graph_pattern_detector.cc 174.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
16

17
#include "paddle/fluid/framework/ir/graph_traits.h"
18
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
C
chengduo 已提交
19
#include "paddle/fluid/framework/operator.h"
20
#include "paddle/fluid/platform/enforce.h"
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/string/pretty_log.h"
22

23 24 25 26
namespace paddle {
namespace framework {
namespace ir {

Y
Yan Chunwei 已提交
27 28 29
using string::PrettyLog;
using string::Style;

30 31
size_t PDPattern::id_ = 0UL;

32 33 34 35 36 37
#ifdef PADDLE_WITH_TENSORRT
namespace patterns {
thread_local std::unordered_map<std::string, size_t> KeyCounter::dic_;
}
#endif

C
chengduo 已提交
38
PDNode *PDPattern::NewNode(const std::string &name) {
Y
Yan Chunwei 已提交
39
  if (!name.empty()) {
40
    PADDLE_ENFORCE_EQ(
41 42
        node_map_.count(name),
        0UL,
43 44
        platform::errors::PreconditionNotMet(
            "PDNode's name should be unique, get duplicate [%s]", name));
Y
Yan Chunwei 已提交
45 46 47
  }

  nodes_.emplace_back(new PDNode(this, name));
C
chengduo 已提交
48
  auto *cur = nodes_.back().get();
Y
Yan Chunwei 已提交
49 50 51 52
  node_map_[name] = cur;
  return cur;
}

C
chengduo 已提交
53
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
54
  if (!name.empty()) {
55
    PADDLE_ENFORCE_EQ(
56 57
        node_map_.count(name),
        0UL,
58 59
        platform::errors::PreconditionNotMet(
            "PDNode's name should be unique, get duplicate [%s]", name));
60 61
  }

62
  nodes_.emplace_back(new PDNode(std::move(teller), this, name));
C
chengduo 已提交
63
  auto *cur = nodes_.back().get();
64
  node_map_[name] = cur;
65 66 67
  return cur;
}

C
chengduo 已提交
68
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
69 70 71 72 73 74 75 76
  auto it = node_map_.find(id);
  if (it == node_map_.end()) {
    return nullptr;
  }

  return it->second;
}

C
chengduo 已提交
77
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
78 79 80 81
  PADDLE_ENFORCE_NOT_NULL(
      a, platform::errors::NotFound("PDNode %s is not found.", a->name()));
  PADDLE_ENFORCE_NOT_NULL(
      b, platform::errors::NotFound("PDNode %s is not found.", b->name()));
82 83
  PADDLE_ENFORCE_NE(a,
                    b,
84 85
                    platform::errors::PermissionDenied(
                        "Cannot connect the same node in the graph."));
86 87 88
  edges_.emplace_back(a, b);
}

C
chengduo 已提交
89
void GraphPatternDetector::operator()(Graph *graph,
90
                                      GraphPatternDetector::handle_t handler) {
91 92 93
  if (!MarkPDNodesInGraph(*graph)) {
    return;
  }
94 95
  auto subgraphs = DetectPatterns();
  UniquePatterns(&subgraphs);
Z
Zhang Ting 已提交
96
  SortSubgraphs(&subgraphs);
97
  RemoveOverlappedMatch(&subgraphs);
Y
Yan Chunwei 已提交
98
  ValidateByNodeRole(&subgraphs);
99

Y
Yan Chunwei 已提交
100
  if (subgraphs.empty()) return;
101
  int id = 0;
C
chengduo 已提交
102
  for (auto &g : subgraphs) {
M
minqiyang 已提交
103
    VLOG(3) << "optimizing #" << id++ << " subgraph";
104 105 106 107
    handler(g, graph);
  }
}

C
chengduo 已提交
108
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
M
minqiyang 已提交
109
  VLOG(3) << "mark pdnodes in graph";
110 111
  if (graph.Nodes().empty()) return false;

C
chengduo 已提交
112
  for (auto &node : GraphTraits::DFS(graph)) {
113
    if (node.Name().rfind("__control_var") == 0) continue;
C
chengduo 已提交
114
    for (const auto &pdnode : pattern_.nodes()) {
115
      if (pdnode->Tell(&node)) {
116 117
        VLOG(4) << "Node " << node.Name() << "(" << node.id() << ")"
                << " marked as " << pdnode->name();
118 119 120 121
        pdnodes2nodes_[pdnode.get()].insert(&node);
      }
    }
  }
Y
Yan Chunwei 已提交
122
  // Check to early stop if some PDNode can't find matched Node.
C
chengduo 已提交
123
  for (auto &pdnode : pattern_.nodes()) {
Y
Yan Chunwei 已提交
124
    if (!pdnodes2nodes_.count(pdnode.get())) {
M
minqiyang 已提交
125
      VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
Y
Yan Chunwei 已提交
126
      // return false;
Y
Yan Chunwei 已提交
127 128
    }
  }
M
minqiyang 已提交
129
  VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
130

131 132 133
  return !pdnodes2nodes_.empty();
}

Y
Yan Chunwei 已提交
134
// The intermediate Nodes can only link to the nodes inside the pattern, or this
T
tianshuo78520a 已提交
135
// subgraph will be dropped.
Y
Yan Chunwei 已提交
136
void GraphPatternDetector::ValidateByNodeRole(
C
chengduo 已提交
137
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
Y
Yan Chunwei 已提交
138 139 140 141
  std::vector<GraphPatternDetector::subgraph_t> result;

  subgraphs->erase(
      std::remove_if(
142 143
          subgraphs->begin(),
          subgraphs->end(),
C
chengduo 已提交
144
          [](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
Y
Yan Chunwei 已提交
145
            // Collect the inputs and outputs.
146
            std::set<Node *> ios;
C
chengduo 已提交
147
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
148 149 150 151
              if (!item.first->IsIntermediate()) {
                ios.insert(item.second);
              }
            }
C
chengduo 已提交
152
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
153
              if (item.first->IsIntermediate()) {
C
chengduo 已提交
154
                for (auto *x : item.second->inputs) {
Y
Yan Chunwei 已提交
155 156 157 158
                  if (!ios.count(x)) {
                    return true;
                  }
                }
C
chengduo 已提交
159
                for (auto *x : item.second->outputs) {
Y
Yan Chunwei 已提交
160 161 162 163 164 165 166 167 168 169 170
                  if (!ios.count(x)) {
                    return true;
                  }
                }
              }
            }
            return false;
          }),
      subgraphs->end());
}

171
struct HitGroup {
172
  std::map<PDNode *, Node *> roles;
173

C
chengduo 已提交
174
  bool Match(Node *node, PDNode *pat) {
175
    if (nodes_.count(node)) {
T
Tao Luo 已提交
176 177 178 179 180
      if (roles.count(pat) && roles[pat] == node) return true;
      return false;
    } else {
      if (roles.count(pat) && roles[pat] != node) return false;
      return true;
181
    }
182 183
  }

C
chengduo 已提交
184
  void Register(Node *node, PDNode *pat) {
185 186 187 188 189
    roles[pat] = node;
    nodes_.insert(node);
  }

 private:
190
  std::set<Node *> nodes_;
191 192 193
};

// Tell whether Node a links to b.
C
chengduo 已提交
194 195
bool IsNodesLink(Node *a, Node *b) {
  for (auto *node : a->outputs) {
196 197 198 199 200 201 202
    if (b == node) {
      return true;
    }
  }
  return false;
}

203 204
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
205
  // Init empty subgraphs.
206
  std::vector<GraphPatternDetector::subgraph_t> result;
207
  std::vector<HitGroup> init_groups;
208
  std::array<std::vector<HitGroup>, 2> bi_records;
C
chengduo 已提交
209
  auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
210
                                               : pattern_.edges().front().first;
211
  if (!pdnodes2nodes_.count(first_pnode)) return result;
C
chengduo 已提交
212
  for (auto *node : pdnodes2nodes_[first_pnode]) {
213 214 215 216 217 218 219 220 221 222
    HitGroup group;
    group.roles[first_pnode] = node;
    init_groups.emplace_back(group);
  }

  int step = 0;
  bi_records[0] = std::move(init_groups);

