_type, "X");
  auto *transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op(transpose_type);
974 975

  quant_op->LinksFrom({quant_in}).LinksTo({quant_out});
976
  transpose_op->LinksFrom({quant_out});
977

978
  return transpose_op;
979 980
}

981 982 983 984
PDNode *patterns::TransposeDequant::operator()(
    const std::string &transpose_type) {
  auto *transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op(transpose_type);
985 986 987 988 989 990 991 992 993 994
  auto dequant_in = pattern->NewNode(dequant_in_repr())
                        ->AsIntermediate()
                        ->assert_has_n_inputs(1)
                        ->assert_is_op_input("dequantize", "Input");
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");

995
  transpose_op->LinksTo({dequant_in});
996 997 998 999
  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
  return dequant_out;
}

1000 1001 1002
PDNode *patterns::Squeeze2Transpose2::operator()() {
  auto *squeeze2_op_in = pattern->NewNode(squeeze2_op_in_repr())
                             ->AsInput()
Y
yeliang2258 已提交
1003
                             ->assert_has_n_outputs(1)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
                             ->assert_is_op_input("squeeze2", "X");
  auto *squeeze2_op = pattern->NewNode(squeeze2_op_repr())
                          ->assert_is_op("squeeze2")
                          ->assert_has_n_outputs(2);
  auto *squeeze2_op_out = pattern->NewNode(squeeze2_op_out_repr())
                              ->AsIntermediate()
                              ->assert_is_op_output("squeeze2", "Out")
                              ->assert_is_op_input("transpose2", "X");
  auto *transpose2_op =
      pattern->NewNode(transpose2_op_repr())->assert_is_op("transpose2");

  squeeze2_op->LinksFrom({squeeze2_op_in}).LinksTo({squeeze2_op_out});
  transpose2_op->LinksFrom({squeeze2_op_out});
  return transpose2_op;
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
PDNode *patterns::OperatorUnsqueeze2::operator()(
    const std::string &operator_type, const int num_of_operator_outs) {
  auto *preceding_op = pattern->NewNode(preceding_op_repr())
                           ->assert_is_op(operator_type)
                           ->assert_has_n_outputs(num_of_operator_outs);
  auto *preceding_op_out = pattern->NewNode(preceding_op_out_repr())
                               ->AsIntermediate()
                               ->assert_is_op_output(operator_type, "Out")
                               ->assert_is_op_input("unsqueeze2");
  auto *unsqueeze2_op =
      pattern->NewNode(unsqueeze2_op_repr())->assert_is_op("unsqueeze2");
  auto *unsqueeze2_out = pattern->NewNode(unsqueeze2_out_repr())
                             ->AsOutput()
                             ->assert_is_op_output("unsqueeze2");
  preceding_op->LinksTo({preceding_op_out});
  unsqueeze2_op->LinksFrom({preceding_op_out}).LinksTo({unsqueeze2_out});
  return unsqueeze2_out;
}

PDNode *patterns::OperatorReshape2::operator()(const std::string &operator_type,
                                               const int num_of_operator_outs) {
  auto *preceding_op = pattern->NewNode(preceding_op_repr())
                           ->assert_is_op(operator_type)
                           ->assert_has_n_outputs(num_of_operator_outs);
  auto *preceding_op_out = pattern->NewNode(preceding_op_out_repr())
                               ->AsIntermediate()
                               ->assert_is_op_output(operator_type, "Out")
                               ->assert_is_op_input("reshape2");
  auto *reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto *reshape2_out = pattern->NewNode(reshape2_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("reshape2");
  preceding_op->LinksTo({preceding_op_out});
  reshape2_op->LinksFrom({preceding_op_out}).LinksTo({reshape2_out});
  return reshape2_out;
}

T
tensor-tang 已提交
1058 1059 1060 1061
PDNode *patterns::SeqConvEltAddRelu::operator()(
    paddle::framework::ir::PDNode *seqconv_input) {
  // Create Operators
  seqconv_input->assert_is_op_input("sequence_conv", "X");
T
tensor-tang 已提交
1062 1063
  auto *seqconv_op = pattern->NewNode(seqconv_repr())
                         ->assert_is_op("sequence_conv")
1064
                         ->assert_has_n_inputs(2)
T
tensor-tang 已提交
1065 1066
                         ->assert_op_attr<bool>("paddingTrainable", false)
                         ->assert_op_attr<int>("contextStride", 1);
T
tensor-tang 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

  auto *eltadd_op =
      pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
  // Create variables
  // Filter
  auto *seqconv_weight_var =
      pattern->NewNode(seqconv_weight_repr())
          ->AsInput()
          ->assert_is_persistable_var()
          ->assert_is_op_input("sequence_conv", "Filter");
  // Bias
  auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add");
  // intermediate variable, will be removed in the IR after fuse.
  auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr())
                              ->AsIntermediate()
                              ->assert_is_only_output_of_op("sequence_conv")
                              ->assert_is_op_input("elementwise_add");
  auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr())
                             ->AsIntermediate()
                             ->assert_is_only_output_of_op("elementwise_add")
                             ->assert_is_only_input_of_op("relu");
  // output
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("relu");

  seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var})
      .LinksTo({seqconv_out_var});
  eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var})
      .LinksTo({eltadd_out_var});
  relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

C
chengduo 已提交
1104
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
1105 1106
                                 bool with_bias,
                                 bool with_relu) {
Y
Yan Chunwei 已提交
1107 1108
  // Create shared nodes.
  x->assert_is_op_input("mul", "X");
C
chengduo 已提交
1109
  auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
Y
Yan Chunwei 已提交
1110

C
chengduo 已提交
1111
  auto *mul_w_var = pattern->NewNode(w_repr())
Y
Yan Chunwei 已提交
1112 1113 1114 1115
                        ->AsInput()
                        ->assert_is_persistable_var()
                        ->assert_is_op_input("mul", "Y");

C
chengduo 已提交
1116
  auto *mul_out_var =
Y
Yan Chunwei 已提交
1117 1118
      pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");

1119 1120
  // Add links.
  mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
Y
Yan Chunwei 已提交
1121 1122 1123 1124 1125
  if (!with_bias) {  // not with bias
    return mul_out_var;
  } else {  // with bias
    mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
    // Create operators.
C
chengduo 已提交
1126
    auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
Y
Yan Chunwei 已提交
1127 1128
                                ->assert_is_op("elementwise_add");
    // Create variables.
C
chengduo 已提交
1129
    auto *bias = pattern->NewNode(bias_repr())
Y
Yan Chunwei 已提交
1130
                     ->assert_is_op_input("elementwise_add")
1131
                     ->assert_is_persistable_var()
Y
Yan Chunwei 已提交
1132 1133
                     ->AsInput();

1134 1135 1136 1137
    auto *elementwise_add_out_var =
        pattern->NewNode(elementwise_add_out_repr())
            ->AsOutput()
            ->assert_is_op_output("elementwise_add");
Y
Yan Chunwei 已提交
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    elementwise_add->LinksFrom({mul_out_var, bias})
        .LinksTo({elementwise_add_out_var});
    if (!with_relu) {
      return elementwise_add_out_var;
    } else {
      elementwise_add_out_var->AsIntermediate()->assert_is_op_input("relu");
      // Create operators.
      auto *relu = pattern->NewNode(relu_repr())->assert_is_op("relu");
      auto *relu_out_var = pattern->NewNode(relu_out_repr())
                               ->AsOutput()
                               ->assert_is_op_output("relu");

      relu->LinksFrom({elementwise_add_out_var}).LinksTo({relu_out_var});
      return relu_out_var;
    }
1154 1155
  }
}
T
tensor-tang 已提交
1156

1157
PDNode *patterns::FCMKLDNN::operator()(bool with_residual_data) {
1158 1159
  auto *fc_op = pattern->NewNode(fc_repr())->assert_is_op("fc");
  // Create variables
M
Michał Gallus 已提交
1160 1161 1162 1163
  // Input
  auto *input_var = pattern->NewNode(input_repr())
                        ->AsInput()
                        ->assert_is_op_input("fc", "Input");
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
  // Filter
  auto *fc_weight_var = pattern->NewNode(weights_repr())
                            ->AsInput()
                            ->assert_is_op_input("fc", "W");
  // Bias
  auto *fc_bias_var = pattern->NewNode(bias_repr())
                          ->AsInput()
                          ->assert_is_op_input("fc", "Bias");
  // Output
  auto *fc_out_var = pattern->NewNode(output_repr())
                         ->AsOutput()
                         ->assert_is_op_output("fc", "Out")
                         ->assert_is_only_output_of_op("fc");

1178 1179 1180 1181
  std::vector<PDNode *> links_from{input_var, fc_weight_var, fc_bias_var};
  if (with_residual_data) {
    auto res_fc_var = pattern->NewNode(residual_data_repr())
                          ->AsInput()
1182
                          ->assert_is_op_input("fc", "ResidualData");
1183 1184 1185
    links_from.push_back(res_fc_var);
  } else {
    fc_op->assert_more([&](Node *x) {
1186
      if (!HasInput(x, "ResidualData") ||
1187
          x->Op()->Input("ResidualData").empty())
1188 1189 1190 1191 1192 1193
        return true;
      return false;
    });
  }

  fc_op->LinksFrom(links_from).LinksTo({fc_out_var});
1194 1195 1196
  return fc_out_var;
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
PDNode *patterns::Embedding::operator()(PDNode *x) {
  x->assert_is_op_input("lookup_table", "Ids");
  auto *lookup_table_op =
      pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__)                    \
  auto *arg__ = pattern->NewNode(arg__##_repr()) \
                    ->assert_is_op_##io__("lookup_table", #arg__);

  NEW_NODE(W, input);

  NEW_NODE(Out, output);
#undef NEW_NODE

  lookup_table_op->LinksFrom({x, W});
  lookup_table_op->LinksTo({Out});
  return Out;
}

C
chengduo 已提交
1215
PDNode *patterns::LSTM::operator()(PDNode *x) {
1216
  x->assert_is_op_input("lstm", "Input");
C
chengduo 已提交
1217
  auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
Y
Yan Chunwei 已提交
1218
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
1219
  auto *arg__ =               \
Y
Yan Chunwei 已提交
1220
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
1221 1222 1223 1224 1225

  // Currently, the H0 and C0 are optional
  // TODO(Superjomn) upgrade the fuse framework to support optional.
  // NEW_NODE(H0, input);
  // NEW_NODE(C0, input);
Y
Yan Chunwei 已提交
1226 1227
  NEW_NODE(Weight, input);
  NEW_NODE(Bias, input);
1228

Y
Yan Chunwei 已提交
1229 1230 1231 1232 1233
  NEW_NODE(Hidden, output);
  NEW_NODE(Cell, output);
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
1234 1235 1236 1237 1238

  lstm_op->LinksFrom({x, Weight, Bias});
  lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
  return Hidden;
}
T
tensor-tang 已提交
1239

C
chengduo 已提交
1240
PDNode *patterns::GRU::operator()(PDNode *x) {
T
tensor-tang 已提交
1241
  x->assert_is_op_input("gru", "Input");
C
chengduo 已提交
1242
  auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
Y
Yan Chunwei 已提交
1243
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
1244
  auto *arg__ =               \
Y
Yan Chunwei 已提交
1245
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
T
tensor-tang 已提交
1246

Y
Yan Chunwei 已提交
1247
  NEW_NODE(Weight, input);
T
tensor-tang 已提交
1248 1249
  // TODO(Superjomn): upgrade the fuse framework to support optional.
  // H0 and bias are optional
Y
Yan Chunwei 已提交
1250
  NEW_NODE(Bias, input);  // also optional
T
tensor-tang 已提交
1251 1252
  // NEW_NODE(H0, input);

Y
Yan Chunwei 已提交
1253
  NEW_NODE(Hidden, output);
T
tensor-tang 已提交
1254
  // below are intermediate
Y
Yan Chunwei 已提交
1255 1256 1257 1258
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchResetHiddenPrev, output);
  NEW_NODE(BatchHidden, output);
#undef NEW_NODE
T
tensor-tang 已提交
1259

T
tensor-tang 已提交
1260 1261 1262 1263
  BatchGate->AsIntermediate();
  BatchResetHiddenPrev->AsIntermediate();
  BatchHidden->AsIntermediate();

T
tensor-tang 已提交
1264 1265 1266 1267 1268
  gru_op->LinksFrom({x, Weight, Bias});
  gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
  return Hidden;
}

C
chengduo 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
PDNode *patterns::ActElewiseAdd::operator()(
    paddle::framework::ir::PDNode *in_var,
    std::unordered_set<std::string> act_types) {
  in_var->assert_is_ops_input(act_types, "X");

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_not_ctrl_var()
                          ->assert_is_ops_output(act_types);
  act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto *ele_x_var = pattern->NewNode(ele_x_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add")
                        ->AsInput();
  auto *elementwise_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add", "Out");

  act->LinksFrom({in_var}).LinksTo({act_out_var});
  elementwise_add->LinksFrom({act_out_var, ele_x_var})
      .LinksTo({elewise_add_out});

  return elewise_add_out;
}

Z
Zhen Wang 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
PDNode *patterns::BatchNormAct::operator()(
    paddle::framework::ir::PDNode *bn_x_var,
    std::unordered_set<std::string> act_types) {
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm", "Bias");
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->assert_is_op_input("batch_norm", "Variance");
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->assert_is_op_input("batch_norm", "Mean");

  auto *bn = pattern->NewNode(batch_norm_repr())
                 ->assert_is_op("batch_norm")
                 ->assert_is_not_op_input("MomentumTensor")
                 ->assert_op_attr<bool>("is_test", false)
                 ->assert_op_attr<bool>("use_global_stats", false)
                 ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->assert_is_op_output("batch_norm", "MeanOut");
  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->assert_is_op_output("batch_norm", "VarianceOut");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_output("batch_norm", "SavedVariance");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_output("batch_norm", "SavedMean");
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_output("batch_norm", "ReserveSpace");
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->assert_is_op_output("batch_norm", "Y")
                         ->assert_has_n_outputs(1);

  bn_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  bn->LinksFrom(
        {bn_x_var, bn_scale_var, bn_bias_var, bn_variance_var, bn_mean_var})
1344 1345 1346 1347 1348 1349
      .LinksTo({bn_mean_out_var,
                bn_variance_out_var,
                bn_saved_variance_var,
                bn_saved_mean_var,
                bn_reserve_space,
                bn_out_var});
Z
Zhen Wang 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
  act->LinksFrom({bn_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::BatchNormActGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_grad_types) {
  auto *act_grad =
      pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
  auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
                      ->assert_is_op("batch_norm_grad")
                      ->assert_op_attr<bool>("use_global_stats", false)
                      ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_ops_input(act_grad_types, "Out");
  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"))
          ->assert_has_n_outputs(1);
  auto *bn_x_var = pattern->NewNode(bn_x_repr())
                       ->assert_is_op_input("batch_norm_grad", "X")
                       ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm_grad", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm_grad", "Bias");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedMean");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedVariance");
  // ReserveSpace as the output is equal to:
  // data_layout == 'NHWC' && FLAGS_cudnn_batchnorm_spatial_persistent == true
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_input("batch_norm_grad", "ReserveSpace");
  auto *d_bn_x_var =
      pattern->NewNode(d_bn_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("X"));
  auto *d_bn_scale_var =
      pattern->NewNode(d_bn_scale_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
  auto *d_bn_bias_var =
      pattern->NewNode(d_bn_bias_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  bn_grad
1406 1407 1408 1409 1410 1411 1412
      ->LinksFrom({bn_x_var,
                   d_intermediate_var,
                   bn_scale_var,
                   bn_bias_var,
                   bn_saved_mean_var,
                   bn_saved_variance_var,
                   bn_reserve_space})
Z
Zhen Wang 已提交
1413 1414 1415 1416 1417
      .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});

  return bn_grad;
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
PDNode *patterns::BatchNormActOneDNN::operator()(const std::string &act_type) {
  auto *bn_x = pattern->NewNode(bn_in_repr())
                   ->AsInput()
                   ->assert_is_op_input("batch_norm", "X");
  auto *bn = pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  auto *bn_out = pattern->NewNode(bn_out_repr())
                     ->assert_is_op_output("batch_norm", "Y")
                     ->assert_is_op_input(act_type);
  auto *act =
      pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
  auto *act_out = pattern->NewNode(act_out_repr())
                      ->assert_is_op_output(act_type, "Out")
                      ->AsOutput();