  // Extend a PDNode to subgraphs by deducing the connection relations defined
  // in edges of PDNodes.
C
chengduo 已提交
223
  for (const auto &edge : pattern_.edges()) {
M
minqiyang 已提交
224
    VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name();
Y
Yan Chunwei 已提交
225
    // TODO(Superjomn) Fix bug here, the groups might be duplicate here.
226 227
    // Each role has two PDNodes, which indicates two roles.
    // Detect two Nodes that can match these two roles and they are connected.
C
chengduo 已提交
228 229
    auto &pre_groups = bi_records[step % 2];
    auto &cur_groups = bi_records[1 - (step++ % 2)];
230
    cur_groups.clear();
231
    if (pre_groups.empty()) break;
232
    // source -> target
C
chengduo 已提交
233 234
    for (Node *source : pdnodes2nodes_[edge.first]) {
      for (Node *target : pdnodes2nodes_[edge.second]) {
235 236
        VLOG(8) << "check " << source->Name() << "(" << source->id() << ")"
                << " -- " << target->Name() << "(" << target->id() << ")";
237
        // TODO(Superjomn) add some prune strategies.
C
chengduo 已提交
238
        for (const auto &group : pre_groups) {
T
Tao Luo 已提交
239 240 241 242 243 244
          if (IsNodesLink(source, target)) {
            HitGroup new_group = group;
            bool flag = new_group.Match(source, edge.first) &&
                        new_group.Match(target, edge.second);
            if (flag) {
              new_group.Register(source, edge.first);
245 246 247 248 249 250 251 252
              new_group.Register(target, edge.second);
              cur_groups.push_back(new_group);
              // TODO(Superjomn) need to unique
            }
          }
        }
      }
    }
M
minqiyang 已提交
253
    VLOG(3) << "step " << step << " get records: " << cur_groups.size();
C
chengduo 已提交
254 255
    for (auto &group : cur_groups) {
      for (auto &item : group.roles) {
256 257 258
        VLOG(4) << "node " << item.second->Name() << "(" << item.second->id()
                << ")"
                << " as " << item.first->name();
Y
Yan Chunwei 已提交
259
      }
M
minqiyang 已提交
260
      VLOG(4) << "=========================================================";
Y
Yan Chunwei 已提交
261
    }
262 263
  }

C
chengduo 已提交
264
  for (auto &group : bi_records[step % 2]) {
265
    GraphPatternDetector::subgraph_t subgraph;
C
chengduo 已提交
266
    for (auto &role : group.roles) {
267 268 269 270 271 272 273
      subgraph.emplace(role.first, role.second);
    }
    result.emplace_back(subgraph);
  }
  return result;
}

Y
Yan Chunwei 已提交
274 275
struct GraphItemLessThan {
  bool operator()(const std::pair<PDNode *, Node *> &a,
Y
Yan Chunwei 已提交
276
                  const std::pair<PDNode *, Node *> &b) {
Y
Yan Chunwei 已提交
277 278 279 280 281
    if (a.first != b.first) {
      return a.first < b.first;
    } else {
      return a.second < b.second;
    }
Y
Yan Chunwei 已提交
282
  }
Y
Yan Chunwei 已提交
283
};
Y
Yan Chunwei 已提交
284

285 286
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
287
void GraphPatternDetector::UniquePatterns(
C
chengduo 已提交
288
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
289
  if (subgraphs->empty()) return;
290
  std::vector<GraphPatternDetector::subgraph_t> result;
291

292
  std::set<size_t> set;
Y
Yan Chunwei 已提交
293
  std::hash<std::string> hasher;
C
chengduo 已提交
294
  for (auto &g : *subgraphs) {
Y
Yan Chunwei 已提交
295 296
    // Sort the items in the sub-graph, and transform to a string key.
    std::vector<std::pair<PDNode *, Node *>> sorted_keys(g.begin(), g.end());
Y
Yan Chunwei 已提交
297
    std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan());
Y
Yan Chunwei 已提交
298 299 300
    std::stringstream ss;
    for (auto &item : sorted_keys) {
      ss << item.first << ":" << item.second;
301
    }
Y
Yan Chunwei 已提交
302
    auto key = hasher(ss.str());
303 304 305 306 307 308 309 310
    if (!set.count(key)) {
      result.emplace_back(g);
      set.insert(key);
    }
  }
  *subgraphs = result;
}

Z
Zhang Ting 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
void GraphPatternDetector::SortSubgraphs(
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
  if (subgraphs->empty()) return;
  bool has_bn_add_act = false;
  for (auto &subgraph : *subgraphs) {
    for (auto &item : subgraph) {
      if (item.first->name().find("bn_add_act") != std::string::npos) {
        has_bn_add_act = true;
        break;
      }
    }
  }
  if (!has_bn_add_act) {
    return;
  }

  std::sort(
328 329
      subgraphs->begin(),
      subgraphs->end(),
Z
Zhang Ting 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
      [](const GraphPatternDetector::subgraph_t &a,
         const GraphPatternDetector::subgraph_t &b) {
        for (auto &item : a) {
          if (item.first->name().find("bn_add_act") != std::string::npos &&
              item.first->name().find("bn_reserve_space") !=
                  std::string::npos) {
            auto it_b = b.find(item.first);
            if (it_b != b.end()) {
              if (item.second->Name() != it_b->second->Name()) {
                return item.second->Name() < it_b->second->Name();
              } else {
                return false;
              }
            } else {
              return false;
            }
          }
        }
        return false;
      });
}

352
void GraphPatternDetector::RemoveOverlappedMatch(
C
chengduo 已提交
353
    std::vector<subgraph_t> *subgraphs) {
354
  std::vector<subgraph_t> result;
355
  std::set<Node *> node_set;
356

C
chengduo 已提交
357
  for (const auto &subgraph : *subgraphs) {
358
    bool valid = true;
C
chengduo 已提交
359
    for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
360
      if (item.first->IsIntermediate() && node_set.count(item.second)) {
361 362 363 364 365
        valid = false;
        break;
      }
    }
    if (valid) {
C
chengduo 已提交
366
      for (auto &item : subgraph) {
367 368 369 370 371 372 373 374
        node_set.insert(item.second);
      }
      result.push_back(subgraph);
    }
  }
  *subgraphs = result;
}

375 376 377 378 379
std::string PDPattern::DotString() const {
  using inference::analysis::Dot;
  Dot dot;
  int id = 0;
  // Create Nodes
C
chengduo 已提交
380 381
  std::unordered_map<PDNode *, std::string> node2dot;
  for (const auto &node : nodes()) {
382 383 384 385 386
    std::string node_id = "Node" + std::to_string(id++);
    dot.AddNode(node_id, {}, node->name());
    node2dot[node.get()] = node_id;
  }
  // Create Edges
C
chengduo 已提交
387
  for (const auto &edge : edges()) {
388 389 390
    if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
      continue;
    }
C
chengduo 已提交
391 392
    auto &src = node2dot.at(edge.first);
    auto &trg = node2dot.at(edge.second);
393 394 395 396 397
    dot.AddEdge(src, trg, {});
  }
  return dot.Build();
}

C
chengduo 已提交
398
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
399
  // extend outlinks.
C
chengduo 已提交
400
  for (PDNode *x : others) {
401 402 403 404 405
    pattern_->AddEdge(this, x);
  }
  return *this;
}

C
chengduo 已提交
406
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
407
  // extend outlinks.
C
chengduo 已提交
408
  for (PDNode *x : others) {
409 410 411 412 413
    pattern_->AddEdge(x, this);
  }
  return *this;
}

C
chengduo 已提交
414 415
PDNode *PDNode::assert_is_op() {
  asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
Y
Yan Chunwei 已提交
416 417
  return this;
}
C
chengduo 已提交
418 419 420

PDNode *PDNode::assert_is_op(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
Y
Yan Chunwei 已提交
421 422 423 424
    return x && x->IsOp() && x->Op()->Type() == op_type;
  });
  return this;
}
C
chengduo 已提交
425

S
shentanyue 已提交
426 427 428 429 430 431 432
PDNode *PDNode::assert_is_not_op_type(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
    return x && x->IsOp() && x->Op()->Type() != op_type;
  });
  return this;
}

C
chengduo 已提交
433 434 435 436 437
PDNode *PDNode::assert_is_var() {
  asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
  return this;
}