  bn->LinksFrom({bn_x}).LinksTo({bn_out});
  act->LinksFrom({bn_out}).LinksTo({act_out});

  return act_out;
}

Z
Zhang Ting 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
PDNode *patterns::BatchNormAddAct::operator()(
    paddle::framework::ir::PDNode *bn_x_var,
    std::unordered_set<std::string> act_types) {
  bn_x_var->assert_is_op_input("batch_norm", "X")
      ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm", "Bias");

  auto *bn = pattern->NewNode(batch_norm_repr())
                 ->assert_is_op("batch_norm")
                 ->assert_is_not_op_input("MomentumTensor")
                 ->assert_op_attr<bool>("is_test", false)
                 ->assert_op_attr<bool>("use_global_stats", false)
                 ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->assert_is_op_output("batch_norm", "MeanOut");
  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->assert_is_op_output("batch_norm", "VarianceOut");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_output("batch_norm", "SavedVariance");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_output("batch_norm", "SavedMean");
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_output("batch_norm", "ReserveSpace");
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->assert_is_op_output("batch_norm", "Y")
                         ->assert_var_dtype(proto::VarType::FP16);

  bn_out_var->assert_is_op_input("elementwise_add");

  auto *elewise_add =
      pattern->NewNode(elewise_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_in_var = pattern->NewNode(elewise_add_in_repr())
                                 ->assert_is_not_ctrl_var()
                                 ->assert_is_op_input("elementwise_add")
                                 ->assert_var_dtype(proto::VarType::FP16);

  auto *elewise_add_out_var =
      pattern->NewNode(elewise_add_out_repr())
          ->assert_is_op_output("elementwise_add", "Out")
          ->assert_has_n_outputs(1);

  elewise_add_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  bn->LinksFrom({bn_x_var, bn_scale_var, bn_bias_var})
1496 1497 1498 1499 1500 1501
      .LinksTo({bn_mean_out_var,
                bn_variance_out_var,
                bn_saved_variance_var,
                bn_saved_mean_var,
                bn_reserve_space,
                bn_out_var});
Z
Zhang Ting 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
  elewise_add->LinksFrom({elewise_add_in_var, bn_out_var})
      .LinksTo({elewise_add_out_var});
  act->LinksFrom({elewise_add_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::BatchNormAddActGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_grad_types) {
  auto *act_grad =
      pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
  auto *elewise_add_grad = pattern->NewNode(elewise_add_grad_repr())
                               ->assert_is_op("elementwise_add_grad");
  auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
                      ->assert_is_op("batch_norm_grad")
                      ->assert_op_attr<bool>("use_global_stats", false)
                      ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_ops_input(act_grad_types, "Out");
  auto *d_act_x_var =
      pattern->NewNode(d_act_x_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"))
          ->assert_has_n_outputs(1);  // d_act_x

  d_act_x_var->AsIntermediate()->assert_is_op_input("elementwise_add_grad");

  auto *d_elewise_add_in_var =
      pattern->NewNode(d_elewise_add_in_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad")
          ->assert_var_dtype(proto::VarType::FP16);  // d_add_in_1
  auto *d_bn_out_var =
      pattern->NewNode(d_bn_out_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad")
          ->assert_var_dtype(proto::VarType::FP16);  // d_add_in_2

  d_bn_out_var->assert_is_op_input("batch_norm_grad", GradVarName("Y"));

  auto *bn_x_var = pattern->NewNode(bn_x_repr())
                       ->assert_is_op_input("batch_norm_grad", "X")
                       ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm_grad", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm_grad", "Bias");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedMean");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedVariance");

  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_input("batch_norm_grad", "ReserveSpace");
  auto *d_bn_x_var =
      pattern->NewNode(d_bn_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("X"))
          ->assert_var_dtype(proto::VarType::FP16);
  auto *d_bn_scale_var =
      pattern->NewNode(d_bn_scale_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
  auto *d_bn_bias_var =
      pattern->NewNode(d_bn_bias_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));

  act_grad->LinksFrom({d_act_out_var, act_out_var}).LinksTo({d_act_x_var});

  elewise_add_grad->LinksFrom({d_act_x_var})
      .LinksTo({d_elewise_add_in_var, d_bn_out_var});

  bn_grad
1580 1581 1582 1583 1584 1585 1586
      ->LinksFrom({bn_x_var,
                   d_bn_out_var,
                   bn_scale_var,
                   bn_bias_var,
                   bn_saved_mean_var,
                   bn_saved_variance_var,
                   bn_reserve_space})
Z
Zhang Ting 已提交
1587 1588 1589 1590 1591
      .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});

  return bn_grad;
}

C
chengduo 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_types) {
  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");

  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_types, GradVarName("X"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add_grad", "Y");

  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");

  auto *d_ele_x_var =
      pattern->NewNode(d_ele_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));

  auto *d_ele_y_var =
      pattern->NewNode(d_ele_y_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));

  ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
      .LinksTo({d_ele_x_var, d_ele_y_var});

  return ele_add_grad;
}

Z
zhangbo9674 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
PDNode *patterns::ActElewiseAddInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_out_var,
    std::unordered_set<std::string> act_types) {
  VLOG(4) << "ActElewiseAddInplaceGrad::operator";

  auto *ele_add_grad_op = pattern->NewNode(ele_add_grad_op_repr())
                              ->assert_is_op("elementwise_add_grad");
  auto *act_grad_op =
      pattern->NewNode(act_grad_op_repr())->assert_is_ops(act_types);

  auto *d_intermediate_out_var =
      pattern->NewNode(d_intermediate_var_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"))
          ->assert_is_ops_input(act_types, GradVarName("Out"));
  auto *intermediate_out_var =
      pattern->NewNode(intermediate_var_repr())
          ->assert_is_op_input("elementwise_add_grad", "Y")
          ->assert_is_ops_input(act_types, "Out");

  ele_add_grad_op->LinksFrom({d_out_var});
  d_intermediate_out_var->LinksFrom({ele_add_grad_op}).LinksTo({act_grad_op});
  intermediate_out_var->LinksTo({ele_add_grad_op});
  intermediate_out_var->LinksTo({act_grad_op});

  return act_grad_op;
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
PDNode *patterns::ElewiseAddAct::operator()(
    paddle::framework::ir::PDNode *ele_x_var,
    std::unordered_set<std::string> act_types) {
  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
  act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::LinearAct::operator()(
    paddle::framework::ir::PDNode *linear_x_var,
1686 1687
    const std::unordered_set<std::string> &act_types,
    bool with_grad_link,
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    bool is_act_grad_x_from_act) {
  auto *matmul_w_var =
      pattern->NewNode(matmul_w_repr())->assert_is_op_input("matmul_v2", "Y");

  auto *matmul = pattern->NewNode(matmul_repr())->assert_is_op("matmul_v2");

  auto *matmul_out_var = pattern->NewNode(matmul_out_repr())
                             ->assert_is_op_output("matmul_v2", "Out");

  matmul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add", "X");

  auto *ele_bias_var = pattern->NewNode(ele_bias_repr())
                           ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  matmul->LinksFrom({linear_x_var, matmul_w_var}).LinksTo({matmul_out_var});
  ele_add->LinksFrom({matmul_out_var, ele_bias_var}).LinksTo({ele_out_var});

  if (with_grad_link) {
    matmul_out_var->assert_is_op_input("elementwise_add_grad", "X");
    auto *elementwise_add_grad_op = pattern->NewNode("elementwise_add_grad")
                                        ->assert_is_op("elementwise_add_grad");
    elementwise_add_grad_op->LinksFrom({matmul_out_var});
  }

1718
  if (!act_types.empty()) {
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
    ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

    auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
    auto *act_out_var = pattern->NewNode(act_out_repr())
                            ->assert_is_ops_output(act_types, "Out");

    act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

    if (with_grad_link && !is_act_grad_x_from_act) {
      std::unordered_set<std::string> act_grad_types;
      for (const auto &act : act_types) {
        std::string act_grad(act);
        act_grad.append("_grad");
        act_grad_types.insert(act_grad);
      }

      ele_out_var->assert_is_ops_input(act_grad_types, "X");
      auto *act_grad_op =
          pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
      act_grad_op->LinksFrom({ele_out_var});
    }

    return act_out_var;
  }

  return ele_out_var;
}

PDNode *patterns::ElewiseAddMatmulAct::operator()(
    paddle::framework::ir::PDNode *dout_var,
    const std::unordered_set<std::string> &act_grad_types,
1750 1751
    bool without_x_gradient,
    bool is_act_grad_x_from_act) {
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
  auto *ele_grad_bias_var =
      pattern->NewNode(ele_grad_bias_repr())
          ->assert_is_op_input("elementwise_add_grad", "Y");
  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");
  auto *ele_grad_dx_var =
      pattern->NewNode(ele_grad_dx_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
  auto *ele_grad_dbias_var =
      pattern->NewNode(ele_grad_dbias_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
  ele_add_grad->LinksFrom({dout_var, ele_grad_bias_var})
      .LinksTo({ele_grad_dx_var, ele_grad_dbias_var});

  ele_grad_dx_var->AsIntermediate()->assert_is_op_input("matmul_v2_grad",
                                                        GradVarName("Out"));

  auto *matmul_grad_x_var = pattern->NewNode(matmul_grad_x_repr())
                                ->assert_is_op_input("matmul_v2_grad", "X");
  auto *matmul_grad_w_var = pattern->NewNode(matmul_grad_w_repr())
                                ->assert_is_op_input("matmul_v2_grad", "Y");
  auto *matmul_grad =
      pattern->NewNode(matmul_grad_repr())->assert_is_op("matmul_v2_grad");
  auto *matmul_grad_dx_var =
      pattern->NewNode(matmul_grad_dx_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("X"));
  auto *matmul_grad_dw_var =
      pattern->NewNode(matmul_grad_dw_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("Y"));
  matmul_grad->LinksFrom(
      {ele_grad_dx_var, matmul_grad_x_var, matmul_grad_w_var});
  if (without_x_gradient) {
    matmul_grad->LinksTo({matmul_grad_dw_var});
  } else {
    matmul_grad->LinksTo({matmul_grad_dx_var, matmul_grad_dw_var});
  }

1789
  if (!without_x_gradient && !act_grad_types.empty()) {
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
    matmul_grad_dx_var->AsIntermediate()->assert_is_ops_input(
        act_grad_types, GradVarName("Out"));

    auto *act_grad =
        pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
    auto *act_grad_dx_var =
        pattern->NewNode(act_grad_dx_repr())
            ->assert_is_ops_output(act_grad_types, GradVarName("X"));

    auto *act_grad_x_var = matmul_grad_x_var;
    if (!is_act_grad_x_from_act) {
      auto *ele_out_var = pattern->NewNode(ele_out_repr())
                              ->assert_is_ops_input(act_grad_types, "X");
      act_grad_x_var = ele_out_var;
    }

    act_grad->LinksFrom({matmul_grad_dx_var, act_grad_x_var})
        .LinksTo({act_grad_dx_var});
    return act_grad;
  }

  return matmul_grad;
}

1814
// conv_type: conv2d, conv3d, conv2d_transpose
M
Michal Gallus 已提交
1815
PDNode *patterns::ConvBias::operator()(
1816
    paddle::framework::ir::PDNode *conv_input, std::string conv_type) {
M
Michal Gallus 已提交
1817
  // Create Operators
1818 1819
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
M
Michal Gallus 已提交
1820 1821 1822 1823
  auto *eltiwse_op =
      pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  // Create variables
  // Filter
Y
Yihua Xu 已提交
1824 1825
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
1826
                              ->assert_is_op_input(conv_type, "Filter");
M
Michal Gallus 已提交
1827
  // intermediate variable, will be removed in the IR after fuse.
Y
Yihua Xu 已提交
1828 1829
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
1830
                           ->assert_is_only_output_of_op(conv_type)
Y
Yihua Xu 已提交
1831
                           ->assert_is_op_input("elementwise_add");
M
Michal Gallus 已提交
1832 1833 1834
  // Bias stored in elementwise_add
  auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
                               ->AsInput()
M
Michal Gallus 已提交
1835
                               ->assert_is_persistable_var()
M
Michal Gallus 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
                               ->assert_is_op_input("elementwise_add", "Y");
  // output
  auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add");
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
      .LinksTo({eltwise_out_var});
  return eltwise_out_var;
}

Z
zyfncg 已提交
1847 1848
PDNode *patterns::Conv::operator()(const std::string &conv_type) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op(conv_type);
1849 1850

  auto input_var = pattern->NewNode(conv_input_repr())
1851
                       ->AsInput()
Z
zyfncg 已提交
1852
                       ->assert_is_op_input(conv_type, "Input");
1853 1854

  auto filter_var = pattern->NewNode(conv_filter_repr())
1855
                        ->AsInput()
Z
zyfncg 已提交
1856
                        ->assert_is_op_input(conv_type, "Filter");
1857 1858

  auto output_var = pattern->NewNode(conv_output_repr())
1859
                        ->AsOutput()
Z
zyfncg 已提交
1860
                        ->assert_is_op_output(conv_type, "Output");
1861

1862 1863 1864 1865
  conv_op->LinksFrom({input_var, filter_var}).LinksTo({output_var});
  return output_var;
}

1866 1867
PDNode *patterns::Immutable::operator()(const std::string &immutable_type,
                                        const std::string &input_name) {
1868 1869
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

1870 1871
  auto immutable_op =
      pattern->NewNode(immutable_op_repr())->assert_is_op(immutable_type);
1872

1873
  auto immutable_in = pattern->NewNode(immutable_in_repr())
1874
                          ->AsInput()
1875 1876
                          ->assert_is_op_input(immutable_type, input_name);
  auto immutable_out = pattern->NewNode(immutable_out_repr())
1877
                           ->AsOutput()
1878
                           ->assert_is_op_output(immutable_type, "Out");
1879

1880 1881 1882
  prev_op->LinksTo({immutable_in});
  immutable_op->LinksFrom({immutable_in}).LinksTo({immutable_out});
  return immutable_out;
1883 1884
}

1885
PDNode *patterns::Matmul::operator()() {
1886 1887 1888 1889 1890 1891 1892
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
1893
                         ->assert_is_persistable_var()
1894 1895 1896 1897 1898 1899 1900 1901 1902
                         ->assert_is_op_input("matmul", "Y");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
// MatmulV2: tensor * weight
PDNode *patterns::MatmulV2Weight::operator()() {
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");

  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_persistable_var()  // Y is weight
                            ->assert_is_op_input("matmul_v2", "Y");
  auto matmul_v2_out = pattern->NewNode(matmul_v2_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("matmul_v2", "Out");

  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({matmul_v2_out});
  return matmul_v2_out;
}

// MatmulV2: tensor * tensor or tensor * weight
1925
PDNode *patterns::MatmulV2::operator()() {
1926 1927
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");
1928

1929 1930 1931 1932 1933 1934 1935 1936 1937
  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "Y");
  auto matmul_v2_out = pattern->NewNode(matmul_v2_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("matmul_v2", "Out");
1938

1939 1940 1941
  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({matmul_v2_out});
  return matmul_v2_out;
1942 1943
}

H
heliqi 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
PDNode *patterns::MatmulScale::operator()() {
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "Y");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_in_x = pattern->NewNode(scale_in_x_repr())
                        ->assert_is_op_output("matmul", "Out")
                        ->assert_is_op_input("scale", "X");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({scale_in_x});
  scale_op->LinksFrom({scale_in_x}).LinksTo({scale_out});
  return scale_out;
}

PDNode *patterns::MatmulV2Scale::operator()() {
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");
  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_persistable_var()  // Y is weight
                            ->assert_is_op_input("matmul_v2", "Y");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_in_x = pattern->NewNode(scale_in_x_repr())
                        ->assert_is_op_output("matmul_v2", "Out")
                        ->assert_is_op_input("scale", "X");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({scale_in_x});
  scale_op->LinksFrom({scale_in_x}).LinksTo({scale_out});
  return scale_out;
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
PDNode *patterns::Squeeze2Matmul::operator()() {
  auto squeeze2_in_x = pattern->NewNode(squeeze2_in_x_repr())
                           ->assert_is_op_input("squeeze2", "X")
                           ->AsInput();
  auto squeeze2_op =
      pattern->NewNode(squeeze2_op_repr())->assert_is_op("squeeze2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("squeeze2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  squeeze2_op->LinksFrom({squeeze2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

PDNode *patterns::Reshape2Matmul::operator()() {
  auto reshape2_in_x = pattern->NewNode(reshape2_in_x_repr())
                           ->assert_is_op_input("reshape2", "X")
                           ->AsInput();
  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("reshape2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  reshape2_op->LinksFrom({reshape2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

2029 2030 2031
PDNode *patterns::FusedMatmul::operator()(bool with_residual) {
  auto matmul_op =
      pattern->NewNode(matmul_op_repr())->assert_is_op("fused_matmul");
2032 2033 2034 2035

  if (!with_residual) {
    matmul_op->assert_more([&](Node *x) {
      return (!HasInput(x, "ResidualData") ||
2036
              x->Op()->Input("ResidualData").empty());
2037 2038 2039
    });
  }

2040 2041
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
2042
                         ->assert_is_op_input("fused_matmul", "X");
2043 2044
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
2045
                         ->assert_is_op_input("fused_matmul", "Y");
2046 2047
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
2048 2049
                        ->assert_is_op_output("fused_matmul", "Out")
                        ->assert_is_only_output_of_op("fused_matmul");
2050 2051 2052 2053 2054 2055
  std::vector<PDNode *> links_from{matmul_in_x, matmul_in_y};

  if (with_residual) {
    auto matmul_residual_data =
        pattern->NewNode(matmul_residual_data_repr())
            ->AsInput()
2056
            ->assert_is_op_input("fused_matmul", "ResidualData");
2057 2058
    links_from.push_back(matmul_residual_data);
  }
2059

2060
  matmul_op->LinksFrom(links_from).LinksTo({matmul_out});
2061 2062 2063
  return matmul_out;
}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
PDNode *patterns::Flatten2Matmul::operator()() {
  auto flatten2_in_x = pattern->NewNode(flatten2_in_x_repr())
                           ->assert_is_op_input("flatten2", "X")
                           ->AsInput();
  auto flatten2_op =
      pattern->NewNode(flatten2_op_repr())->assert_is_op("flatten2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("flatten2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  flatten2_op->LinksFrom({flatten2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

2085 2086 2087
PDNode *patterns::ConvResidual::operator()(const std::string &conv_type,
                                           bool with_residual_data) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op(conv_type);
2088

2089 2090 2091
  if (!with_residual_data) {
    conv_op->assert_more([&](Node *x) {
      if (!HasInput(x, "ResidualData") ||
2092
          x->Op()->Input("ResidualData").empty())
2093 2094 2095 2096
        return true;
      return false;
    });
  }
2097 2098 2099

  auto input_var = pattern->NewNode(conv_input_repr())
                       ->AsInput()
2100
                       ->assert_is_op_input(conv_type, "Input");
2101 2102 2103

  auto filter_var = pattern->NewNode(conv_filter_repr())
                        ->AsInput()
2104
                        ->assert_is_op_input(conv_type, "Filter");
2105 2106 2107

  auto output_var = pattern->NewNode(conv_output_repr())
                        ->AsOutput()
2108
                        ->assert_is_op_output(conv_type, "Output");
2109 2110 2111 2112 2113 2114

  std::vector<PDNode *> links_from{input_var, filter_var};

  if (with_residual_data) {
    auto res_conn_var = pattern->NewNode(conv_residual_data_repr())
                            ->AsInput()
2115
                            ->assert_is_op_input(conv_type, "ResidualData");
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
    links_from.push_back(res_conn_var);
  }

  conv_op->LinksFrom(links_from).LinksTo({output_var});
  return output_var;
}

PDNode *patterns::Pool::operator()() {
  auto pool_op = pattern->NewNode(pool_op_repr())->assert_is_op("pool2d");

  auto input_var = pattern->NewNode(pool_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("pool2d", "X");

  auto output_var = pattern->NewNode(pool_output_repr())
                        ->AsOutput()
                        ->assert_is_op_output("pool2d", "Out");
2133

2134
  pool_op->LinksFrom({input_var}).LinksTo({output_var});
2135 2136 2137
  return output_var;
}

2138 2139
PDNode *patterns::Elementwise::operator()(PDNode *x_var,
                                          PDNode *y_var,
2140
                                          const std::string &elementwise_type) {
Z
Zuza 已提交
2141 2142 2143 2144 2145 2146
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  x_var->AsInput()->assert_is_op_input(elementwise_type, "X");
  y_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
  auto out_var = pattern->NewNode(elementwise_out_repr())
2147
                     ->AsOutput()
Z
Zuza 已提交
2148
                     ->assert_is_op_output(elementwise_type, "Out");
2149

Z
Zuza 已提交
2150 2151
  elementwise_op->LinksFrom({x_var, y_var});
  elementwise_op->LinksTo({out_var});
2152 2153 2154

  return out_var;
}
2155

2156
PDNode *patterns::ElementwiseOp::operator()(
2157
    const std::string &elementwise_type) {
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  auto out_var = pattern->NewNode(elementwise_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output(elementwise_type, "Out");

  elementwise_op->LinksTo({out_var});

  return out_var;
}

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
PDNode *patterns::MatmulElementwiseAdd::operator()(
    const std::string &matmul_type, bool as_x) {
  auto matmul_op =
      pattern->NewNode(matmul_op_repr())->assert_is_op(matmul_type);
  auto matmul_out =
      pattern->NewNode(matmul_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output(matmul_type, "Out")
          ->assert_is_only_output_of_op(matmul_type)
          ->assert_is_op_input("elementwise_add", as_x ? "X" : "Y");
  auto elementwise_addend =
      pattern->NewNode(elementwise_addend_repr())
          ->AsInput()
          ->assert_is_op_input("elementwise_add", as_x ? "Y" : "X");
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_out =
      pattern->NewNode(elementwise_add_out_repr())
          ->AsOutput()
          ->assert_is_op_output("elementwise_add", "Out");

  matmul_op->LinksTo({matmul_out});
  elementwise_add_op->LinksFrom({matmul_out, elementwise_addend})
      .LinksTo({elementwise_add_out});
  return elementwise_add_out;
}

2197
PDNode *patterns::ResidualElementwise::operator()(
2198 2199
    PDNode *op_var,
    PDNode *residual_var,
2200
    const std::string &elementwise_type,
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
    bool as_x) {
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  if (as_x) {
    op_var->AsInput()->assert_is_op_input(elementwise_type, "X");
    residual_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
  } else {
    op_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
    residual_var->AsInput()->assert_is_op_input(elementwise_type, "X");
  }
  auto out_var = pattern->NewNode(elementwise_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output(elementwise_type, "Out");

  elementwise_op->LinksFrom({op_var, residual_var});
  elementwise_op->LinksTo({out_var});

  return out_var;
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
PDNode *patterns::Concat::operator()() {
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");

  auto output_var = pattern->NewNode(concat_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("concat", "Out");

  concat_op->LinksTo({output_var});
  return output_var;
}

J
joanna.wozna.intel 已提交
2233 2234 2235 2236
PDNode *patterns::OpRequant::operator()() {
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
2237 2238
                      return (node->Op()->HasAttr("Scale_out") ||
                              node->Op()->HasAttr("scale_out"));
J
joanna.wozna.intel 已提交
2239 2240 2241
                    });
  auto requant_in = pattern->NewNode(requant_in_repr())
                        ->assert_is_op_input("requantize", "Input");
2242 2243 2244 2245 2246 2247
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");

J
joanna.wozna.intel 已提交
2248 2249
  any_op->LinksTo({requant_in});
  requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
2250 2251 2252
  return requant_out;
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
PDNode *patterns::RequantOp::operator()() {
  auto requant_in = pattern->NewNode(requant_in_repr())
                        ->assert_is_op_input("requantize", "Input");
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      return (node->Op()->HasAttr("Scale_in") ||
                              node->Op()->HasAttr("Scale_x") ||
2266 2267 2268 2269
                              node->Op()->HasAttr("Scale_y") ||
                              node->Op()->HasAttr("scale_in") ||
                              node->Op()->HasAttr("scale_x") ||
                              node->Op()->HasAttr("scale_y"));
2270 2271 2272 2273 2274 2275 2276
                    });

  requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
  any_op->LinksFrom({requant_out});
  return any_op;
}

2277 2278 2279 2280
PDNode *patterns::OpDequant::operator()() {
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
2281 2282
                      return (node->Op()->HasAttr("force_fp32_output") ||
                              node->Op()->HasProtoAttr("force_fp32_output"));
2283 2284 2285
                    });
  auto dequant_in = pattern->NewNode(dequant_in_repr())
                        ->assert_is_op_input("dequantize", "Input");
2286 2287 2288 2289 2290 2291
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");

2292 2293
  any_op->LinksTo({dequant_in});
  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
2294 2295 2296
  return dequant_out;
}

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
PDNode *patterns::DequantScale::operator()() {
  // Create Operators
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");

  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");

  dequant_op->LinksTo({dequant_out});
  scale_op->LinksFrom({dequant_out}).LinksTo({scale_out});

  return scale_out;
}

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
PDNode *patterns::ScaleQuant::operator()() {
  auto scale_in = pattern->NewNode(scale_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("scale", "X");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");

  auto quant_in = pattern->NewNode(quant_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("quantize", "Input");
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");

  scale_op->LinksFrom({scale_in}).LinksTo({quant_in});
  quant_op->LinksFrom({quant_in});

  return quant_op;
}

2333
PDNode *patterns::QuantConv::operator()(const std::string &conv_type) {
2334 2335 2336 2337 2338 2339 2340
  auto quant_in = pattern->NewNode(quant_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("quantize", "Input");
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");

  auto conv_in = pattern->NewNode(conv_in_repr())
                     ->AsInput()
2341 2342
                     ->assert_is_op_input(conv_type, "Input");
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op(conv_type);
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
  conv_op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });

  quant_op->LinksFrom({quant_in}).LinksTo({conv_in});
  conv_op->LinksFrom({conv_in});

  return quant_op;
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
PDNode *patterns::ScaleMatmul::operator()() {
  auto scale_in = pattern->NewNode(scale_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("scale", "X");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  scale_op->LinksFrom({scale_in}).LinksTo({scale_out});
  matmul_op->LinksFrom({scale_out});
  return matmul_op;
}

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
PDNode *patterns::PriorBox::operator()() {
  auto prior_box_op =
      pattern->NewNode(prior_box_op_repr())->assert_is_op("prior_box");

  auto input_var = pattern->NewNode(prior_box_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Input");

  auto image_var = pattern->NewNode(prior_box_image_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Image");

  auto boxes_var = pattern->NewNode(prior_box_boxes_repr())
                       ->AsOutput()
                       ->assert_is_op_output("prior_box", "Boxes");

  auto variances_var = pattern->NewNode(prior_box_variances_repr())
                           ->AsOutput()
                           ->assert_is_op_output("prior_box", "Variances");

  prior_box_op->LinksFrom({input_var, image_var})
      .LinksTo({boxes_var, variances_var});
  return boxes_var;
}

2394 2395
PDNode *patterns::ConvElementwiseaddAct::operator()(
    PDNode *conv_in, const std::unordered_set<std::string> &conv_act_set) {
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2408
                                  ->assert_is_persistable_var()
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });

  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
  act_op->LinksFrom({elementwise_add_out}).LinksTo({act_out});

  return act_out;
}

F
feng_shuai 已提交
2444 2445
PDNode *patterns::VitAttention::operator()(PDNode *in) {
  in->AsInput();
2446
  std::unordered_set<std::string> matmul_ops{"matrix_multiply"};
F
feng_shuai 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

  auto matmul0_op =
      pattern->NewNode(matmul0_op_repr())->assert_is_ops(matmul_ops);
  auto matmul0_in_y = pattern->NewNode(matmul0_in_y_repr())
                          ->AsInput()
                          ->assert_is_ops_input(matmul_ops, "Y");
  auto matmul0_out = pattern->NewNode(matmul0_out_repr())
                         ->assert_is_ops_output(matmul_ops, "Out")
                         ->assert_is_op_input("elementwise_add", "X")
                         ->AsIntermediate();

  auto elementwise0_op =
      pattern->NewNode(elementwise0_op_repr())->assert_is_op("elementwise_add");
  auto elementwise0_in_y = pattern->NewNode(elementwise0_in_y_repr())
                               ->AsInput()
                               ->assert_is_op_input("elementwise_add", "Y");
  auto elementwise0_out = pattern->NewNode(elementwise0_out_repr())
                              ->assert_is_op_output("elementwise_add", "Out")
                              ->assert_is_op_input("reshape2", "X")
                              ->AsIntermediate();

  auto reshape1_op =
      pattern->NewNode(reshape1_op_repr())->assert_is_op("reshape2");
  auto reshape1_out = pattern->NewNode(reshape1_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->assert_is_op_input("transpose2", "X")
                          ->AsIntermediate();

  auto transpose1_op =
      pattern->NewNode(transpose1_op_repr())->assert_is_op("transpose2");
  auto transpose1_out = pattern->NewNode(transpose1_out_repr())
                            ->assert_is_op_output("transpose2", "Out")
                            ->assert_is_op_input("slice", "Input")
                            ->AsIntermediate();

  auto slice1_op = pattern->NewNode(slice1_op_repr())->assert_is_op("slice");
  auto slice1_out = pattern->NewNode(slice1_out_repr())
                        ->assert_is_op_output("slice", "Out")
2485
                        ->assert_is_op_input("matrix_multiply", "Y")
F
feng_shuai 已提交
2486 2487 2488 2489 2490
                        ->AsIntermediate();

  auto slice2_op = pattern->NewNode(slice2_op_repr())->assert_is_op("slice");
  auto slice2_out = pattern->NewNode(slice2_out_repr())
                        ->assert_is_op_output("slice", "Out")
2491
                        ->assert_is_op_input("matrix_multiply", "X")
F
feng_shuai 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
                        ->AsIntermediate();

  auto slice3_op = pattern->NewNode(slice3_op_repr())->assert_is_op("slice");
  auto slice3_out = pattern->NewNode(slice3_out_repr())
                        ->assert_is_op_output("slice", "Out")
                        ->assert_is_op_input("transpose2", "X")
                        ->AsIntermediate();

  auto transpose2_op =
      pattern->NewNode(transpose2_op_repr())->assert_is_op("transpose2");
  auto transpose2_out = pattern->NewNode(transpose2_out_repr())
                            ->assert_is_op_output("transpose2", "Out")
2504
                            ->assert_is_op_input("matrix_multiply", "Y")
F
feng_shuai 已提交
2505 2506 2507
                            ->AsIntermediate();

  auto matmul1_op =
2508
      pattern->NewNode(matmul1_op_repr())->assert_is_op("matrix_multiply");
F
feng_shuai 已提交
2509
  auto matmul1_out = pattern->NewNode(matmul1_out_repr())
2510
                         ->assert_is_op_output("matrix_multiply", "Out")
F
feng_shuai 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
                         ->assert_is_op_input("scale", "X")
                         ->AsIntermediate();

  auto scale1_op = pattern->NewNode(scale1_op_repr())->assert_is_op("scale");
  auto scale1_out = pattern->NewNode(scale1_out_repr())
                        ->assert_is_op_output("scale", "Out")
                        ->assert_is_op_input("softmax", "X")
                        ->AsIntermediate();

  auto softmax1_op =
      pattern->NewNode(softmax1_op_repr())->assert_is_op("softmax");
  auto softmax1_out = pattern->NewNode(softmax1_out_repr())
                          ->assert_is_op_output("softmax", "Out")
2524
                          ->assert_is_op_input("matrix_multiply", "X")
F
feng_shuai 已提交
2525 2526 2527
                          ->AsIntermediate();

  auto matmul2_op =
2528
      pattern->NewNode(matmul2_op_repr())->assert_is_op("matrix_multiply");
F
feng_shuai 已提交
2529
  auto matmul2_out = pattern->NewNode(matmul2_out_repr())
2530
                         ->assert_is_op_output("matrix_multiply", "Out")
F
feng_shuai 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
                         ->assert_is_op_input("transpose2", "X")
                         ->AsIntermediate();

  auto transpose3_op =
      pattern->NewNode(transpose3_op_repr())->assert_is_op("transpose2");
  auto transpose3_out = pattern->NewNode(transpose3_out_repr())
                            ->assert_is_op_output("transpose2", "Out")
                            ->assert_is_op_input("reshape2", "X")
                            ->AsIntermediate();