Z
Zhen Wang 已提交
438 439 440 441 442 443 444
PDNode *PDNode::assert_var_dtype(proto::VarType::Type dtype) {
  assert_is_var();
  asserts_.emplace_back(
      [dtype](Node *x) { return x->Var()->GetDataType() == dtype; });
  return this;
}

C
chengduo 已提交
445 446
PDNode *PDNode::assert_is_not_ctrl_var() {
  asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
Y
Yan Chunwei 已提交
447 448
  return this;
}
C
chengduo 已提交
449 450

PDNode *PDNode::assert_var_not_persistable() {
Y
Yan Chunwei 已提交
451
  assert_is_var();
C
chengduo 已提交
452
  asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
453 454
  return this;
}
C
chengduo 已提交
455 456

PDNode *PDNode::assert_is_persistable_var() {
Y
Yan Chunwei 已提交
457
  assert_is_var();
458 459
  asserts_.emplace_back(
      [=](Node *x) { return x->Var() && x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
460 461
  return this;
}
C
chengduo 已提交
462 463

PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
464 465
                                       const std::string &argument,
                                       int nth) {
Y
Yan Chunwei 已提交
466 467
  assert_is_var();
  assert_is_op_input(op_type);
C
chengduo 已提交
468 469
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
470 471 472
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthInput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
473 474 475 476 477
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
478 479

PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
480 481
                                        const std::string &argument,
                                        int nth) {
Y
Yan Chunwei 已提交
482
  assert_is_var();
C
chengduo 已提交
483 484
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
485 486 487
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthOutput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
488 489 490 491 492
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
493 494

PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
495
  assert_is_var();
C
chengduo 已提交
496 497
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
498 499 500 501 502 503 504 505 506
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
507 508

PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
509
  assert_is_var();
C
chengduo 已提交
510 511
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
512 513 514 515 516 517 518 519 520
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
521 522

PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
Y
Yan Chunwei 已提交
523
  assert_is_var();
C
chengduo 已提交
524 525
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
526 527 528 529 530 531 532 533
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
534 535 536

PDNode *PDNode::assert_is_op_output(const std::string &op_type,
                                    const std::string &argument) {
537 538 539 540
  assert_is_var();
  assert_is_op_nth_output(op_type, argument, 0);
  return this;
}
Z
Zhen Wang 已提交
541

C
chengduo 已提交
542
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
Y
Yan Chunwei 已提交
543
  assert_is_var();
C
chengduo 已提交
544 545
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
546 547 548 549 550 551 552 553
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
554

Z
Zhen Wang 已提交
555 556 557 558 559 560 561 562 563 564
PDNode *PDNode::assert_is_not_op_input(const std::string &argument) {
  assert_is_op();
  asserts_.emplace_back([=](Node *x) {
    auto &ins = x->Op()->Inputs();
    auto iter = ins.find(argument);
    return iter == ins.end() || iter->second.empty();
  });
  return this;
}

C
chengduo 已提交
565 566
PDNode *PDNode::assert_is_op_input(const std::string &op_type,
                                   const std::string &argument) {
567 568 569 570
  assert_is_var();
  assert_is_op_nth_input(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
571 572

PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
573
  assert_is_op(op_type);
C
chengduo 已提交
574
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
Y
Yan Chunwei 已提交
575 576
  return this;
}
C
chengduo 已提交
577 578

PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
579
  assert_is_op(op_type);
C
chengduo 已提交
580
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
Y
Yan Chunwei 已提交
581 582
  return this;
}
C
chengduo 已提交
583

584 585 586 587 588 589 590 591 592 593
PDNode *PDNode::assert_has_n_inputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
  return this;
}

PDNode *PDNode::assert_has_n_outputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
  return this;
}

C
chengduo 已提交
594
PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
Y
Yan Chunwei 已提交
595 596 597 598
  asserts_.emplace_back(std::move(teller));
  return this;
}

C
chengduo 已提交
599 600 601 602 603 604 605 606 607
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
  asserts_.emplace_back([op_types](Node *x) {
    return x && x->IsOp() && op_types.count(x->Op()->Type());
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_input(
    const std::unordered_set<std::string> &op_types,
608 609
    const std::string &argument,
    int nth) {
C
chengduo 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
  assert_is_var();
  assert_is_ops_input(op_types);
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthInput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_output(
    const std::unordered_set<std::string> &op_types,
625 626
    const std::string &argument,
    int nth) {
C
chengduo 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthOutput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}
PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_output(op_types, argument, 0);
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_input(op_types, argument, 0);
  return this;
}

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
PDNode *PDNode::assert_is_only_input_of_ops(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type()) &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_only_output_of_ops(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type()) &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}

C
chengduo 已提交
712 713
bool VarLinksToOp(Node *node, const std::string &op_type) {
  for (auto *out : node->outputs) {
714 715 716 717 718 719
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}
C
chengduo 已提交
720 721

bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
722
  PADDLE_ENFORCE_EQ(
723 724
      var->IsVar(),
      true,
725 726 727
      platform::errors::InvalidArgument(
          "First parameter of function IsNthInput must be Node::Var"));
  PADDLE_ENFORCE_EQ(
728 729
      op->IsOp(),
      true,
730 731
      platform::errors::InvalidArgument(
          "Second parameter of function IsNthInput must be Node::Op"));
732 733
  if (!HasInput(op, argument) || op->Op()->Input(argument).size() <= nth)
    return false;
734 735
  return var->Name() == op->Op()->Input(argument)[nth];
}
C
chengduo 已提交
736

737
bool HasInput(Node *op, const std::string &argument) {
738
  PADDLE_ENFORCE_EQ(
739 740
      op->IsOp(),
      true,
741 742
      platform::errors::InvalidArgument(
          "First parameter of function HasInput must be Node::Op"));
743 744 745 746 747 748
  auto const &names = op->Op()->InputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

749 750
bool HasOutput(Node *op, const std::string &argument) {
  PADDLE_ENFORCE_EQ(
751 752
      op->IsOp(),
      true,
753
      platform::errors::InvalidArgument(
754
          "First parameter of function HasOutput must be Node::Op"));
755 756 757 758 759 760
  auto const &names = op->Op()->OutputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

C
chengduo 已提交
761
bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
762
  PADDLE_ENFORCE_EQ(
763 764
      var->IsVar(),
      true,
765 766 767
      platform::errors::InvalidArgument(
          "First parameter of function IsNthOutput must be Node::Var"));
  PADDLE_ENFORCE_EQ(
768 769
      op->IsOp(),
      true,
770 771
      platform::errors::InvalidArgument(
          "Second parameter of function IsNthOutput must be Node::Op"));
772 773
  if (!HasOutput(op, argument) || op->Op()->Output(argument).size() <= nth)
    return false;
774 775
  return var->Name() == op->Op()->Output(argument)[nth];
}
C
chengduo 已提交
776

777 778 779 780
void GraphSafeRemoveNodes(
    Graph *graph,
    const std::unordered_set<const Node *> &nodes,
    std::unordered_set<std::shared_ptr<Node>> *saved_nodes) {
C
chengduo 已提交
781
  for (auto *node : nodes) {
782 783 784 785 786 787 788
    if (saved_nodes != nullptr) {
      // prevent unique_ptr node from being released
      saved_nodes->insert(
          std::move(graph->RemoveNode(const_cast<Node *>(node))));
    } else {
      graph->RemoveNode(const_cast<Node *>(node));
    }
789 790
  }

C
chengduo 已提交
791
  for (auto *node : graph->Nodes()) {
792 793
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
794
        it = const_cast<Node *>(node)->inputs.erase(it);
795
      } else {
796
        it++;
797
      }
798 799 800
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
801
        it = const_cast<Node *>(node)->outputs.erase(it);
802
      } else {
803
        it++;
804
      }
805 806 807
    }
  }
}
C
chengduo 已提交
808 809 810

bool VarLinksFromOp(Node *node, const std::string &op_type) {
  for (auto *out : node->inputs) {
811 812 813 814 815 816 817
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