  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto reshape2_out = pattern->NewNode(reshape2_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->AsOutput();

  matmul0_op->LinksFrom({in, matmul0_in_y});
  matmul0_out->LinksFrom({matmul0_op});

  elementwise0_op->LinksFrom({matmul0_out, elementwise0_in_y});
  elementwise0_out->LinksFrom({elementwise0_op});

  reshape1_op->LinksFrom({elementwise0_out});
  reshape1_out->LinksFrom({reshape1_op});

  transpose1_op->LinksFrom({reshape1_out});
  transpose1_out->LinksFrom({transpose1_op});

  slice1_op->LinksFrom({transpose1_out});
  slice1_out->LinksFrom({slice1_op});

  slice2_op->LinksFrom({transpose1_out});
  slice2_out->LinksFrom({slice2_op});

  slice3_op->LinksFrom({transpose1_out});
  slice3_out->LinksFrom({slice3_op});

  transpose2_op->LinksFrom({slice3_out});
  transpose2_out->LinksFrom({transpose2_op});

  matmul1_op->LinksFrom({slice2_out, transpose2_out});
  matmul1_out->LinksFrom({matmul1_op});

  scale1_op->LinksFrom({matmul1_out});
  scale1_out->LinksFrom({scale1_op});

  softmax1_op->LinksFrom({scale1_out});
  softmax1_out->LinksFrom({softmax1_op});

  matmul2_op->LinksFrom({slice1_out, softmax1_out});
  matmul2_out->LinksFrom({matmul2_op});

  transpose3_op->LinksFrom({matmul2_out});
  transpose3_out->LinksFrom({transpose3_op});

  reshape2_op->LinksFrom({transpose3_out});
  reshape2_out->LinksFrom({reshape2_op});

  return reshape2_out;
}

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
PDNode *patterns::SelfAttention::operator()(PDNode *in) {
  in->AsInput();

  std::unordered_set<std::string> matmul_ops{"matmul", "matmul_v2"};
  auto transpose2_0_op =
      pattern->NewNode(transpose2_0_op_repr())->assert_is_op("transpose2");
  auto transpose2_0_out = pattern->NewNode(transpose2_0_out_repr())
                              ->assert_is_op_output("transpose2", "Out")
                              ->assert_is_op_input("slice", "Input")
                              ->AsIntermediate();
  auto slice_0_op = pattern->NewNode(slice_0_op_repr())->assert_is_op("slice");
  auto slice_0_out = pattern->NewNode(slice_0_out_repr())
                         ->assert_is_op_output("slice", "Out")
                         ->assert_is_ops_input(matmul_ops, "X")
                         ->AsIntermediate();
  auto slice_1_op = pattern->NewNode(slice_1_op_repr())->assert_is_op("slice");
  auto slice_1_out = pattern->NewNode(slice_1_out_repr())
                         ->assert_is_op_output("slice", "Out")
                         ->assert_is_op_input("transpose2", "X")
                         ->AsIntermediate();
  auto slice_2_op = pattern->NewNode(slice_2_op_repr())->assert_is_op("slice");
  auto slice_2_out = pattern->NewNode(slice_2_out_repr())
                         ->assert_is_op_output("slice", "Out")
                         ->assert_is_ops_input(matmul_ops, "Y")
                         ->AsIntermediate();
  auto matmul_0_op =
      pattern->NewNode(matmul_0_op_repr())->assert_is_ops(matmul_ops);
  auto matmul_0_out = pattern->NewNode(matmul_0_out_repr())
                          ->assert_is_ops_output(matmul_ops, "Out")
                          ->assert_is_op_input("transpose2", "X")
                          ->AsIntermediate();
  auto matmul_1_op =
      pattern->NewNode(matmul_1_op_repr())->assert_is_ops(matmul_ops);
  auto matmul_1_out = pattern->NewNode(matmul_1_out_repr())
                          ->assert_is_ops_output(matmul_ops, "Out")
                          ->assert_is_op_input("softmax", "X")
                          ->AsIntermediate();
  auto transpose2_1_op =
      pattern->NewNode(transpose2_1_op_repr())->assert_is_op("transpose2");
  auto transpose2_1_out = pattern->NewNode(transpose2_1_out_repr())
                              ->assert_is_op_output("transpose2", "Out")
                              ->assert_is_ops_input(matmul_ops, "Y")
                              ->AsIntermediate();
  auto softmax_op =
      pattern->NewNode(softmax_op_repr())->assert_is_op("softmax");
  auto softmax_out = pattern->NewNode(softmax_out_repr())
                         ->assert_is_op_output("softmax", "Out")
                         ->assert_is_ops_input(matmul_ops, "X")
                         ->AsIntermediate();
  auto transpose2_2_op =
      pattern->NewNode(transpose2_2_op_repr())->assert_is_op("transpose2");
  auto transpose2_2_out = pattern->NewNode(transpose2_2_out_repr())
                              ->assert_is_op_output("transpose2", "Out")
                              ->AsOutput();
  transpose2_0_op->LinksFrom({in});
  transpose2_0_out->LinksFrom({transpose2_0_op});
  slice_0_op->LinksFrom({transpose2_0_out});
  slice_0_out->LinksFrom({slice_0_op});
  slice_1_op->LinksFrom({transpose2_0_out});
  slice_1_out->LinksFrom({slice_1_op});
  slice_2_op->LinksFrom({transpose2_0_out});
  slice_2_out->LinksFrom({slice_2_op});
  transpose2_1_op->LinksFrom({slice_1_out});
  transpose2_1_out->LinksFrom({transpose2_1_op});
  matmul_1_op->LinksFrom({slice_0_out, transpose2_1_out});
  matmul_1_out->LinksFrom({matmul_1_op});
  softmax_op->LinksFrom({matmul_1_out});
  softmax_out->LinksFrom({softmax_op});
  matmul_0_op->LinksFrom({softmax_out, slice_2_out});
  matmul_0_out->LinksFrom({matmul_0_op});
  transpose2_2_op->LinksFrom({matmul_0_out});
  transpose2_2_out->LinksFrom({transpose2_2_op});
  return transpose2_2_out;
}

2667 2668
PDNode *patterns::ConvElementwiseadd2Act::operator()(
    PDNode *conv_in, const std::unordered_set<std::string> &conv_act_set) {
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2680
                                  ->assert_is_persistable_var()
2681 2682 2683 2684
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
H
hjchen2 已提交
2685
                                 ->assert_is_op_input("elementwise_add", "Y")
2686 2687 2688 2689 2690
                                 ->AsIntermediate();

  auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr())
                                  ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr())
H
hjchen2 已提交
2691
                                    ->assert_is_op_input("elementwise_add", "X")
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
                                    ->AsInput();
  auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr())
                                   ->assert_is_op_output("elementwise_add")
                                   ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });
  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
H
hjchen2 已提交
2719 2720
  elementwise_add_op_1->LinksFrom({elementwise_add_out, elementwise_add_in_y_1})
      .LinksTo({elementwise_add_out_1});
2721 2722 2723 2724
  act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out});
  return act_out;
}

N
nhzlx 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
PDNode *patterns::ConvElementwiseadd::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2738
                                  ->assert_is_persistable_var()
N
nhzlx 已提交
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});

  return elementwise_add_out;
}

N
nhzlx 已提交
2753
PDNode *patterns::ConvAffineChannel::operator()(
Z
zyfncg 已提交
2754 2755 2756
    paddle::framework::ir::PDNode *conv_input,
    const std::string &conv_type,
    bool with_eltwise_add) {
N
nhzlx 已提交
2757
  // Create Operators
Z
zyfncg 已提交
2758 2759
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
N
nhzlx 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }

  auto *affine_channel_op =
      pattern->NewNode(affine_channel_repr())->assert_is_op("affine_channel");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
Z
zyfncg 已提交
2774
                              ->assert_is_op_input(conv_type, "Filter");
N
nhzlx 已提交
2775 2776 2777

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
Z
zyfncg 已提交
2778
                           ->assert_is_only_output_of_op(conv_type);
N
nhzlx 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as AffineChannel input
    conv_out_var->assert_is_op_input("affine_channel", "X");
  }

  // AC Scale
  auto *ac_scale_var = pattern->NewNode(ac_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
2801
                           ->assert_has_n_outputs(1)
N
nhzlx 已提交
2802 2803 2804 2805 2806
                           ->assert_is_op_input("affine_channel", "Scale");
  // AC Bias
  auto *ac_bias_var = pattern->NewNode(ac_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
2807
                          ->assert_has_n_outputs(1)
N
nhzlx 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
                          ->assert_is_op_input("affine_channel", "Bias");

  // AC output
  auto *ac_out_var = pattern->NewNode(ac_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("affine_channel");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    affine_channel_op->LinksFrom({eltwise_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  } else {
    affine_channel_op->LinksFrom({conv_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  }
  return ac_out_var;
}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
PDNode *patterns::DequantQuantAny::operator()() {
  auto *dequant_in = pattern->NewNode(dequant_in_repr())
                         ->AsInput()
                         ->assert_is_op_input("dequantize", "Input");

  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *quant_op = pattern->NewNode(quant_op_repr())
                       ->assert_is_op("quantize")
                       ->AsIntermediate();

  auto *quant_out = pattern->NewNode(quant_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("quantize");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
  quant_op->LinksFrom({dequant_out}).LinksTo({quant_out});
  next_op->LinksFrom({quant_out});

  return quant_out;
}

PDNode *patterns::DequantAny::operator()() {
  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksTo({dequant_out});
  next_op->LinksFrom({dequant_out});

  return dequant_out;
}

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
PDNode *patterns::MultipleQuantize::operator()() {
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  // find nodes that are inputs to quantize operators
  prev_out->assert_more([&](Node *node) {
    int counter = std::count_if(
        node->outputs.begin(), node->outputs.end(), [&](Node const *iter) {
          return iter && iter->IsOp() && iter->Op()->Type() == "quantize";
        });
    return (counter > 1);
  });

  return prev_out;
}

2889 2890
PDNode *patterns::QuantizePlacement::operator()(
    const std::unordered_set<std::string> &quantize_enabled_op_types) {
2891 2892
  auto *op =
      pattern->NewNode(op_repr())->assert_is_ops(quantize_enabled_op_types);
2893 2894 2895
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<bool>("use_mkldnn");
  });
2896 2897 2898
  return op;
}

2899 2900
PDNode *patterns::Bfloat16Placement::operator()(
    const std::unordered_set<std::string> &bfloat16_enabled_op_types) {
J
Jacek Czaja 已提交
2901
  std::unordered_set<std::string> supported_op_types =
2902 2903
      std::unordered_set<std::string>({"bilinear_interp_v2",
                                       "cast",
J
jakpiase 已提交
2904 2905 2906
                                       "clip",
                                       "concat",
                                       "conv2d",
2907
                                       "fused_conv2d",
J
jakpiase 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
                                       "conv2d_transpose",
                                       "elementwise_add",
                                       "elementwise_mul",
                                       "expand_v2",
                                       "fc",
                                       "fusion_gru",
                                       "fusion_lstm",
                                       "gelu",
                                       "layer_norm",
                                       "matmul",
                                       "matmul_v2",
2919
                                       "fused_matmul",
J
jakpiase 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
                                       "pool2d",
                                       "prelu",
                                       "relu",
                                       "reshape2",
                                       "scale",
                                       "sigmoid",
                                       "slice",
                                       "softmax",
                                       "split",
                                       "squeeze",
                                       "squeeze2",
                                       "sum",
                                       "transpose2"});
2933 2934 2935
  if (!bfloat16_enabled_op_types.empty()) {
    supported_op_types = bfloat16_enabled_op_types;
  }
2936
  auto *op_in = pattern->NewNode(op_in_repr())->AsInput();
2937
  auto *op = pattern->NewNode(op_repr())->assert_is_ops(supported_op_types);
2938 2939 2940 2941
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<bool>("use_mkldnn") ||
           node->Op()->Type() == "reshape2";
  });
2942
  op->LinksFrom({op_in});
2943 2944 2945 2946 2947 2948
  return op;
}

PDNode *patterns::OrphanedBfloat16::operator()() {
  auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
  prev_op->assert_more([&](Node *node) {
2949 2950 2951 2952
    bool data_type_is_missing = !node->Op()->HasAttr("mkldnn_data_type");
    bool data_type_is_fp32 = node->Op()->GetAttrIfExists<std::string>(
                                 "mkldnn_data_type") == "float32";
    return data_type_is_missing || data_type_is_fp32;
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
  });
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  auto *op_out = pattern->NewNode(op_out_repr())->AsOutput();

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();
  next_op->assert_more([&](Node *node) {
2965 2966 2967 2968
    bool data_type_is_missing = !node->Op()->HasAttr("mkldnn_data_type");
    bool data_type_is_fp32 = node->Op()->GetAttrIfExists<std::string>(
                                 "mkldnn_data_type") == "float32";
    return data_type_is_missing || data_type_is_fp32;
2969 2970 2971 2972 2973 2974 2975 2976
  });

  prev_op->LinksTo({prev_out});
  op->LinksFrom({prev_out}).LinksTo({op_out});
  next_op->LinksFrom({op_out});
  return next_op;
}

W
wenbin 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
PDNode *patterns::UnsupportedBfloat16::operator()() {
  auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
  prev_op->assert_more([&](Node *node) {
    return node->Op()->HasAttr("mkldnn_data_type") == false;
  });
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  prev_op->LinksTo({prev_out});
  op->LinksFrom({prev_out});
  return op;
}

T
Tomasz Socha 已提交
2994 2995
PDNode *patterns::Bloat16Ops::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op();
2996 2997 2998 2999 3000 3001 3002
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  return op;
}

3003
PDNode *patterns::MKLDNNInPlace::operator()() {
3004
  const std::unordered_set<std::string> &supported_op_types = {
3005
      "abs", "gelu", "leaky_relu", "relu", "softmax", "sqrt", "swish", "tanh"};
3006 3007 3008

  auto possible_inplace_op = pattern->NewNode(inplace_to_be_op_repr())
                                 ->assert_is_ops(supported_op_types);
3009 3010

  auto input = pattern->NewNode(inplace_to_be_op_in_repr())
3011
                   ->assert_is_ops_input(supported_op_types)
3012 3013
                   ->AsInput();
  auto output = pattern->NewNode(inplace_to_be_op_out_repr())
3014
                    ->assert_is_ops_output(supported_op_types)
3015
                    ->AsOutput();
3016 3017

  auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();
3018
  auto next_output = pattern->NewNode(next_op_out_repr())->AsOutput();
3019 3020 3021 3022

  // Check if op is MKL-DNN enabled
  possible_inplace_op->assert_op_attr("use_mkldnn", true);