S
Sylwester Fraczek 已提交
818
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
819
                                     const std::string &conv_type,
S
Sylwester Fraczek 已提交
820 821
                                     bool with_eltwise_add) {
  // Create Operators
822 823
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
S
Sylwester Fraczek 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }
  auto *batch_norm_op =
      pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
837
                              ->assert_is_op_input(conv_type, "Filter");
S
Sylwester Fraczek 已提交
838 839 840

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
841
                           ->assert_is_only_output_of_op(conv_type);
S
Sylwester Fraczek 已提交
842 843 844 845 846 847 848 849 850

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
851
                           ->assert_is_persistable_var()
S
Sylwester Fraczek 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as BN input
    conv_out_var->assert_is_op_input("batch_norm", "X");
  }

  // BN Scale
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
865 866
                           ->assert_is_op_input("batch_norm", "Scale")
                           ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
867 868 869 870
  // BN Bias
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
871 872
                          ->assert_is_op_input("batch_norm", "Bias")
                          ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
873 874 875 876
  // BN Mean
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
877 878
                          ->assert_is_op_input("batch_norm", "Mean")
                          ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
879 880 881 882
  // BN Variance
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
883 884
                              ->assert_is_op_input("batch_norm", "Variance")
                              ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
885 886 887 888

  // BN output
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->AsOutput()
889
                         ->assert_is_op_output("batch_norm", "Y");
S
Sylwester Fraczek 已提交
890 891 892

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->AsOutput()
893 894
                              ->assert_is_op_output("batch_norm", "MeanOut")
                              ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
895 896 897 898

  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->AsOutput()
899 900
          ->assert_is_op_output("batch_norm", "VarianceOut")
          ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
901

902 903 904 905
  auto *bn_saved_mean_var = pattern->NewNode(bn_saved_mean_repr())
                                ->AsOutput()
                                ->assert_is_op_output("batch_norm", "SavedMean")
                                ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
906 907 908 909

  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->AsOutput()
910 911
          ->assert_is_op_output("batch_norm", "SavedVariance")
          ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
912 913 914 915 916 917 918

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    batch_norm_op
919 920 921 922
        ->LinksFrom({eltwise_out_var,
                     bn_scale_var,
                     bn_bias_var,
                     bn_mean_var,
S
Sylwester Fraczek 已提交
923
                     bn_variance_var})
924 925 926 927 928
        .LinksTo({bn_out_var,
                  bn_mean_out_var,
                  bn_variance_out_var,
                  bn_saved_mean_var,
                  bn_saved_variance_var});
S
Sylwester Fraczek 已提交
929 930
  } else {
    batch_norm_op
931 932 933 934
        ->LinksFrom({conv_out_var,
                     bn_scale_var,
                     bn_bias_var,
                     bn_mean_var,
S
Sylwester Fraczek 已提交
935
                     bn_variance_var})
936 937 938 939 940
        .LinksTo({bn_out_var,
                  bn_mean_out_var,
                  bn_variance_out_var,
                  bn_saved_mean_var,
                  bn_saved_variance_var});
S
Sylwester Fraczek 已提交
941 942 943 944
  }
  return bn_out_var;
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
PDNode *patterns::LayerNormShiftScale::operator()() {
  auto layer_norm_in = pattern->NewNode(layer_norm_in_repr())
                           ->AsInput()
                           ->assert_is_op_input("layer_norm", "X");
  auto layer_norm_bias = pattern->NewNode(layer_norm_bias_repr())
                             ->AsInput()
                             ->assert_is_op_input("layer_norm", "Bias");
  auto layer_norm_scale = pattern->NewNode(layer_norm_scale_repr())
                              ->AsInput()
                              ->assert_is_op_input("layer_norm", "Scale");

  auto layer_norm_op =
      pattern->NewNode(layer_norm_op_repr())->assert_is_op("layer_norm");

  auto layer_norm_out = pattern->NewNode(layer_norm_out_repr())
                            ->assert_is_op_output("layer_norm", "Y")
                            ->AsOutput();

  layer_norm_op->LinksFrom({layer_norm_in, layer_norm_bias, layer_norm_scale})
      .LinksTo({layer_norm_out});
  return layer_norm_out;
}

968 969 970 971 972 973 974 975
PDNode *patterns::OperatorActivation::operator()(
    const std::string &operator_type, const std::string &activation_type) {
  auto *preceding_op =
      pattern->NewNode(preceding_op_repr())->assert_is_op(operator_type);
  auto *preceding_op_out = pattern->NewNode(preceding_op_out_repr())
                               ->AsIntermediate()
                               ->assert_is_only_output_of_op(operator_type)
                               ->assert_is_op_input(activation_type);
976 977
  auto *activation_op =
      pattern->NewNode(activation_repr())->assert_is_op(activation_type);
978 979 980 981 982 983
  auto *activation_out = pattern->NewNode(activation_out_repr())
                             ->AsOutput()
                             ->assert_is_op_output(activation_type);
  preceding_op->LinksTo({preceding_op_out});
  activation_op->LinksFrom({preceding_op_out}).LinksTo({activation_out});
  return activation_out;
984 985
}

986 987
PDNode *patterns::QuantTranspose::operator()(
    const std::string &transpose_type) {
988 989 990 991 992 993 994 995 996
  auto *quant_in = pattern->NewNode(quant_in_repr())
                       ->AsInput()
                       ->assert_is_op_input("quantize", "Input");
  auto *quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");
  auto *quant_out = pattern->NewNode(quant_out_repr())
                        ->AsOutput()
                        ->AsIntermediate()
                        ->assert_has_n_outputs(1)
                        ->assert_is_op_output("quantize")
997 998 999
                        ->assert_is_op_input(transpose_type, "X");
  auto *transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op(transpose_type);
1000 1001

  quant_op->LinksFrom({quant_in}).LinksTo({quant_out});
1002
  transpose_op->LinksFrom({quant_out});
1003

1004
  return transpose_op;
1005 1006
}

1007 1008 1009 1010
PDNode *patterns::TransposeDequant::operator()(
    const std::string &transpose_type) {
  auto *transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op(transpose_type);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
  auto dequant_in = pattern->NewNode(dequant_in_repr())
                        ->AsIntermediate()
                        ->assert_has_n_inputs(1)
                        ->assert_is_op_input("dequantize", "Input");
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");

1021
  transpose_op->LinksTo({dequant_in});
1022 1023 1024 1025
  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
  return dequant_out;
}

1026 1027 1028
PDNode *patterns::Squeeze2Transpose2::operator()() {
  auto *squeeze2_op_in = pattern->NewNode(squeeze2_op_in_repr())
                             ->AsInput()
Y
yeliang2258 已提交
1029
                             ->assert_has_n_outputs(1)
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
                             ->assert_is_op_input("squeeze2", "X");
  auto *squeeze2_op = pattern->NewNode(squeeze2_op_repr())
                          ->assert_is_op("squeeze2")
                          ->assert_has_n_outputs(2);
  auto *squeeze2_op_out = pattern->NewNode(squeeze2_op_out_repr())
                              ->AsIntermediate()
                              ->assert_is_op_output("squeeze2", "Out")
                              ->assert_is_op_input("transpose2", "X");
  auto *transpose2_op =
      pattern->NewNode(transpose2_op_repr())->assert_is_op("transpose2");

  squeeze2_op->LinksFrom({squeeze2_op_in}).LinksTo({squeeze2_op_out});
  transpose2_op->LinksFrom({squeeze2_op_out});
  return transpose2_op;
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
PDNode *patterns::OperatorUnsqueeze2::operator()(
    const std::string &operator_type, const int num_of_operator_outs) {
  auto *preceding_op = pattern->NewNode(preceding_op_repr())
                           ->assert_is_op(operator_type)
                           ->assert_has_n_outputs(num_of_operator_outs);
  auto *preceding_op_out = pattern->NewNode(preceding_op_out_repr())
                               ->AsIntermediate()
                               ->assert_is_op_output(operator_type, "Out")
                               ->assert_is_op_input("unsqueeze2");
  auto *unsqueeze2_op =
      pattern->NewNode(unsqueeze2_op_repr())->assert_is_op("unsqueeze2");
  auto *unsqueeze2_out = pattern->NewNode(unsqueeze2_out_repr())
                             ->AsOutput()
                             ->assert_is_op_output("unsqueeze2");
  preceding_op->LinksTo({preceding_op_out});
  unsqueeze2_op->LinksFrom({preceding_op_out}).LinksTo({unsqueeze2_out});
  return unsqueeze2_out;
}