3023
  // linked structure
3024 3025 3026
  possible_inplace_op->LinksTo({output});
  possible_inplace_op->LinksFrom({input});
  next_op->LinksFrom({output});
3027
  next_op->LinksTo({next_output});
3028 3029 3030 3031

  return possible_inplace_op;
}

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
// a -> transpose_op(1) -> transpose_out_a -> flatten_op(1) -> flatten_out_a
// b -> transpose_op(2) -> transpose_out_b -> flatten_op(2) -> flatten_out_b
// ...
// z -> transpose_op(n) -> transpose_out_z -> flatten_op(n) -> flatten_out_z
// flatten_out_a -> concat_op  flatten_out_b -> concat_op ... flatten_out_z ->
// concat_op
PDNode *patterns::TransposeFlattenConcat::operator()(
    std::vector<PDNode *> conv_in, int times) {
  // The times represents the repeat times of the
  // {trans, trans_out, flatten, flatten_out}
  const int kNumFields = 4;
  const int kTransOutOffset = 1;
  const int kFlattenOffset = 2;
  const int kFlattenOutOffset = 3;

  std::vector<PDNode *> nodes;

  for (int i = 0; i < times; i++) {
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose" + std::to_string(i)))
            ->assert_is_op("transpose2"));
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose_out" + std::to_string(i)))
            ->assert_is_op_output("transpose2")
            ->assert_is_op_input("flatten2", "X")
            ->AsIntermediate());
    nodes.push_back(pattern->NewNode(GetNodeName("flatten" + std::to_string(i)))
                        ->assert_is_op("flatten2"));

    nodes.push_back(
        pattern->NewNode(GetNodeName("flatten_out" + std::to_string(i)))
            ->assert_is_op_output("flatten2")
            ->assert_is_op_nth_input("concat", "X", i)
            ->AsIntermediate());
  }

  auto concat_op = pattern->NewNode(GetNodeName("concat"))
                       ->assert_is_op("concat")
                       ->assert_op_has_n_inputs("concat", times);
  auto concat_out = pattern->NewNode(GetNodeName("concat_out"))
                        ->assert_is_op_output("concat")
                        ->AsOutput();

  std::vector<PDNode *> flatten_outs;
  for (int i = 0; i < times; i++) {
    conv_in[i]->AsInput();
    // trans
    nodes[i * kNumFields]->LinksFrom({conv_in[i]});
    // trans_out
    nodes[i * kNumFields + kTransOutOffset]->LinksFrom({nodes[i * kNumFields]});
    // flatten
    nodes[i * kNumFields + kFlattenOffset]->LinksFrom(
        {nodes[i * kNumFields + kTransOutOffset]});
    // flatten_out
    nodes[i * kNumFields + kFlattenOutOffset]->LinksFrom(
        {nodes[i * kNumFields + kFlattenOffset]});
    flatten_outs.push_back(nodes[i * kNumFields + kFlattenOutOffset]);
  }

  concat_op->LinksFrom(flatten_outs).LinksTo({concat_out});
  return concat_out;
}

3095
void patterns::DeleteDropoutOpPattern::operator()(bool with_mask) {
3096 3097 3098 3099 3100 3101 3102
  auto dropout_op_x = pattern->NewNode(dropout_op_x_repr())
                          ->assert_is_op_input("dropout", "X")
                          ->AsInput();
  auto dropout_op = pattern->NewNode(dropout_op_repr())
                        ->assert_is_op("dropout")
                        ->assert_op_attr("dropout_implementation",
                                         std::string("upscale_in_train"));
D
denglin-github 已提交
3103
  auto dropout_op_out = pattern->NewNode(dropout_op_out_repr())
3104
                            ->assert_is_op_output("dropout", "Out");
3105 3106 3107 3108 3109 3110 3111 3112
  if (with_mask) {
    auto dropout_op_mask = pattern->NewNode(dropout_op_mask_repr())
                               ->assert_is_op_output("dropout", "Mask");
    dropout_op->LinksFrom({dropout_op_x})
        .LinksTo({dropout_op_out, dropout_op_mask});
  } else {
    dropout_op->LinksFrom({dropout_op_x}).LinksTo({dropout_op_out});
  }
D
denglin-github 已提交
3113 3114
}

3115 3116 3117
void patterns::DeleteQuantOpFuse::operator()(PDNode *input_act_node,
                                             const std::string &quant_type) {
  auto *input_scale_node = pattern->NewNode(GetNodeName("input_scale_node"))
3118 3119
                               ->assert_is_op_input(quant_type, "InScale")
                               ->AsInput();
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
  auto *quant_node =
      pattern->NewNode(GetNodeName("quant_node"))->assert_is_op(quant_type);
  auto *output_scale_node = pattern->NewNode(GetNodeName("output_scale_node"))
                                ->assert_is_op_output(quant_type, "OutScale")
                                ->AsOutput();
  auto *output_act_node = pattern->NewNode(GetNodeName("output_act_node"))
                              ->assert_is_op_output(quant_type, "Out")
                              ->AsOutput();
  quant_node->LinksFrom({input_scale_node, input_act_node});
  output_scale_node->LinksFrom({quant_node});
  output_act_node->LinksFrom({quant_node});
}

void patterns::DequantOpFuse::operator()(PDNode *quantized_op_input,
                                         const std::string &quantized_op_type,
                                         const std::string &dequant_type,
                                         const std::string &weight_name) {
  auto *quantized_op_weight =
      pattern->NewNode(GetNodeName("quantized_op_weight"))
          ->assert_is_op_input(quantized_op_type, weight_name)
          ->AsInput();
  auto *quantized_op = pattern->NewNode(GetNodeName("quantized_op"))
                           ->assert_is_op(quantized_op_type);
  auto *quantized_op_out = pattern->NewNode(GetNodeName("quantized_op_out"))
                               ->assert_is_op_output(quantized_op_type)
                               ->assert_is_op_input(dequant_type, "X");
  auto *dequant_op =
      pattern->NewNode(GetNodeName("dequant_op"))->assert_is_op(dequant_type);
  auto *dequant_op_out = pattern->NewNode(GetNodeName("dequant_op_out"))
                             ->assert_is_op_output(dequant_type, "Out")
                             ->AsOutput();
  PDNode *dequant_channel_scale = nullptr;
3152
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
3153 3154 3155 3156
    dequant_channel_scale =
        pattern->NewNode(GetNodeName("dequant_channel_scale"))
            ->assert_is_op_nth_input(dequant_type, "Scales", 0)
            ->AsInput();
N
nhzlx 已提交
3157
  }
3158 3159
  quantized_op->LinksFrom({quantized_op_input, quantized_op_weight});
  quantized_op_out->LinksFrom({quantized_op});
N
nhzlx 已提交
3160

3161 3162 3163 3164
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
    dequant_op->LinksFrom({quantized_op_out, dequant_channel_scale});
  } else {
    dequant_op->LinksFrom({quantized_op_out});
N
nhzlx 已提交
3165
  }
3166
  dequant_op_out->LinksFrom({dequant_op});
N
nhzlx 已提交
3167 3168
}

3169 3170 3171
void patterns::ShuffleChannelPattern::operator()(PDNode *reshape1_in) {
  auto reshape1_op =
      pattern->NewNode(reshape1_op_repr())->assert_is_op("reshape2");
3172
  reshape1_op->assert_more([&](Node *x) {
R
Ruibiao Chen 已提交
3173
    return PADDLE_GET_CONST(std::vector<int>, x->Op()->GetAttr("shape"))
3174
               .size() == 5;
3175
  });
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

  auto reshape1_out = pattern->NewNode(reshape1_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->assert_is_op_input("transpose2")
                          ->AsIntermediate();

  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2")
                           ->AsIntermediate();

  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto reshape2_out = pattern->NewNode(reshape2_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->AsOutput();

  reshape1_op->LinksFrom({reshape1_in});
  reshape1_out->LinksFrom({reshape1_op});
  transpose_op->LinksFrom({reshape1_out});
  transpose_out->LinksFrom({transpose_op});
  reshape2_op->LinksFrom({transpose_out});
  reshape2_out->LinksFrom({reshape2_op});
}

3204 3205
void patterns::DeleteQuantDequantOpPattern::operator()(
    PDNode *input_node, const std::string &quantdequant_types) {
3206 3207
  auto quant_dequant_op_inscale =
      pattern->NewNode(quant_dequant_op_inscale_repr())
3208
          ->assert_is_op_input(quantdequant_types, "InScale")
3209
          ->AsInput();
3210 3211
  auto quant_dequant_op = pattern->NewNode(quant_dequant_op_repr())
                              ->assert_is_op(quantdequant_types);
3212

3213
  auto quant_dequant_op_out =
3214
      pattern->NewNode(quant_dequant_op_out_repr())
3215 3216
          ->assert_is_op_output(quantdequant_types, "Out")
          ->AsOutput();
3217 3218 3219

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
3220
          ->assert_is_op_output(quantdequant_types, "OutScale")
3221 3222
          ->AsOutput();

3223
  quant_dequant_op->LinksFrom({quant_dequant_op_inscale, input_node});
3224
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
3225
  quant_dequant_op_out->LinksFrom({quant_dequant_op});
3226 3227
}

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
void patterns::DeleteQuantDequantFilterOpPattern::operator()() {
  auto quant_dequant_op_x =
      pattern->NewNode(quant_dequant_op_x_repr())
          ->assert_is_ops_input(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "X")
          ->AsInput();

  auto quant_dequant_op =
      pattern->NewNode(quant_dequant_op_repr())
          ->assert_is_ops({"fake_channel_wise_quantize_dequantize_abs_max",
                           "fake_quantize_dequantize_abs_max"});

  auto quant_dequant_out =
      pattern->NewNode(quant_dequant_op_out_repr())
          ->assert_is_ops_output(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "Out")
          ->AsIntermediate();

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
          ->assert_is_ops_output(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "OutScale")
          ->AsOutput();
  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  quant_dequant_op->LinksFrom({quant_dequant_op_x});
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
  quant_dequant_out->LinksFrom({quant_dequant_op});
  any_op2->LinksFrom({quant_dequant_out});
}

3265 3266 3267 3268 3269 3270
void patterns::DeleteWeightQuantDequantLinearOpPattern::operator()() {
  auto weight_dequantize_linear_op_x =
      pattern->NewNode(weight_dequantize_linear_op_x_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_is_persistable_var();
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337

  auto weight_dequantize_linear_op_scale =
      pattern->NewNode(weight_dequantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op =
      pattern->NewNode(weight_dequantize_linear_op_repr())
          ->assert_is_op("dequantize_linear");

  auto weight_dequantize_linear_op_out =
      pattern->NewNode(weight_dequantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("dequantize_linear", "Y");

  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  weight_dequantize_linear_op
      ->LinksFrom(
          {weight_dequantize_linear_op_x, weight_dequantize_linear_op_scale})
      .LinksTo({weight_dequantize_linear_op_out});
  any_op2->LinksFrom({weight_dequantize_linear_op_out});
}

void patterns::DeleteWeightDequantLinearOpEncoderPattern::operator()() {
  auto weight_dequantize_linear_op_x =
      pattern->NewNode(weight_dequantize_linear_op_x_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op_scale =
      pattern->NewNode(weight_dequantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op =
      pattern->NewNode(weight_dequantize_linear_op_repr())
          ->assert_is_op("dequantize_linear");

  auto weight_dequantize_linear_op_out =
      pattern->NewNode(weight_dequantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("dequantize_linear", "Y");

  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  // while loop
  auto *while0 =
      pattern->NewNode(while0_repr())->assert_is_op("while")->AsOutput();
  while0->LinksFrom({weight_dequantize_linear_op_out});

  weight_dequantize_linear_op
      ->LinksFrom(
          {weight_dequantize_linear_op_x, weight_dequantize_linear_op_scale})
      .LinksTo({weight_dequantize_linear_op_out});
  any_op2->LinksFrom({weight_dequantize_linear_op_out});
}

void patterns::DeleteWeightDequantLinearOpDecoderPattern::operator()() {
  auto weight_dequantize_linear_op_x =
      pattern->NewNode(weight_dequantize_linear_op_x_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_is_persistable_var();
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

  auto weight_dequantize_linear_op_scale =
      pattern->NewNode(weight_dequantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op =
      pattern->NewNode(weight_dequantize_linear_op_repr())
          ->assert_is_op("dequantize_linear");

  auto weight_dequantize_linear_op_out =
      pattern->NewNode(weight_dequantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("dequantize_linear", "Y");

  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  weight_dequantize_linear_op
      ->LinksFrom(
          {weight_dequantize_linear_op_x, weight_dequantize_linear_op_scale})
      .LinksTo({weight_dequantize_linear_op_out});
  any_op2->LinksFrom({weight_dequantize_linear_op_out});
}

void patterns::DeleteQuantDequantLinearOpPattern::operator()() {
  auto quantize_linear_op_x = pattern->NewNode(quantize_linear_op_x_repr())
                                  ->AsInput()
                                  ->assert_is_op_input("quantize_linear", "X");

  auto quantize_linear_op_scale =
      pattern->NewNode(quantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("quantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto quantize_linear_op = pattern->NewNode(quantize_linear_op_repr())
                                ->assert_is_op("quantize_linear");

  auto quantize_linear_op_out =
      pattern->NewNode(quantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("quantize_linear", "Y")
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_var_not_persistable();

  // Can not add this node. Todo: Wangzheee
  /*
    auto dequantize_linear_op_scale =
        pattern->NewNode(dequantize_linear_op_scale_repr())
            ->assert_is_op_input("dequantize_linear", "Scale")
            ->AsIntermediate();
  */

  auto dequantize_linear_op = pattern->NewNode(dequantize_linear_op_repr())
                                  ->assert_is_op("dequantize_linear");

  auto dequantize_linear_op_out =
      pattern->NewNode(dequantize_linear_op_out_repr())
          ->AsIntermediate()
W
Wangzheee 已提交
3398 3399
          ->assert_is_op_output("dequantize_linear", "Y")
          ->AsOutput();
3400 3401 3402 3403 3404 3405 3406 3407

  quantize_linear_op
      ->LinksFrom({quantize_linear_op_x, quantize_linear_op_scale})
      .LinksTo({quantize_linear_op_out});
  dequantize_linear_op->LinksFrom({quantize_linear_op_out})
      .LinksTo({dequantize_linear_op_out});
}

3408
PDNode *patterns::ReshapeTransposeMatmulPattern::operator()(
3409 3410
    const std::string &op_name,
    bool with_reshape_xshape,
3411
    bool with_transpose_xshape) {
3412 3413 3414 3415
  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
3416
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op(op_name);
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

  auto reshape_in = pattern->NewNode(reshape_in_repr())
                        ->AsInput()
                        ->assert_is_op_input("reshape2", "X");

  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsIntermediate()
                         ->assert_is_op_input("transpose2", "X")
                         ->assert_is_op_output("reshape2", "Out");
  if (!with_reshape_xshape)
    reshape_out->assert_is_only_output_of_op("reshape2");

  auto reshape_xshape = with_reshape_xshape
                            ? pattern->NewNode(reshape_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("reshape2", "XShape")
                            : nullptr;

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
3437
                           ->assert_is_op_input(op_name)
3438 3439 3440 3441 3442
                           ->assert_is_op_output("transpose2", "Out");
  if (!with_transpose_xshape)
    transpose_out->assert_is_only_output_of_op("transpose2");

  auto transpose_xshape =
3443 3444 3445 3446
      with_transpose_xshape ? pattern->NewNode(transpose_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("transpose2", "XShape")
                            : nullptr;
3447 3448 3449

  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
3450
                        ->assert_is_op_output(op_name, "Out");
3451 3452 3453 3454 3455 3456 3457 3458 3459

  reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out});
  if (with_reshape_xshape) reshape_op->LinksTo({reshape_xshape});
  transpose_op->LinksFrom({reshape_out}).LinksTo({transpose_out});
  if (with_transpose_xshape) transpose_op->LinksTo({transpose_xshape});
  matmul_op->LinksFrom({transpose_out}).LinksTo({matmul_out});
  return matmul_out;
}

3460 3461 3462
// shared function for matmul and matmul_v2
PDNode *patterns::MatmulTransposeReshapePattern::operator()(
    const std::string &op_name) {
3463 3464 3465 3466
  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
3467
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op(op_name);
3468 3469 3470

  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsInput()
3471
                        ->assert_is_op_output(op_name, "Out")
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
                        ->assert_is_op_input("transpose2", "X");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2", "X");

  auto transpose_out_xshape = pattern->NewNode(transpose_out_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("transpose2", "XShape");

  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("reshape2");

  auto reshape_out_xshape = pattern->NewNode(reshape_out_xshape_repr())
                                ->AsIntermediate()
                                ->assert_is_op_output("reshape2", "XShape");

  matmul_op->LinksTo({matmul_out});
  transpose_op->LinksTo({transpose_out_xshape});
  reshape_op->LinksTo({reshape_out_xshape});
  transpose_op->LinksFrom({matmul_out}).LinksTo({transpose_out});
  reshape_op->LinksFrom({transpose_out}).LinksTo({reshape_out});
  return reshape_out;
}