PDNode *patterns::OperatorReshape2::operator()(const std::string &operator_type,
                                               const int num_of_operator_outs) {
  auto *preceding_op = pattern->NewNode(preceding_op_repr())
                           ->assert_is_op(operator_type)
                           ->assert_has_n_outputs(num_of_operator_outs);
  auto *preceding_op_out = pattern->NewNode(preceding_op_out_repr())
                               ->AsIntermediate()
                               ->assert_is_op_output(operator_type, "Out")
                               ->assert_is_op_input("reshape2");
  auto *reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto *reshape2_out = pattern->NewNode(reshape2_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("reshape2");
  preceding_op->LinksTo({preceding_op_out});
  reshape2_op->LinksFrom({preceding_op_out}).LinksTo({reshape2_out});
  return reshape2_out;
}

T
tensor-tang 已提交
1084 1085 1086 1087
PDNode *patterns::SeqConvEltAddRelu::operator()(
    paddle::framework::ir::PDNode *seqconv_input) {
  // Create Operators
  seqconv_input->assert_is_op_input("sequence_conv", "X");
T
tensor-tang 已提交
1088 1089
  auto *seqconv_op = pattern->NewNode(seqconv_repr())
                         ->assert_is_op("sequence_conv")
1090
                         ->assert_has_n_inputs(2)
T
tensor-tang 已提交
1091 1092
                         ->assert_op_attr<bool>("paddingTrainable", false)
                         ->assert_op_attr<int>("contextStride", 1);
T
tensor-tang 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

  auto *eltadd_op =
      pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
  // Create variables
  // Filter
  auto *seqconv_weight_var =
      pattern->NewNode(seqconv_weight_repr())
          ->AsInput()
          ->assert_is_persistable_var()
          ->assert_is_op_input("sequence_conv", "Filter");
  // Bias
  auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add");
  // intermediate variable, will be removed in the IR after fuse.
  auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr())
                              ->AsIntermediate()
                              ->assert_is_only_output_of_op("sequence_conv")
                              ->assert_is_op_input("elementwise_add");
  auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr())
                             ->AsIntermediate()
                             ->assert_is_only_output_of_op("elementwise_add")
                             ->assert_is_only_input_of_op("relu");
  // output
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("relu");

  seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var})
      .LinksTo({seqconv_out_var});
  eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var})
      .LinksTo({eltadd_out_var});
  relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

C
chengduo 已提交
1130
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
1131 1132
                                 bool with_bias,
                                 bool with_relu) {
Y
Yan Chunwei 已提交
1133 1134
  // Create shared nodes.
  x->assert_is_op_input("mul", "X");
C
chengduo 已提交
1135
  auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
Y
Yan Chunwei 已提交
1136

C
chengduo 已提交
1137
  auto *mul_w_var = pattern->NewNode(w_repr())
Y
Yan Chunwei 已提交
1138 1139 1140 1141
                        ->AsInput()
                        ->assert_is_persistable_var()
                        ->assert_is_op_input("mul", "Y");

C
chengduo 已提交
1142
  auto *mul_out_var =
Y
Yan Chunwei 已提交
1143 1144
      pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");

1145 1146
  // Add links.
  mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
Y
Yan Chunwei 已提交
1147 1148 1149 1150 1151
  if (!with_bias) {  // not with bias
    return mul_out_var;
  } else {  // with bias
    mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
    // Create operators.
C
chengduo 已提交
1152
    auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
Y
Yan Chunwei 已提交
1153 1154
                                ->assert_is_op("elementwise_add");
    // Create variables.
C
chengduo 已提交
1155
    auto *bias = pattern->NewNode(bias_repr())
Y
Yan Chunwei 已提交
1156
                     ->assert_is_op_input("elementwise_add")
1157
                     ->assert_is_persistable_var()
Y
Yan Chunwei 已提交
1158 1159
                     ->AsInput();

1160 1161 1162 1163
    auto *elementwise_add_out_var =
        pattern->NewNode(elementwise_add_out_repr())
            ->AsOutput()
            ->assert_is_op_output("elementwise_add");
Y
Yan Chunwei 已提交
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    elementwise_add->LinksFrom({mul_out_var, bias})
        .LinksTo({elementwise_add_out_var});
    if (!with_relu) {
      return elementwise_add_out_var;
    } else {
      elementwise_add_out_var->AsIntermediate()->assert_is_op_input("relu");
      // Create operators.
      auto *relu = pattern->NewNode(relu_repr())->assert_is_op("relu");
      auto *relu_out_var = pattern->NewNode(relu_out_repr())
                               ->AsOutput()
                               ->assert_is_op_output("relu");

      relu->LinksFrom({elementwise_add_out_var}).LinksTo({relu_out_var});
      return relu_out_var;
    }
1180 1181
  }
}
T
tensor-tang 已提交
1182

1183
PDNode *patterns::FCMKLDNN::operator()(bool with_residual_data) {
1184 1185
  auto *fc_op = pattern->NewNode(fc_repr())->assert_is_op("fc");
  // Create variables
M
Michał Gallus 已提交
1186 1187 1188 1189
  // Input
  auto *input_var = pattern->NewNode(input_repr())
                        ->AsInput()
                        ->assert_is_op_input("fc", "Input");
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
  // Filter
  auto *fc_weight_var = pattern->NewNode(weights_repr())
                            ->AsInput()
                            ->assert_is_op_input("fc", "W");
  // Bias
  auto *fc_bias_var = pattern->NewNode(bias_repr())
                          ->AsInput()
                          ->assert_is_op_input("fc", "Bias");
  // Output
  auto *fc_out_var = pattern->NewNode(output_repr())
                         ->AsOutput()
                         ->assert_is_op_output("fc", "Out")
                         ->assert_is_only_output_of_op("fc");

1204 1205 1206 1207
  std::vector<PDNode *> links_from{input_var, fc_weight_var, fc_bias_var};
  if (with_residual_data) {
    auto res_fc_var = pattern->NewNode(residual_data_repr())
                          ->AsInput()
1208
                          ->assert_is_op_input("fc", "ResidualData");
1209 1210 1211
    links_from.push_back(res_fc_var);
  } else {
    fc_op->assert_more([&](Node *x) {
1212 1213
      if (!HasInput(x, "ResidualData") ||
          x->Op()->Input("ResidualData").size() == 0)
1214 1215 1216 1217 1218 1219
        return true;
      return false;
    });
  }

  fc_op->LinksFrom(links_from).LinksTo({fc_out_var});
1220 1221 1222
  return fc_out_var;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
PDNode *patterns::Embedding::operator()(PDNode *x) {
  x->assert_is_op_input("lookup_table", "Ids");
  auto *lookup_table_op =
      pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__)                    \
  auto *arg__ = pattern->NewNode(arg__##_repr()) \
                    ->assert_is_op_##io__("lookup_table", #arg__);

  NEW_NODE(W, input);

  NEW_NODE(Out, output);
#undef NEW_NODE

  lookup_table_op->LinksFrom({x, W});
  lookup_table_op->LinksTo({Out});
  return Out;
}

C
chengduo 已提交
1241
PDNode *patterns::LSTM::operator()(PDNode *x) {
1242
  x->assert_is_op_input("lstm", "Input");
C
chengduo 已提交
1243
  auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
Y
Yan Chunwei 已提交
1244
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
1245
  auto *arg__ =               \
Y
Yan Chunwei 已提交
1246
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
1247 1248 1249 1250 1251

  // Currently, the H0 and C0 are optional
  // TODO(Superjomn) upgrade the fuse framework to support optional.
  // NEW_NODE(H0, input);
  // NEW_NODE(C0, input);
Y
Yan Chunwei 已提交
1252 1253
  NEW_NODE(Weight, input);
  NEW_NODE(Bias, input);
1254

Y
Yan Chunwei 已提交
1255 1256 1257 1258 1259
  NEW_NODE(Hidden, output);
  NEW_NODE(Cell, output);
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
1260 1261 1262 1263 1264

  lstm_op->LinksFrom({x, Weight, Bias});
  lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
  return Hidden;
}
T
tensor-tang 已提交
1265

C
chengduo 已提交
1266
PDNode *patterns::GRU::operator()(PDNode *x) {
T
tensor-tang 已提交
1267
  x->assert_is_op_input("gru", "Input");
C
chengduo 已提交
1268
  auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
Y
Yan Chunwei 已提交
1269
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
1270
  auto *arg__ =               \
Y
Yan Chunwei 已提交
1271
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
T
tensor-tang 已提交
1272

Y
Yan Chunwei 已提交
1273
  NEW_NODE(Weight, input);
T
tensor-tang 已提交
1274 1275
  // TODO(Superjomn): upgrade the fuse framework to support optional.
  // H0 and bias are optional
Y
Yan Chunwei 已提交
1276
  NEW_NODE(Bias, input);  // also optional
T
tensor-tang 已提交
1277 1278
  // NEW_NODE(H0, input);

Y
Yan Chunwei 已提交
1279
  NEW_NODE(Hidden, output);
T
tensor-tang 已提交
1280
  // below are intermediate
Y
Yan Chunwei 已提交
1281 1282 1283 1284
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchResetHiddenPrev, output);
  NEW_NODE(BatchHidden, output);
#undef NEW_NODE
T
tensor-tang 已提交
1285

T
tensor-tang 已提交
1286 1287 1288 1289
  BatchGate->AsIntermediate();
  BatchResetHiddenPrev->AsIntermediate();
  BatchHidden->AsIntermediate();

T
tensor-tang 已提交
1290 1291 1292 1293 1294
  gru_op->LinksFrom({x, Weight, Bias});
  gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
  return Hidden;
}

C
chengduo 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
PDNode *patterns::ActElewiseAdd::operator()(
    paddle::framework::ir::PDNode *in_var,
    std::unordered_set<std::string> act_types) {
  in_var->assert_is_ops_input(act_types, "X");

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_not_ctrl_var()
                          ->assert_is_ops_output(act_types);
  act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto *ele_x_var = pattern->NewNode(ele_x_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add")
                        ->AsInput();
  auto *elementwise_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add", "Out");

  act->LinksFrom({in_var}).LinksTo({act_out_var});
  elementwise_add->LinksFrom({act_out_var, ele_x_var})
      .LinksTo({elewise_add_out});

  return elewise_add_out;
}

Z
Zhen Wang 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
PDNode *patterns::BatchNormAct::operator()(
    paddle::framework::ir::PDNode *bn_x_var,
    std::unordered_set<std::string> act_types) {
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm", "Bias");
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->assert_is_op_input("batch_norm", "Variance");
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->assert_is_op_input("batch_norm", "Mean");

  auto *bn = pattern->NewNode(batch_norm_repr())
                 ->assert_is_op("batch_norm")
                 ->assert_is_not_op_input("MomentumTensor")
                 ->assert_op_attr<bool>("is_test", false)
                 ->assert_op_attr<bool>("use_global_stats", false)
                 ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->assert_is_op_output("batch_norm", "MeanOut");
  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->assert_is_op_output("batch_norm", "VarianceOut");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_output("batch_norm", "SavedVariance");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_output("batch_norm", "SavedMean");
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_output("batch_norm", "ReserveSpace");
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->assert_is_op_output("batch_norm", "Y")
                         ->assert_has_n_outputs(1);

  bn_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  bn->LinksFrom(
        {bn_x_var, bn_scale_var, bn_bias_var, bn_variance_var, bn_mean_var})
1370 1371 1372 1373 1374 1375
      .LinksTo({bn_mean_out_var,
                bn_variance_out_var,
                bn_saved_variance_var,
                bn_saved_mean_var,
                bn_reserve_space,
                bn_out_var});
Z
Zhen Wang 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
  act->LinksFrom({bn_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::BatchNormActGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_grad_types) {
  auto *act_grad =
      pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
  auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
                      ->assert_is_op("batch_norm_grad")
                      ->assert_op_attr<bool>("use_global_stats", false)
                      ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_ops_input(act_grad_types, "Out");
  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"))
          ->assert_has_n_outputs(1);
  auto *bn_x_var = pattern->NewNode(bn_x_repr())
                       ->assert_is_op_input("batch_norm_grad", "X")
                       ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm_grad", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm_grad", "Bias");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedMean");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedVariance");
  // ReserveSpace as the output is equal to:
  // data_layout == 'NHWC' && FLAGS_cudnn_batchnorm_spatial_persistent == true
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_input("batch_norm_grad", "ReserveSpace");
  auto *d_bn_x_var =
      pattern->NewNode(d_bn_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("X"));
  auto *d_bn_scale_var =
      pattern->NewNode(d_bn_scale_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
  auto *d_bn_bias_var =
      pattern->NewNode(d_bn_bias_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  bn_grad
1432 1433 1434 1435 1436 1437 1438
      ->LinksFrom({bn_x_var,
                   d_intermediate_var,
                   bn_scale_var,
                   bn_bias_var,
                   bn_saved_mean_var,
                   bn_saved_variance_var,
                   bn_reserve_space})
Z
Zhen Wang 已提交
1439 1440 1441 1442 1443
      .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});

  return bn_grad;
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
PDNode *patterns::BatchNormActOneDNN::operator()(const std::string &act_type) {
  auto *bn_x = pattern->NewNode(bn_in_repr())
                   ->AsInput()
                   ->assert_is_op_input("batch_norm", "X");
  auto *bn = pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  auto *bn_out = pattern->NewNode(bn_out_repr())
                     ->assert_is_op_output("batch_norm", "Y")
                     ->assert_is_op_input(act_type);
  auto *act =
      pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
  auto *act_out = pattern->NewNode(act_out_repr())
                      ->assert_is_op_output(act_type, "Out")
                      ->AsOutput();

  bn->LinksFrom({bn_x}).LinksTo({bn_out});
  act->LinksFrom({bn_out}).LinksTo({act_out});

  return act_out;
}

Z
Zhang Ting 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
PDNode *patterns::BatchNormAddAct::operator()(
    paddle::framework::ir::PDNode *bn_x_var,
    std::unordered_set<std::string> act_types) {
  bn_x_var->assert_is_op_input("batch_norm", "X")
      ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm", "Bias");

  auto *bn = pattern->NewNode(batch_norm_repr())
                 ->assert_is_op("batch_norm")
                 ->assert_is_not_op_input("MomentumTensor")
                 ->assert_op_attr<bool>("is_test", false)
                 ->assert_op_attr<bool>("use_global_stats", false)
                 ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->assert_is_op_output("batch_norm", "MeanOut");
  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->assert_is_op_output("batch_norm", "VarianceOut");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_output("batch_norm", "SavedVariance");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_output("batch_norm", "SavedMean");
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_output("batch_norm", "ReserveSpace");
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->assert_is_op_output("batch_norm", "Y")
                         ->assert_var_dtype(proto::VarType::FP16);

  bn_out_var->assert_is_op_input("elementwise_add");

  auto *elewise_add =
      pattern->NewNode(elewise_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_in_var = pattern->NewNode(elewise_add_in_repr())
                                 ->assert_is_not_ctrl_var()
                                 ->assert_is_op_input("elementwise_add")
                                 ->assert_var_dtype(proto::VarType::FP16);

  auto *elewise_add_out_var =
      pattern->NewNode(elewise_add_out_repr())
          ->assert_is_op_output("elementwise_add", "Out")
          ->assert_has_n_outputs(1);

  elewise_add_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  bn->LinksFrom({bn_x_var, bn_scale_var, bn_bias_var})
1522 1523 1524 1525 1526 1527
      .LinksTo({bn_mean_out_var,
                bn_variance_out_var,
                bn_saved_variance_var,
                bn_saved_mean_var,
                bn_reserve_space,
                bn_out_var});
Z
Zhang Ting 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
  elewise_add->LinksFrom({elewise_add_in_var, bn_out_var})
      .LinksTo({elewise_add_out_var});
  act->LinksFrom({elewise_add_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::BatchNormAddActGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_grad_types) {
  auto *act_grad =
      pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
  auto *elewise_add_grad = pattern->NewNode(elewise_add_grad_repr())
                               ->assert_is_op("elementwise_add_grad");
  auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
                      ->assert_is_op("batch_norm_grad")
                      ->assert_op_attr<bool>("use_global_stats", false)
                      ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_ops_input(act_grad_types, "Out");
  auto *d_act_x_var =
      pattern->NewNode(d_act_x_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"))
          ->assert_has_n_outputs(1);  // d_act_x

  d_act_x_var->AsIntermediate()->assert_is_op_input("elementwise_add_grad");

  auto *d_elewise_add_in_var =
      pattern->NewNode(d_elewise_add_in_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad")
          ->assert_var_dtype(proto::VarType::FP16);  // d_add_in_1
  auto *d_bn_out_var =
      pattern->NewNode(d_bn_out_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad")
          ->assert_var_dtype(proto::VarType::FP16);  // d_add_in_2

  d_bn_out_var->assert_is_op_input("batch_norm_grad", GradVarName("Y"));

  auto *bn_x_var = pattern->NewNode(bn_x_repr())
                       ->assert_is_op_input("batch_norm_grad", "X")
                       ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm_grad", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm_grad", "Bias");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedMean");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedVariance");