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
PDNode *patterns::FusionGru::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_gru");
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "X");
  auto weight_h = pattern->NewNode(weight_h_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_gru", "WeightH");
  auto weight_x = pattern->NewNode(weight_x_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_gru", "WeightX");
  auto out = pattern->NewNode(out_repr())
                 ->AsOutput()
                 ->assert_is_op_output("fusion_gru", "Hidden");
  op->LinksFrom({x, weight_h, weight_x}).LinksTo({out});
  return out;
}

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
PDNode *patterns::FusionLSTM::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_lstm");
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_lstm", "X");
  auto weight_h = pattern->NewNode(weight_h_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_lstm", "WeightH");
  auto weight_x = pattern->NewNode(weight_x_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_lstm", "WeightX");
  auto hidden = pattern->NewNode(hidden_repr())
                    ->AsOutput()
                    ->assert_is_op_output("fusion_lstm", "Hidden");
  auto cell = pattern->NewNode(cell_repr())
                  ->AsOutput()
                  ->assert_is_op_output("fusion_lstm", "Cell");
  op->LinksFrom({x, weight_h, weight_x}).LinksTo({hidden, cell});
  return hidden;
}

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
PDNode *patterns::TwoFusionGruConcat::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "X");
  auto gru1 =
      pattern->NewNode(gru1_repr())
          ->assert_is_op("fusion_gru")
          ->assert_more([&](Node *node) {
            return node->Op()->GetAttrIfExists<bool>("is_reverse") == false;
          });
  auto gru2 =
      pattern->NewNode(gru2_repr())
          ->assert_is_op("fusion_gru")
          ->assert_more([&](Node *node) {
            return node->Op()->GetAttrIfExists<bool>("is_reverse") == true;
          });
  auto wh1 = pattern->NewNode(wh1_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightH");
  auto wh2 = pattern->NewNode(wh2_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightH");
  auto wx1 = pattern->NewNode(wx1_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightX");
  auto wx2 = pattern->NewNode(wx2_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightX");
  auto b1 = pattern->NewNode(b1_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "Bias");
  auto b2 = pattern->NewNode(b2_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "Bias");
  auto h1 = pattern->NewNode(h1_repr())
                ->AsOutput()
                ->assert_is_op_output("fusion_gru", "Hidden")
                ->assert_is_op_input("concat")
                ->AsIntermediate();
  auto h2 = pattern->NewNode(h2_repr())
                ->AsOutput()
                ->assert_is_op_output("fusion_gru", "Hidden")
                ->assert_is_op_input("concat")
                ->AsIntermediate();
  auto concat = pattern->NewNode(concat_repr())->assert_is_op("concat");
  auto out = pattern->NewNode(out_repr())
                 ->AsOutput()
                 ->assert_is_op_output("concat", "Out");
  gru1->LinksFrom({x, wh1, wx1, b1}).LinksTo({h1});
  gru2->LinksFrom({x, wh2, wx2, b2}).LinksTo({h2});
  concat->LinksFrom({h1, h2}).LinksTo({out});
  return out;
}

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
PDNode *patterns::MultiGruSeq::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "multi_gru", "X");
  auto gru1 = pattern->NewNode(gru1_repr())->assert_is_op("multi_gru");
  auto wx11 = pattern->NewNode(wx11_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 0);
  auto wx12 = pattern->NewNode(wx12_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 1);
  auto wh11 = pattern->NewNode(wh11_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 0);
  auto wh12 = pattern->NewNode(wh12_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 1);
  auto b11 = pattern->NewNode(b11_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 0);
  auto b12 = pattern->NewNode(b12_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 1);
  auto h1 = pattern->NewNode(h1_repr())
                ->AsOutput()
                ->assert_is_op_output("multi_gru", "Hidden")
                ->assert_is_op_input("multi_gru", "X")
                ->AsIntermediate();
  auto gru2 = pattern->NewNode(gru2_repr())->assert_is_op("multi_gru");
  auto wx21 = pattern->NewNode(wx21_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 0);
  auto wx22 = pattern->NewNode(wx22_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 1);
  auto wh21 = pattern->NewNode(wh21_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 0);
  auto wh22 = pattern->NewNode(wh22_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 1);
  auto b21 = pattern->NewNode(b21_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 0);
  auto b22 = pattern->NewNode(b22_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 1);
  auto h2 = pattern->NewNode(h2_repr())->AsOutput()->assert_is_op_output(
      "multi_gru", "Hidden");
  gru1->LinksFrom({x, wx11, wx12, wh11, wh12, b11, b12}).LinksTo({h1});
  gru2->LinksFrom({h1, wx21, wx22, wh21, wh22, b21, b22}).LinksTo({h2});
  return h2;
}

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
PDNode *patterns::MultiGru::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "multi_gru", "X");
  auto gru = pattern->NewNode(gru_repr())->assert_is_op("multi_gru");
  auto wx = pattern->NewNode(wx_repr())->AsInput()->assert_is_op_nth_input(
      "multi_gru", "WeightX", 0);
  auto wh = pattern->NewNode(wh_repr())->AsInput()->assert_is_op_nth_input(
      "multi_gru", "WeightH", 0);
  auto h = pattern->NewNode(h_repr())->AsOutput()->assert_is_op_output(
      "multi_gru", "Hidden");
  gru->LinksFrom({x, wx, wh}).LinksTo({h});
  return h;
}

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
PDNode *patterns::LayerNorm::operator()() {
  auto *x = pattern->NewNode(x_repr())->AsInput()->assert_is_ops_input(
      {"reduce_mean", "elementwise_sub"});
  auto *x_mean = pattern->NewNode(x_mean_repr())->assert_is_op("reduce_mean");
  auto *x_mean_out = pattern->NewNode(x_mean_out_repr())
                         ->assert_is_op_output("reduce_mean", "Out")
                         ->assert_is_op_input("elementwise_sub", "Y")
                         ->AsIntermediate();
  auto *x_sub_mean =
      pattern->NewNode(x_sub_mean_repr())->assert_is_op("elementwise_sub");
  auto *x_sub_mean_out =
      pattern->NewNode(x_sub_mean_out_repr())
          ->assert_is_op_output("elementwise_sub")
          ->assert_is_ops_input({"elementwise_pow", "elementwise_div"}, "X")
          ->AsIntermediate();
  auto *sqr_pow = pattern->NewNode(sqr_pow_repr())
                      ->assert_is_op_input("elementwise_pow", "Y")
                      ->assert_is_persistable_var()
                      ->AsInput();
  auto *x_sub_mean_sqr =
      pattern->NewNode(x_sub_mean_sqr_repr())->assert_is_op("elementwise_pow");
  auto *x_sub_mean_sqr_out = pattern->NewNode(x_sub_mean_sqr_out_repr())
                                 ->assert_is_op_output("elementwise_pow")
                                 ->assert_is_op_input("reduce_mean")
                                 ->AsIntermediate();
  auto *std_dev = pattern->NewNode(std_dev_repr())->assert_is_op("reduce_mean");
  auto *std_dev_out = pattern->NewNode(std_dev_out_repr())
                          ->assert_is_op_output("reduce_mean")
                          ->assert_is_op_input("elementwise_add")
                          ->AsIntermediate();
  auto *eps = pattern->NewNode(eps_repr())
                  ->assert_is_op_input("elementwise_add", "Y")
                  ->assert_is_persistable_var()
                  ->AsInput();
  auto *std_dev_eps =
      pattern->NewNode(std_dev_eps_repr())->assert_is_op("elementwise_add");
  auto *std_dev_eps_out = pattern->NewNode(std_dev_eps_out_repr())
                              ->assert_is_op_output("elementwise_add")
                              ->assert_is_op_input("sqrt")
                              ->AsIntermediate();
  auto *std_dev_eps_sqrt =
      pattern->NewNode(std_dev_eps_sqrt_repr())->assert_is_op("sqrt");
  auto *std_dev_eps_sqrt_out = pattern->NewNode(std_dev_eps_sqrt_out_repr())
                                   ->assert_is_op_output("sqrt")
                                   ->assert_is_op_input("elementwise_div", "Y")
                                   ->AsIntermediate();
  auto *division =
      pattern->NewNode(division_repr())->assert_is_op("elementwise_div");
  auto *division_out = pattern->NewNode(division_out_repr())
                           ->assert_is_op_output("elementwise_div")
                           ->assert_is_op_input("elementwise_mul")
                           ->AsIntermediate();
  auto *gamma = pattern->NewNode(gamma_repr())
                    ->assert_is_op_input("elementwise_mul", "Y")
                    ->assert_is_persistable_var()
                    ->AsInput();
  auto *scale = pattern->NewNode(scale_repr())->assert_is_op("elementwise_mul");
  auto *scale_out = pattern->NewNode(scale_out_repr())
                        ->assert_is_op_output("elementwise_mul")
                        ->assert_is_op_input("elementwise_add")
                        ->AsIntermediate();
  auto *beta = pattern->NewNode(beta_repr())
                   ->assert_is_op_input("elementwise_add", "Y")
                   ->assert_is_persistable_var()
                   ->AsInput();
  auto *shift = pattern->NewNode(shift_repr())->assert_is_op("elementwise_add");
  auto *shift_out = pattern->NewNode(shift_out_repr())
                        ->assert_is_op_output("elementwise_add")
                        ->AsOutput();

  /*
   *            X
   *           / \
   *          /   reduce_mean "u(x)"
   *          \   /
   *      elementwise_sub     "x - u(x)"
   *      /           \    2
   *      |            \  /
   *      |      elementwise_pow  "(x - u(x))^2"
   *      |             |
   *      |       reduce_mean     "sigma^2 = 1/C*Sum{(x - u(x))^2}"
   *      |             |     eps
   *      |             |     /
   *      |       elementwise_add "sigma^2 + epsilon"
   *      \             |
   *       \           sqrt       "sqrt(sigma^2 + epsilon)"
   *        \          /
   *         \        /
   *       elementwise_div        "lnorm = {x-u(x)}/{sqrt(sigma^2 + epsilon)}"
   *              |
   *       gamma  |
   *          \   |
   *       elementwise_mul        "scale: gamma(C) * lnorm"
   *              |
   *        beta  |
   *          \   |
   *       elementwise_add        "shift: gamma(C) * lnorm + beta(C)"
   */

  x_mean->LinksFrom({x}).LinksTo({x_mean_out});
  x_sub_mean->LinksFrom({x, x_mean_out}).LinksTo({x_sub_mean_out});
  x_sub_mean_sqr->LinksFrom({x_sub_mean_out, sqr_pow})
      .LinksTo({x_sub_mean_sqr_out});
  std_dev->LinksFrom({x_sub_mean_sqr_out}).LinksTo({std_dev_out});
  std_dev_eps->LinksFrom({std_dev_out, eps}).LinksTo({std_dev_eps_out});

  std_dev_eps_sqrt->LinksFrom({std_dev_eps_out})
      .LinksTo({std_dev_eps_sqrt_out});
  division->LinksFrom({x_sub_mean_out, std_dev_eps_sqrt_out})
      .LinksTo({division_out});
  scale->LinksFrom({division_out, gamma}).LinksTo({scale_out});
  shift->LinksFrom({scale_out, beta}).LinksTo({shift_out});

  return shift_out;
}

3770
// Add support int8 flag and out_threshold
3771
PDNode *patterns::AddSupportInt8::operator()() {
3772
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op();
3773
  auto quant_out =
3774 3775
      pattern->NewNode(quant_out_repr())
          ->assert_is_var()
3776
          ->assert_more([&](Node *node) { return !node->outputs.empty(); })
3777
          ->AsOutput();
3778 3779 3780 3781
  quant_op->LinksTo({quant_out});
  return quant_out;
}

W
wenbin 已提交
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
PDNode *patterns::SplitLayerNorm::operator()() {
  auto layer_norm_op =
      pattern->NewNode(layer_norm_op_repr())->assert_is_op("layer_norm");
  auto layer_norm_in = pattern->NewNode(layer_norm_in_repr())
                           ->AsInput()
                           ->assert_is_op_input("layer_norm", "X");
  auto layer_norm_bias = pattern->NewNode(layer_norm_bias_repr())
                             ->AsInput()
                             ->assert_is_op_input("layer_norm", "Bias");
  auto layer_norm_scale = pattern->NewNode(layer_norm_scale_repr())
                              ->AsInput()
                              ->assert_is_op_input("layer_norm", "Scale");
  auto layer_norm_out = pattern->NewNode(layer_norm_out_repr())
                            ->assert_is_op_output("layer_norm", "Y");

  layer_norm_op->LinksFrom({layer_norm_in, layer_norm_bias, layer_norm_scale})
      .LinksTo({layer_norm_out});

  return layer_norm_out;
}

W
wenbin 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
PDNode *patterns::LayernormShiftPartitionPattern::operator()() {
  auto layer_norm_op =
      pattern->NewNode(layer_norm_op_repr())
          ->assert_is_op("layer_norm")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("begin_norm_axis") &&
                   (PADDLE_GET_CONST(
                        int, node->Op()->GetAttr("begin_norm_axis")) == 2);
          });
  auto layer_norm_in = pattern->NewNode(layer_norm_in_repr())
                           ->AsInput()
                           ->assert_is_op_input("layer_norm", "X");
  auto layer_norm_bias = pattern->NewNode(layer_norm_bias_repr())
                             ->AsInput()
                             ->assert_is_op_input("layer_norm", "Bias");
  auto layer_norm_scale = pattern->NewNode(layer_norm_scale_repr())
                              ->AsInput()
                              ->assert_is_op_input("layer_norm", "Scale");
  auto layer_norm_out = pattern->NewNode(layer_norm_out_repr())
                            ->AsIntermediate()
                            ->assert_is_op_input("reshape2", "X")
                            ->assert_is_op_output("layer_norm", "Y");
  auto reshape1_op =
      pattern->NewNode(reshape1_op_repr())
          ->assert_is_op("reshape2")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("shape") &&
                   (PADDLE_GET_CONST(std::vector<int>,
                                     node->Op()->GetAttr("shape"))
                        .size() == 4);
          });
  auto reshape1_out = pattern->NewNode(reshape1_out_repr())
                          ->AsIntermediate()
                          ->assert_is_op_output("reshape2", "Out");
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
  PDNode *roll1_op = nullptr;
  PDNode *roll1_out = nullptr;

  if (!with_roll_) {
    reshape1_out->assert_is_op_input("reshape2", "X");
  } else {
    reshape1_out->assert_is_op_input("roll", "X");
    roll1_op = pattern->NewNode(roll1_op_repr())->assert_is_op("roll");
    roll1_out = pattern->NewNode(roll1_out_repr())
                    ->AsIntermediate()
                    ->assert_is_op_output("roll", "Out")
                    ->assert_is_op_input("reshape2", "X");
  }
W
wenbin 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858
  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())
          ->assert_is_op("reshape2")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("shape") &&
                   (PADDLE_GET_CONST(std::vector<int>,
                                     node->Op()->GetAttr("shape"))
                        .size() == 6);
          });
3859