  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_input("batch_norm_grad", "ReserveSpace");
  auto *d_bn_x_var =
      pattern->NewNode(d_bn_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("X"))
          ->assert_var_dtype(proto::VarType::FP16);
  auto *d_bn_scale_var =
      pattern->NewNode(d_bn_scale_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
  auto *d_bn_bias_var =
      pattern->NewNode(d_bn_bias_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));

  act_grad->LinksFrom({d_act_out_var, act_out_var}).LinksTo({d_act_x_var});

  elewise_add_grad->LinksFrom({d_act_x_var})
      .LinksTo({d_elewise_add_in_var, d_bn_out_var});

  bn_grad
1606 1607 1608 1609 1610 1611 1612
      ->LinksFrom({bn_x_var,
                   d_bn_out_var,
                   bn_scale_var,
                   bn_bias_var,
                   bn_saved_mean_var,
                   bn_saved_variance_var,
                   bn_reserve_space})
Z
Zhang Ting 已提交
1613 1614 1615 1616 1617
      .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});

  return bn_grad;
}

C
chengduo 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_types) {
  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");

  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_types, GradVarName("X"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add_grad", "Y");

  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");

  auto *d_ele_x_var =
      pattern->NewNode(d_ele_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));

  auto *d_ele_y_var =
      pattern->NewNode(d_ele_y_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));

  ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
      .LinksTo({d_ele_x_var, d_ele_y_var});

  return ele_add_grad;
}

Z
zhangbo9674 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
PDNode *patterns::ActElewiseAddInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_out_var,
    std::unordered_set<std::string> act_types) {
  VLOG(4) << "ActElewiseAddInplaceGrad::operator";

  auto *ele_add_grad_op = pattern->NewNode(ele_add_grad_op_repr())
                              ->assert_is_op("elementwise_add_grad");
  auto *act_grad_op =
      pattern->NewNode(act_grad_op_repr())->assert_is_ops(act_types);

  auto *d_intermediate_out_var =
      pattern->NewNode(d_intermediate_var_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"))
          ->assert_is_ops_input(act_types, GradVarName("Out"));
  auto *intermediate_out_var =
      pattern->NewNode(intermediate_var_repr())
          ->assert_is_op_input("elementwise_add_grad", "Y")
          ->assert_is_ops_input(act_types, "Out");

  ele_add_grad_op->LinksFrom({d_out_var});
  d_intermediate_out_var->LinksFrom({ele_add_grad_op}).LinksTo({act_grad_op});
  intermediate_out_var->LinksTo({ele_add_grad_op});
  intermediate_out_var->LinksTo({act_grad_op});

  return act_grad_op;
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
PDNode *patterns::ElewiseAddAct::operator()(
    paddle::framework::ir::PDNode *ele_x_var,
    std::unordered_set<std::string> act_types) {
  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
  act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::LinearAct::operator()(
    paddle::framework::ir::PDNode *linear_x_var,
1712 1713
    const std::unordered_set<std::string> &act_types,
    bool with_grad_link,
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
    bool is_act_grad_x_from_act) {
  auto *matmul_w_var =
      pattern->NewNode(matmul_w_repr())->assert_is_op_input("matmul_v2", "Y");

  auto *matmul = pattern->NewNode(matmul_repr())->assert_is_op("matmul_v2");

  auto *matmul_out_var = pattern->NewNode(matmul_out_repr())
                             ->assert_is_op_output("matmul_v2", "Out");

  matmul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add", "X");

  auto *ele_bias_var = pattern->NewNode(ele_bias_repr())
                           ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  matmul->LinksFrom({linear_x_var, matmul_w_var}).LinksTo({matmul_out_var});
  ele_add->LinksFrom({matmul_out_var, ele_bias_var}).LinksTo({ele_out_var});

  if (with_grad_link) {
    matmul_out_var->assert_is_op_input("elementwise_add_grad", "X");
    auto *elementwise_add_grad_op = pattern->NewNode("elementwise_add_grad")
                                        ->assert_is_op("elementwise_add_grad");
    elementwise_add_grad_op->LinksFrom({matmul_out_var});
  }

  if (act_types.size() > 0) {
    ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

    auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
    auto *act_out_var = pattern->NewNode(act_out_repr())
                            ->assert_is_ops_output(act_types, "Out");

    act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

    if (with_grad_link && !is_act_grad_x_from_act) {
      std::unordered_set<std::string> act_grad_types;
      for (const auto &act : act_types) {
        std::string act_grad(act);
        act_grad.append("_grad");
        act_grad_types.insert(act_grad);
      }

      ele_out_var->assert_is_ops_input(act_grad_types, "X");
      auto *act_grad_op =
          pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
      act_grad_op->LinksFrom({ele_out_var});
    }

    return act_out_var;
  }

  return ele_out_var;
}

PDNode *patterns::ElewiseAddMatmulAct::operator()(
    paddle::framework::ir::PDNode *dout_var,
    const std::unordered_set<std::string> &act_grad_types,
1776 1777
    bool without_x_gradient,
    bool is_act_grad_x_from_act) {
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
  auto *ele_grad_bias_var =
      pattern->NewNode(ele_grad_bias_repr())
          ->assert_is_op_input("elementwise_add_grad", "Y");
  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");
  auto *ele_grad_dx_var =
      pattern->NewNode(ele_grad_dx_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
  auto *ele_grad_dbias_var =
      pattern->NewNode(ele_grad_dbias_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
  ele_add_grad->LinksFrom({dout_var, ele_grad_bias_var})
      .LinksTo({ele_grad_dx_var, ele_grad_dbias_var});

  ele_grad_dx_var->AsIntermediate()->assert_is_op_input("matmul_v2_grad",
                                                        GradVarName("Out"));

  auto *matmul_grad_x_var = pattern->NewNode(matmul_grad_x_repr())
                                ->assert_is_op_input("matmul_v2_grad", "X");
  auto *matmul_grad_w_var = pattern->NewNode(matmul_grad_w_repr())
                                ->assert_is_op_input("matmul_v2_grad", "Y");
  auto *matmul_grad =
      pattern->NewNode(matmul_grad_repr())->assert_is_op("matmul_v2_grad");
  auto *matmul_grad_dx_var =
      pattern->NewNode(matmul_grad_dx_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("X"));
  auto *matmul_grad_dw_var =
      pattern->NewNode(matmul_grad_dw_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("Y"));
  matmul_grad->LinksFrom(
      {ele_grad_dx_var, matmul_grad_x_var, matmul_grad_w_var});
  if (without_x_gradient) {
    matmul_grad->LinksTo({matmul_grad_dw_var});
  } else {
    matmul_grad->LinksTo({matmul_grad_dx_var, matmul_grad_dw_var});
  }

  if (!without_x_gradient && act_grad_types.size() > 0) {
    matmul_grad_dx_var->AsIntermediate()->assert_is_ops_input(
        act_grad_types, GradVarName("Out"));

    auto *act_grad =
        pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
    auto *act_grad_dx_var =
        pattern->NewNode(act_grad_dx_repr())
            ->assert_is_ops_output(act_grad_types, GradVarName("X"));