W
wenbin 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
  auto reshape2_out = pattern->NewNode(reshape2_out_repr())
                          ->AsIntermediate()
                          ->assert_is_op_input("transpose2", "X")
                          ->assert_is_op_output("reshape2", "Out");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())
          ->assert_is_op("transpose2")
          ->assert_more([&](Node *node) {
            if (!node->Op()->HasAttr("axis")) return false;
            std::vector<int> axis =
                PADDLE_GET_CONST(std::vector<int>, node->Op()->GetAttr("axis"));
            if (axis.size() != 6) return false;
            const std::vector<int> axis_cmp{0, 1, 3, 2, 4, 5};
            return std::equal(axis.begin(), axis.end(), axis_cmp.begin());
          });
  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
                           ->assert_is_op_input("reshape2", "X")
                           ->assert_is_op_output("transpose2", "Out");
  auto reshape3_op =
      pattern->NewNode(reshape3_op_repr())
          ->assert_is_op("reshape2")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("shape") &&
                   (PADDLE_GET_CONST(std::vector<int>,
                                     node->Op()->GetAttr("shape"))
                        .size() == 4);
          });
  auto reshape3_out = pattern->NewNode(reshape3_out_repr())
                          ->AsIntermediate()
                          ->assert_is_op_input("reshape2", "X")
                          ->assert_is_op_output("reshape2", "Out");
  auto reshape4_op =
      pattern->NewNode(reshape4_op_repr())
          ->assert_is_op("reshape2")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("shape") &&
                   (PADDLE_GET_CONST(std::vector<int>,
                                     node->Op()->GetAttr("shape"))
                        .size() == 3);
          });
  auto reshape4_out = pattern->NewNode(reshape4_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->AsOutput();

  layer_norm_op->LinksFrom({layer_norm_in, layer_norm_bias, layer_norm_scale})
      .LinksTo({layer_norm_out});
  reshape1_op->LinksFrom({layer_norm_out}).LinksTo({reshape1_out});
3908 3909 3910 3911 3912 3913
  if (!with_roll_) {
    reshape2_op->LinksFrom({reshape1_out}).LinksTo({reshape2_out});
  } else {
    roll1_op->LinksFrom({reshape1_out}).LinksTo({roll1_out});
    reshape2_op->LinksFrom({roll1_out}).LinksTo({reshape2_out});
  }
W
wenbin 已提交
3914 3915 3916 3917 3918 3919 3920
  transpose_op->LinksFrom({reshape2_out}).LinksTo({transpose_out});
  reshape3_op->LinksFrom({transpose_out}).LinksTo({reshape3_out});
  reshape4_op->LinksFrom({reshape3_out}).LinksTo({reshape4_out});

  return reshape4_out;
}

W
Wang Bojun 已提交
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
PDNode *patterns::ReverseRollPattern::operator()(PDNode *in) {
  in->AsInput();
  auto reshape2_00_op =
      pattern->NewNode(reshape2_00_op_repr())->assert_is_op("reshape2");

  auto reshape2_00_out = pattern->NewNode(reshape2_00_out_repr())
                             ->AsIntermediate()
                             ->assert_is_op_output("reshape2", "Out")
                             ->assert_is_op_input("reshape2", "X");

  auto reshape2_10_op =
      pattern->NewNode(reshape2_10_op_repr())->assert_is_op("reshape2");
  auto reshape2_10_out = pattern->NewNode(reshape2_10_out_repr())
                             ->AsIntermediate()
                             ->assert_is_op_output("reshape2", "Out")
                             ->assert_is_op_input("transpose2", "X");

  auto transpose2_20_op =
      pattern->NewNode(transpose2_20_op_repr())->assert_is_op("transpose2");
  auto transpose2_20_out = pattern->NewNode(transpose2_20_out_repr())
                               ->AsIntermediate()
                               ->assert_is_op_output("transpose2", "Out")
                               ->assert_is_op_input("reshape2", "X");

  auto reshape2_30_op =
      pattern->NewNode(reshape2_30_op_repr())->assert_is_op("reshape2");
  auto reshape2_30_out = pattern->NewNode(reshape2_30_out_repr())
                             ->AsIntermediate()
                             ->assert_is_op_output("reshape2", "Out");
  PDNode *roll_40_op = nullptr;
  PDNode *roll_40_out = nullptr;
  if (with_roll_) {
    reshape2_30_out->assert_is_op_input("roll", "X");
    roll_40_op = pattern->NewNode(roll_40_op_repr())->assert_is_op("roll");
    roll_40_out = pattern->NewNode(roll_40_out_repr())
                      ->AsIntermediate()
                      ->assert_is_op_output("roll", "Out")
                      ->assert_is_op_input("reshape2", "X");
  } else {
    reshape2_30_out->assert_is_op_input("reshape2", "X");
  }
  auto reshape2_50_op =
      pattern->NewNode(reshape2_50_op_repr())->assert_is_op("reshape2");
  auto reshape2_50_out = pattern->NewNode(reshaep2_50_out_repr())
                             ->assert_is_op_output("reshape2", "Out")
                             ->AsOutput();
  reshape2_00_op->LinksFrom({in});
  reshape2_00_out->LinksFrom({reshape2_00_op});
  reshape2_10_op->LinksFrom({reshape2_00_out});
  reshape2_10_out->LinksFrom({reshape2_10_op});
  transpose2_20_op->LinksFrom({reshape2_10_out});
  transpose2_20_out->LinksFrom({transpose2_20_op});
  reshape2_30_op->LinksFrom({transpose2_20_out});
  reshape2_30_out->LinksFrom({reshape2_30_op});
  if (with_roll_) {
    roll_40_op->LinksFrom({reshape2_30_out});
    roll_40_out->LinksFrom({roll_40_op});
    reshape2_50_op->LinksFrom({roll_40_out});
  } else {
    reshape2_50_op->LinksFrom({reshape2_30_out});
  }
  reshape2_50_out->LinksFrom({reshape2_50_op});
  return reshape2_50_out;
}
W
Wang Bojun 已提交
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
PDNode *patterns::MergeLayernormPattern::operator()(PDNode *in) {
  in->AsInput();
  auto reshape2_00_op =
      pattern->NewNode(reshape2_00_op_repr())->assert_is_op("reshape2");
  auto reshape2_00_out = pattern->NewNode(reshape2_00_out_repr())
                             ->assert_is_op_output("reshape2", "Out")
                             ->assert_is_op_input("strided_slice", "Input")
                             ->AsIntermediate();
  auto strided_slice_10_op = pattern->NewNode(strided_slice_10_op_repr())
                                 ->assert_is_op("strided_slice");
  auto strided_slice_10_out = pattern->NewNode(strided_slice_10_out_repr())
                                  ->assert_is_op_output("strided_slice", "Out")
                                  ->assert_is_op_nth_input("concat", "X", 0)
                                  ->AsIntermediate();
  auto strided_slice_11_op = pattern->NewNode(strided_slice_11_op_repr())
                                 ->assert_is_op("strided_slice");
  auto strided_slice_11_out = pattern->NewNode(strided_slice_11_out_repr())
                                  ->assert_is_op_output("strided_slice", "Out")
                                  ->assert_is_op_nth_input("concat", "X", 1)
                                  ->AsIntermediate();
  auto strided_slice_12_op = pattern->NewNode(strided_slice_12_op_repr())
                                 ->assert_is_op("strided_slice");
  auto strided_slice_12_out = pattern->NewNode(strided_slice_12_out_repr())
                                  ->assert_is_op_output("strided_slice", "Out")
                                  ->assert_is_op_nth_input("concat", "X", 2)
                                  ->AsIntermediate();
  auto strided_slice_13_op = pattern->NewNode(strided_slice_13_op_repr())
                                 ->assert_is_op("strided_slice");
  auto strided_slice_13_out = pattern->NewNode(strided_slice_13_out_repr())
                                  ->assert_is_op_output("strided_slice", "Out")
                                  ->assert_is_op_nth_input("concat", "X", 3)
                                  ->AsIntermediate();
  auto concat_20_op = pattern->NewNode(concat_20_op_repr())
                          ->assert_is_op("concat")
                          ->assert_has_n_inputs(4);
  auto concat_20_out = pattern->NewNode(concat_20_out_repr())
                           ->assert_is_op_output("concat", "Out")
                           ->assert_is_op_input("reshape2", "X")
                           ->AsIntermediate();
  auto reshape2_30_op =
      pattern->NewNode(reshape2_30_op_repr())->assert_is_op("reshape2");
  auto reshape2_30_out = pattern->NewNode(reshape2_30_out_repr())
                             ->assert_is_op_output("reshape2", "Out")
                             ->assert_is_op_input("layer_norm", "X")
                             ->AsIntermediate();
  auto layernorm_40_op =
      pattern->NewNode(layernorm_40_op_repr())
          ->assert_is_op("layer_norm")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("begin_norm_axis") &&
                   (PADDLE_GET_CONST(
                        int, node->Op()->GetAttr("begin_norm_axis")) == 2);
          });
  auto layernorm_40_in_bias = pattern->NewNode(layernorm_40_in_bias_repr())
                                  ->assert_is_op_input("layer_norm", "Bias")
                                  ->AsInput();
  auto layernorm_40_in_scale = pattern->NewNode(layernorm_40_in_scale_repr())
                                   ->assert_is_op_input("layer_norm", "Scale")
                                   ->AsInput();
  auto layernorm_40_out = pattern->NewNode(layernorm_40_out_repr())
                              ->assert_is_op_output("layer_norm", "Y")
                              ->AsOutput();

  reshape2_00_op->LinksFrom({in});
  reshape2_00_out->LinksFrom({reshape2_00_op});
  strided_slice_10_op->LinksFrom({reshape2_00_out});
  strided_slice_10_out->LinksFrom({strided_slice_10_op});
  strided_slice_11_op->LinksFrom({reshape2_00_out});
  strided_slice_11_out->LinksFrom({strided_slice_11_op});
  strided_slice_12_op->LinksFrom({reshape2_00_out});
  strided_slice_12_out->LinksFrom({strided_slice_12_op});
  strided_slice_13_op->LinksFrom({reshape2_00_out});
  strided_slice_13_out->LinksFrom({strided_slice_13_op});
  concat_20_op->LinksFrom({strided_slice_10_out,
                           strided_slice_11_out,
                           strided_slice_12_out,
                           strided_slice_13_out});
  concat_20_out->LinksFrom({concat_20_op});
  reshape2_30_op->LinksFrom({concat_20_out});
  reshape2_30_out->LinksFrom({reshape2_30_op});
  layernorm_40_op->LinksFrom(
      {reshape2_30_out, layernorm_40_in_bias, layernorm_40_in_scale});
  layernorm_40_out->LinksFrom({layernorm_40_op});
  return layernorm_40_out;
}

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
PDNode *patterns::FusedFeedForwardFwd::operator()(
    paddle::framework::ir::PDNode *x_var,
    std::unordered_set<std::string> act_types,
    bool use_mp,
    bool pre_layer_norm,
    bool add_residual,
    bool use_dropout_1,
    bool use_dropout_2) {
  // Possible patterns
  // 1. layer_norm -> linear1 -> activation -> dropout1 -> linear2 -> dropout2
  // -> residual_add (pre_layer_norm)
  // 2. linear1 -> activation -> dropout1 -> linear2 -> dropout2 -> residual_add
  // -> layer_norm (pOST_layer_norm)
  // other cases: may delete residual_add, dropout1, dropout2 operators

  // intermediate input, and final pattern output
  PDNode *out_var = x_var;
  // LayerNorm
  auto *layer_norm_op =
      pattern->NewNode(layer_norm_op_repr())->assert_is_op("layer_norm");
  auto *layer_norm_bias_var = pattern->NewNode(layer_norm_bias_repr())
                                  ->AsInput()
                                  ->assert_is_op_input("layer_norm", "Bias");
  auto *layer_norm_scale_var = pattern->NewNode(layer_norm_scale_repr())
                                   ->AsInput()
                                   ->assert_is_op_input("layer_norm", "Scale");
  auto *layer_norm_out_var = pattern->NewNode(layer_norm_out_repr())
                                 ->AsOutput()
                                 ->assert_is_op_output("layer_norm", "Y");
  auto *layer_norm_mean_var = pattern->NewNode(layer_norm_mean_repr())
                                  ->AsOutput()
                                  ->assert_is_op_output("layer_norm", "Mean");
  auto *layer_norm_variance_var =
      pattern->NewNode(layer_norm_variance_repr())
          ->AsOutput()
          ->assert_is_op_output("layer_norm", "Variance");
  if (pre_layer_norm) {
    out_var->assert_is_op_input("layer_norm", "X");
    layer_norm_op
        ->LinksFrom({out_var, layer_norm_bias_var, layer_norm_scale_var})
        .LinksTo(
            {layer_norm_out_var, layer_norm_mean_var, layer_norm_variance_var});
    out_var = layer_norm_out_var;
  }

  // Model parallel, do nothing in forward.
  if (use_mp) {
    out_var->assert_is_op_input("c_identity", "X");
    auto *c_identity_op =
        pattern->NewNode(c_identity_op_repr())->assert_is_op("c_identity");
    auto *c_identity_out_var = pattern->NewNode(c_identity_out_repr())
                                   ->assert_is_op_output("c_identity", "Out");
    c_identity_op->LinksFrom({out_var}).LinksTo({c_identity_out_var});
    out_var = c_identity_out_var;
  }

  // Linear1
  out_var->assert_is_op_input("matmul_v2", "X");
  auto *matmul_op_1 =
      pattern->NewNode(matmul_op_1_repr())->assert_is_op("matmul_v2");
  auto *matmul_w_var_1 = pattern->NewNode(matmul_w_1_repr())
                             ->AsInput()
                             ->assert_is_op_input("matmul_v2", "Y");
  auto *matmul_out_var_1 = pattern->NewNode(matmul_out_1_repr())
                               ->assert_is_op_output("matmul_v2", "Out");
  matmul_op_1->LinksFrom({out_var, matmul_w_var_1}).LinksTo({matmul_out_var_1});
  out_var = matmul_out_var_1;

  out_var->assert_is_op_input("elementwise_add", "X");
  auto *ele_add_op_1 =
      pattern->NewNode(ele_add_op_1_repr())->assert_is_op("elementwise_add");
  auto *ele_add_bias_var_1 = pattern->NewNode(ele_add_bias_1_repr())
                                 ->AsInput()
                                 ->assert_is_op_input("elementwise_add", "Y");
  auto *ele_add_out_var_1 = pattern->NewNode(ele_add_out_1_repr())
                                ->assert_is_op_output("elementwise_add", "Out");
  ele_add_op_1->LinksFrom({out_var, ele_add_bias_var_1})
      .LinksTo({ele_add_out_var_1});
  out_var = ele_add_out_var_1;

  // Activation
  out_var->assert_is_ops_input(act_types);
  auto *act_op = pattern->NewNode(act_op_repr())->assert_is_ops(act_types);
  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");
  act_op->LinksFrom({out_var}).LinksTo({act_out_var});
  out_var = act_out_var;

  // Dropout1
  if (use_dropout_1) {
    out_var->assert_is_op_input("dropout", "X");
    auto *dropout_op_1 =
        pattern->NewNode(dropout_op_1_repr())->assert_is_op("dropout");
    auto *dropout_mask_var_1 = pattern->NewNode(dropout_mask_1_repr())
                                   ->assert_is_op_output("dropout", "Mask");
    auto *dropout_out_var_1 = pattern->NewNode(dropout_out_1_repr())
                                  ->assert_is_op_output("dropout", "Out");
    dropout_op_1->LinksFrom({out_var}).LinksTo(
        {dropout_mask_var_1, dropout_out_var_1});
    out_var = dropout_out_var_1;
  }

  // Linear2
  out_var->assert_is_op_input("matmul_v2", "X");
  auto *matmul_op_2 =
      pattern->NewNode(matmul_op_2_repr())->assert_is_op("matmul_v2");
  auto *matmul_w_var_2 =
      pattern->NewNode(matmul_w_2_repr())->assert_is_op_input("matmul_v2", "Y");
  auto *matmul_out_var_2 = pattern->NewNode(matmul_out_2_repr())
                               ->assert_is_op_output("matmul_v2", "Out");
  matmul_op_2->LinksFrom({out_var, matmul_w_var_2}).LinksTo({matmul_out_var_2});
  out_var = matmul_out_var_2;

  // Model parallel, do nothing in forward.
  if (use_mp) {
    out_var->assert_is_op_input("c_allreduce_sum", "X");
    auto *c_allreduce_sum_op = pattern->NewNode(c_allreduce_sum_op_repr())
                                   ->assert_is_op("c_allreduce_sum");
    auto *c_allreduce_sum_out_var =
        pattern->NewNode(c_allreduce_sum_out_repr())
            ->assert_is_op_output("c_allreduce_sum", "Out");
    c_allreduce_sum_op->LinksFrom({out_var}).LinksTo({c_allreduce_sum_out_var});
    out_var = c_allreduce_sum_out_var;
  }

  out_var->assert_is_op_input("elementwise_add", "X");
  auto *ele_add_op_2 =
      pattern->NewNode(ele_add_op_2_repr())->assert_is_op("elementwise_add");
  auto *ele_add_bias_var_2 = pattern->NewNode(ele_add_bias_2_repr())
                                 ->assert_is_op_input("elementwise_add", "Y");
  auto *ele_add_out_var_2 = pattern->NewNode(ele_add_out_2_repr())
                                ->assert_is_op_output("elementwise_add", "Out");
  ele_add_op_2->LinksFrom({out_var, ele_add_bias_var_2})
      .LinksTo({ele_add_out_var_2});
  out_var = ele_add_out_var_2;

  // Dropout 2
  if (use_dropout_2) {
    out_var->assert_is_op_input("dropout", "X");
    auto *dropout_op_2 =
        pattern->NewNode(dropout_op_2_repr())->assert_is_op("dropout");
    auto *dropout_mask_var_2 = pattern->NewNode(dropout_mask_2_repr())
                                   ->assert_is_op_output("dropout", "Mask");
    auto *dropout_out_var_2 = pattern->NewNode(dropout_out_2_repr())
                                  ->assert_is_op_output("dropout", "Out");
    dropout_op_2->LinksFrom({out_var}).LinksTo(
        {dropout_mask_var_2, dropout_out_var_2});
    out_var = dropout_out_var_2;
  }

  // Residual Add
  if (add_residual) {
    out_var->assert_is_op_input("elementwise_add", "X");
    x_var->assert_is_op_input("elementwise_add", "Y");
    auto *ele_add_op_3 =
        pattern->NewNode(ele_add_op_3_repr())->assert_is_op("elementwise_add");
    auto *ele_add_out_var_3 =
        pattern->NewNode(ele_add_out_3_repr())
            ->assert_is_op_output("elementwise_add", "Out");
    ele_add_op_3->LinksFrom({out_var, x_var}).LinksTo({ele_add_out_var_3});
    out_var = ele_add_out_var_3;
  }

  // Post LayerNorm
  if (!pre_layer_norm) {
    out_var->assert_is_op_input("layer_norm", "X");
    layer_norm_op
        ->LinksFrom({out_var, layer_norm_bias_var, layer_norm_scale_var})
        .LinksTo(
            {layer_norm_out_var, layer_norm_mean_var, layer_norm_variance_var});
    out_var = layer_norm_out_var;
  }
  return out_var;
}

PDNode *patterns::FusedFeedForwardBwd::operator()(
    paddle::framework::ir::PDNode *x_grad,
    std::unordered_set<std::string> act_grad_types,
    bool use_mp,
    bool pre_layer_norm,
    bool add_residual,
    bool use_dropout_1,
    bool use_dropout_2) {
  // Possible patterns
  // 1. residual_add_grad -> dropout2_grad -> linear2_grad -> dropout1_grad ->
  // activation_grad -> linear1_grad -> layer_norm_grad
  // 2. layer_norm_grad -> residual_add_grad -> dropout2_grad -> linear2_grad ->
  // dropout1_grad -> activation_grad -> linear1_grad
  // other cases: may delete residual_add_grad, dropout1_grad, dropout2_grad
  // operators

  // intermediate input_grad, and final pattern ouput_grad
  PDNode *out_grad = x_grad;
  // LayerNorm: in["Mean", "Variance", "Scale", "Bias", "Y@GRAD"],
  // out["X@GRAD", "Scale@GRAD", "Bias@GRAD"]
  auto *layer_norm_op_grad = pattern->NewNode(layer_norm_op_grad_repr())
                                 ->assert_is_op("layer_norm_grad");
  auto *layer_norm_in_var = pattern->NewNode(layer_norm_in_repr())
                                ->assert_is_op_input("layer_norm_grad", "X");
  auto *layer_norm_mean_var =
      pattern->NewNode(layer_norm_mean_repr())
          ->assert_is_op_input("layer_norm_grad", "Mean");
  auto *layer_norm_variance_var =
      pattern->NewNode(layer_norm_variance_repr())
          ->assert_is_op_input("layer_norm_grad", "Variance");
  auto *layer_norm_scale_var =
      pattern->NewNode(layer_norm_scale_repr())
          ->assert_is_op_input("layer_norm_grad", "Scale");
  auto *layer_norm_bias_var =
      pattern->NewNode(layer_norm_bias_repr())
          ->assert_is_op_input("layer_norm_grad", "Bias");
  auto *layer_norm_in_grad =
      pattern->NewNode(layer_norm_in_grad_repr())
          ->assert_is_op_output("layer_norm_grad", GradVarName("X"));
  auto *layer_norm_scale_grad =
      pattern->NewNode(layer_norm_scale_grad_repr())
          ->assert_is_op_output("layer_norm_grad", GradVarName("Scale"));
  auto *layer_norm_bias_grad =
      pattern->NewNode(layer_norm_bias_grad_repr())
          ->assert_is_op_output("layer_norm_grad", GradVarName("Bias"));
  // post_layer_norm
  if (!pre_layer_norm) {
    out_grad->assert_is_op_input("layer_norm_grad", GradVarName("Y"));
    layer_norm_op_grad
        ->LinksFrom({out_grad,
                     layer_norm_in_var,
                     layer_norm_mean_var,
                     layer_norm_variance_var,
                     layer_norm_scale_var,
                     layer_norm_bias_var})
        .LinksTo(
            {layer_norm_in_grad, layer_norm_scale_grad, layer_norm_bias_grad});
    out_grad = layer_norm_in_grad;
  }
  // partial input_grad of residual_add
  PDNode *tmp = nullptr;
  auto *matmul_in_var_1 = pattern->NewNode(matmul_in_1_repr())
                              ->assert_is_op_input("matmul_v2_grad", "X");
  if (add_residual) {
    // Residual Add: in["Out@GRAD", "X", "Y"], out["X@GRAD", "Y@GRAD"]
    out_grad->assert_is_op_input("elementwise_add_grad", GradVarName("Out"));
    auto *ele_add_op_grad_3 = pattern->NewNode(ele_add_op_grad_3_repr())
                                  ->assert_is_op("elementwise_add_grad");
    auto *ele_add_in_var_3 =
        pattern->NewNode(ele_add_in_3_repr())
            ->assert_is_op_input("elementwise_add_grad", "X");
    auto *ele_add_in_grad_3 =
        pattern->NewNode(ele_add_in_grad_3_repr())
            ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
    auto *ele_add_bias_grad_3 =
        pattern->NewNode(ele_add_bias_grad_3_repr())
            ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
    tmp = ele_add_bias_grad_3;
    if (pre_layer_norm) {
      ele_add_op_grad_3
          ->LinksFrom({out_grad, ele_add_in_var_3, layer_norm_in_var})
          .LinksTo({ele_add_in_grad_3, ele_add_bias_grad_3});
    } else {
      ele_add_op_grad_3
          ->LinksFrom({out_grad, ele_add_in_var_3, matmul_in_var_1})
          .LinksTo({ele_add_in_grad_3, ele_add_bias_grad_3});
    }
    out_grad = ele_add_in_grad_3;
  }

  // Dropout 2: in["Out@GRAD", "Mask"], out["X@GRAD"]
  if (use_dropout_2) {
    out_grad->assert_is_op_input("dropout_grad", GradVarName("Out"));
    auto *dropout_op_grad_2 = pattern->NewNode(dropout_op_grad_2_repr())
                                  ->assert_is_op("dropout_grad");
    auto *dropout_mask_grad_2 =
        pattern->NewNode(dropout_mask_2_repr())
            ->assert_is_op_input("dropout_grad", "Mask");
    auto *dropout_in_grad_2 =
        pattern->NewNode(dropout_in_grad_2_repr())
            ->assert_is_op_output("dropout_grad", GradVarName("X"));
    dropout_op_grad_2->LinksFrom({out_grad, dropout_mask_grad_2})
        .LinksTo({dropout_in_grad_2});
    out_grad = dropout_in_grad_2;
  }

  // Linear 2:
  // elementwise_add: in["Out@GRAD", "X", "Y"], out["X@GRAD", "Y@GRAD"]
  out_grad->assert_is_op_input("elementwise_add_grad", GradVarName("Out"));
  auto *ele_add_op_grad_2 = pattern->NewNode(ele_add_op_grad_2_repr())
                                ->assert_is_op("elementwise_add_grad");
  auto *ele_add_in_var_2 =
      pattern->NewNode(ele_add_in_2_repr())
          ->assert_is_op_input("elementwise_add_grad", "X");
  auto *ele_add_bias_var_2 =
      pattern->NewNode(ele_add_bias_2_repr())
          ->assert_is_op_input("elementwise_add_grad", "Y");
  auto *ele_add_in_grad_2 =
      pattern->NewNode(ele_add_in_grad_2_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
  auto *ele_add_bias_grad_2 =
      pattern->NewNode(ele_add_bias_grad_2_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
  ele_add_op_grad_2->LinksFrom({out_grad, ele_add_in_var_2, ele_add_bias_var_2})
      .LinksTo({ele_add_in_grad_2, ele_add_bias_grad_2});
  out_grad = ele_add_in_grad_2;

  // Model parallel, do nothing in backward.
  if (use_mp) {
    out_grad->assert_is_op_input("c_identity", "X");
    auto *c_identity_op =
        pattern->NewNode(c_identity_op_repr())->assert_is_op("c_identity");
    auto *c_identity_out_grad = pattern->NewNode(c_identity_out_repr())
                                    ->assert_is_op_output("c_identity", "Out");
    c_identity_op->LinksFrom({out_grad}).LinksTo({c_identity_out_grad});
    out_grad = c_identity_out_grad;
  }

  // matmul_v2: in["Out@GRAD", "X", "Y"], out["X@GRAD", "Y@GRAD"]
  out_grad->assert_is_op_input("matmul_v2_grad", GradVarName("Out"));
  auto *matmul_op_grad_2 =
      pattern->NewNode(matmul_op_grad_2_repr())->assert_is_op("matmul_v2_grad");
  auto *matmul_in_var_2 = pattern->NewNode(matmul_in_2_repr())
                              ->assert_is_op_input("matmul_v2_grad", "X");
  auto *matmul_w_var_2 = pattern->NewNode(matmul_w_2_repr())
                             ->assert_is_op_input("matmul_v2_grad", "Y");
  auto *matmul_in_grad_2 =
      pattern->NewNode(matmul_in_grad_2_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("X"));
  auto *matmul_w_grad_2 =
      pattern->NewNode(matmul_w_grad_2_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("Y"));
  matmul_op_grad_2->LinksFrom({out_grad, matmul_in_var_2, matmul_w_var_2})
      .LinksTo({matmul_in_grad_2, matmul_w_grad_2});
  out_grad = matmul_in_grad_2;

  // Dropout 1: in["Out@GRAD", "Mask"], out["X@GRAD"]
  if (use_dropout_1) {
    out_grad->assert_is_op_input("dropout_grad", GradVarName("Out"));
    auto *dropout_op_grad_1 = pattern->NewNode(dropout_op_grad_1_repr())
                                  ->assert_is_op("dropout_grad");
    auto *dropout_mask_var_1 = pattern->NewNode(dropout_mask_1_repr())
                                   ->assert_is_op_input("dropout_grad", "Mask");
    auto *dropout_in_grad_1 =
        pattern->NewNode(dropout_in_grad_1_repr())
            ->assert_is_op_output("dropout_grad", GradVarName("X"));
    dropout_op_grad_1->LinksFrom({out_grad, dropout_mask_var_1})
        .LinksTo({dropout_in_grad_1});
    out_grad = dropout_in_grad_1;
  }

  // Activation: in["Out", "Out@GRAD"], out["X@GRAD"]
  out_grad->assert_is_ops_input(act_grad_types, GradVarName("Out"));
  auto *act_op_grad =
      pattern->NewNode(act_op_grad_repr())->assert_is_ops(act_grad_types);
  auto *act_in_var =
      pattern->NewNode(act_in_repr())->assert_is_ops_input(act_grad_types, "X");
  auto *act_in_grad =
      pattern->NewNode(act_in_grad_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"));
  act_op_grad->LinksFrom({out_grad, act_in_var}).LinksTo({act_in_grad});
  out_grad = act_in_grad;

  // Linear 1:
  // elementwise_add: in["Out@GRAD", "X", "Y"], out["X@GRAD", "Y@GRAD"]
  out_grad->assert_is_op_input("elementwise_add_grad", GradVarName("Out"));
  auto *ele_add_op_grad_1 = pattern->NewNode(ele_add_op_grad_1_repr())
                                ->assert_is_op("elementwise_add_grad");
  auto *ele_add_in_var_1 =
      pattern->NewNode(ele_add_in_1_repr())
          ->assert_is_op_input("elementwise_add_grad", "X");
  auto *ele_add_bias_var_1 =
      pattern->NewNode(ele_add_bias_1_repr())
          ->assert_is_op_input("elementwise_add_grad", "Y");
  auto *ele_add_in_grad_1 =
      pattern->NewNode(ele_add_in_grad_1_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
  auto *ele_add_bias_grad_1 =
      pattern->NewNode(ele_add_bias_grad_1_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
  ele_add_op_grad_1->LinksFrom({out_grad, ele_add_in_var_1, ele_add_bias_var_1})
      .LinksTo({ele_add_in_grad_1, ele_add_bias_grad_1});
  out_grad = ele_add_in_grad_1;
  // matmul_v2: in["Out@GRAD", "X", "Y"], out["X@GRAD", "Y@GRAD"]
  out_grad->assert_is_op_input("matmul_v2_grad", GradVarName("Out"));
  auto *matmul_op_grad_1 =
      pattern->NewNode(matmul_op_grad_1_repr())->assert_is_op("matmul_v2_grad");
  // auto *matmul_in_var_1 = pattern->NewNode(matmul_in_1_repr())
  //                                 ->assert_is_op_input("matmul_v2_grad",
  //                                 "X");
  auto *matmul_w_var_1 = pattern->NewNode(matmul_w_1_repr())
                             ->assert_is_op_input("matmul_v2_grad", "Y");
  auto *matmul_in_grad_1 =
      pattern->NewNode(matmul_in_grad_1_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("X"));
  auto *matmul_w_grad_1 =
      pattern->NewNode(matmul_w_grad_1_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("Y"));
  matmul_op_grad_1->LinksFrom({out_grad, matmul_in_var_1, matmul_w_var_1})
      .LinksTo({matmul_in_grad_1, matmul_w_grad_1});
  out_grad = matmul_in_grad_1;

  // Model parallel, all_reduce in backward.
  if (use_mp) {
    out_grad->assert_is_op_input("c_allreduce_sum", "X");
    auto *c_allreduce_sum_op = pattern->NewNode(c_allreduce_sum_op_repr())
                                   ->assert_is_op("c_allreduce_sum");
    auto *c_allreduce_sum_out_grad =
        pattern->NewNode(c_allreduce_sum_out_repr())
            ->assert_is_op_output("c_allreduce_sum", "Out");
    c_allreduce_sum_op->LinksFrom({out_grad})
        .LinksTo({c_allreduce_sum_out_grad});
    out_grad = c_allreduce_sum_out_grad;
  }

  // pre LayerNorm
  if (pre_layer_norm) {
    out_grad->assert_is_op_input("layer_norm_grad", GradVarName("Y"));
    layer_norm_op_grad
        ->LinksFrom({out_grad,
                     layer_norm_in_var,
                     layer_norm_mean_var,
                     layer_norm_variance_var,
                     layer_norm_scale_var,
                     layer_norm_bias_var})
        .LinksTo(
            {layer_norm_in_grad, layer_norm_scale_grad, layer_norm_bias_grad});
    out_grad = layer_norm_in_grad;
  }

  // sum for final gradient
  if (add_residual) {
    auto *sum_op = pattern->NewNode(sum_op_repr())->assert_is_op("sum");
    auto *sum_out =
        pattern->NewNode(sum_out_repr())->assert_is_op_output("sum", "Out");
    sum_op->LinksFrom({tmp, out_grad}).LinksTo({sum_out});
    out_grad = sum_out;
  }

  return out_grad;
}

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
void patterns::MulMatmulMatmulV2::operator()(
    const std::unordered_set<std::string> &ops_type) {
  auto ops = pattern->NewNode(ops_repr())->assert_is_ops(ops_type);
  auto ops_out = pattern->NewNode(ops_out_repr())
                     ->AsOutput()
                     ->assert_is_ops_output(ops_type, "Out");

  ops->LinksTo({ops_out});
}

4518 4519 4520
}  // namespace ir
}  // namespace framework
}  // namespace paddle