    auto *act_grad_x_var = matmul_grad_x_var;
    if (!is_act_grad_x_from_act) {
      auto *ele_out_var = pattern->NewNode(ele_out_repr())
                              ->assert_is_ops_input(act_grad_types, "X");
      act_grad_x_var = ele_out_var;
    }

    act_grad->LinksFrom({matmul_grad_dx_var, act_grad_x_var})
        .LinksTo({act_grad_dx_var});
    return act_grad;
  }

  return matmul_grad;
}

1840
// conv_type: conv2d, conv3d, conv2d_transpose
M
Michal Gallus 已提交
1841
PDNode *patterns::ConvBias::operator()(
1842
    paddle::framework::ir::PDNode *conv_input, std::string conv_type) {
M
Michal Gallus 已提交
1843
  // Create Operators
1844 1845
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
M
Michal Gallus 已提交
1846 1847 1848 1849
  auto *eltiwse_op =
      pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  // Create variables
  // Filter
Y
Yihua Xu 已提交
1850 1851
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
1852
                              ->assert_is_op_input(conv_type, "Filter");
M
Michal Gallus 已提交
1853
  // intermediate variable, will be removed in the IR after fuse.
Y
Yihua Xu 已提交
1854 1855
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
1856
                           ->assert_is_only_output_of_op(conv_type)
Y
Yihua Xu 已提交
1857
                           ->assert_is_op_input("elementwise_add");
M
Michal Gallus 已提交
1858 1859 1860
  // Bias stored in elementwise_add
  auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
                               ->AsInput()
M
Michal Gallus 已提交
1861
                               ->assert_is_persistable_var()
M
Michal Gallus 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
                               ->assert_is_op_input("elementwise_add", "Y");
  // output
  auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add");
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
      .LinksTo({eltwise_out_var});
  return eltwise_out_var;
}

Z
zyfncg 已提交
1873 1874
PDNode *patterns::Conv::operator()(const std::string &conv_type) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op(conv_type);
1875 1876

  auto input_var = pattern->NewNode(conv_input_repr())
1877
                       ->AsInput()
Z
zyfncg 已提交
1878
                       ->assert_is_op_input(conv_type, "Input");
1879 1880

  auto filter_var = pattern->NewNode(conv_filter_repr())
1881
                        ->AsInput()
Z
zyfncg 已提交
1882
                        ->assert_is_op_input(conv_type, "Filter");
1883 1884

  auto output_var = pattern->NewNode(conv_output_repr())
1885
                        ->AsOutput()
Z
zyfncg 已提交
1886
                        ->assert_is_op_output(conv_type, "Output");
1887

1888 1889 1890 1891
  conv_op->LinksFrom({input_var, filter_var}).LinksTo({output_var});
  return output_var;
}

1892 1893
PDNode *patterns::Immutable::operator()(const std::string &immutable_type,
                                        const std::string &input_name) {
1894 1895
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

1896 1897
  auto immutable_op =
      pattern->NewNode(immutable_op_repr())->assert_is_op(immutable_type);
1898

1899
  auto immutable_in = pattern->NewNode(immutable_in_repr())
1900
                          ->AsInput()
1901 1902
                          ->assert_is_op_input(immutable_type, input_name);
  auto immutable_out = pattern->NewNode(immutable_out_repr())
1903
                           ->AsOutput()
1904
                           ->assert_is_op_output(immutable_type, "Out");
1905

1906 1907 1908
  prev_op->LinksTo({immutable_in});
  immutable_op->LinksFrom({immutable_in}).LinksTo({immutable_out});
  return immutable_out;
1909 1910
}

1911
PDNode *patterns::Matmul::operator()() {
1912 1913 1914 1915 1916 1917 1918
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
1919
                         ->assert_is_persistable_var()
1920 1921 1922 1923 1924 1925 1926 1927 1928
                         ->assert_is_op_input("matmul", "Y");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
// MatmulV2: tensor * weight
PDNode *patterns::MatmulV2Weight::operator()() {
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");

  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_persistable_var()  // Y is weight
                            ->assert_is_op_input("matmul_v2", "Y");
  auto matmul_v2_out = pattern->NewNode(matmul_v2_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("matmul_v2", "Out");

  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({matmul_v2_out});
  return matmul_v2_out;
}

// MatmulV2: tensor * tensor or tensor * weight
1951
PDNode *patterns::MatmulV2::operator()() {
1952 1953
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");
1954

1955 1956 1957 1958 1959 1960 1961 1962 1963
  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "Y");
  auto matmul_v2_out = pattern->NewNode(matmul_v2_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("matmul_v2", "Out");
1964

1965 1966 1967
  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({matmul_v2_out});
  return matmul_v2_out;
1968 1969
}

H
heliqi 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
PDNode *patterns::MatmulScale::operator()() {
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "Y");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_in_x = pattern->NewNode(scale_in_x_repr())
                        ->assert_is_op_output("matmul", "Out")
                        ->assert_is_op_input("scale", "X");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({scale_in_x});
  scale_op->LinksFrom({scale_in_x}).LinksTo({scale_out});
  return scale_out;
}

PDNode *patterns::MatmulV2Scale::operator()() {
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");
  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_persistable_var()  // Y is weight
                            ->assert_is_op_input("matmul_v2", "Y");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_in_x = pattern->NewNode(scale_in_x_repr())
                        ->assert_is_op_output("matmul_v2", "Out")
                        ->assert_is_op_input("scale", "X");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({scale_in_x});
  scale_op->LinksFrom({scale_in_x}).LinksTo({scale_out});
  return scale_out;
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
PDNode *patterns::Squeeze2Matmul::operator()() {
  auto squeeze2_in_x = pattern->NewNode(squeeze2_in_x_repr())
                           ->assert_is_op_input("squeeze2", "X")
                           ->AsInput();
  auto squeeze2_op =
      pattern->NewNode(squeeze2_op_repr())->assert_is_op("squeeze2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("squeeze2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  squeeze2_op->LinksFrom({squeeze2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

PDNode *patterns::Reshape2Matmul::operator()() {
  auto reshape2_in_x = pattern->NewNode(reshape2_in_x_repr())
                           ->assert_is_op_input("reshape2", "X")
                           ->AsInput();
  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("reshape2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  reshape2_op->LinksFrom({reshape2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

2055 2056 2057
PDNode *patterns::FusedMatmul::operator()(bool with_residual) {
  auto matmul_op =
      pattern->NewNode(matmul_op_repr())->assert_is_op("fused_matmul");
2058 2059 2060 2061 2062 2063 2064 2065

  if (!with_residual) {
    matmul_op->assert_more([&](Node *x) {
      return (!HasInput(x, "ResidualData") ||
              x->Op()->Input("ResidualData").size() == 0);
    });
  }

2066 2067
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
2068
                         ->assert_is_op_input("fused_matmul", "X");
2069 2070
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
2071
                         ->assert_is_op_input("fused_matmul", "Y");
2072 2073
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
2074 2075
                        ->assert_is_op_output("fused_matmul", "Out")
                        ->assert_is_only_output_of_op("fused_matmul");
2076 2077 2078 2079 2080 2081
  std::vector<PDNode *> links_from{matmul_in_x, matmul_in_y};

  if (with_residual) {
    auto matmul_residual_data =
        pattern->NewNode(matmul_residual_data_repr())
            ->AsInput()
2082
            ->assert_is_op_input("fused_matmul", "ResidualData");
2083 2084
    links_from.push_back(matmul_residual_data);
  }
2085

2086
  matmul_op->LinksFrom(links_from).LinksTo({matmul_out});
2087 2088 2089
  return matmul_out;
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
PDNode *patterns::Flatten2Matmul::operator()() {
  auto flatten2_in_x = pattern->NewNode(flatten2_in_x_repr())
                           ->assert_is_op_input("flatten2", "X")
                           ->AsInput();
  auto flatten2_op =
      pattern->NewNode(flatten2_op_repr())->assert_is_op("flatten2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("flatten2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  flatten2_op->LinksFrom({flatten2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

2111 2112 2113
PDNode *patterns::ConvResidual::operator()(const std::string &conv_type,
                                           bool with_residual_data) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op(conv_type);
2114

2115 2116 2117 2118 2119 2120 2121 2122
  if (!with_residual_data) {
    conv_op->assert_more([&](Node *x) {
      if (!HasInput(x, "ResidualData") ||
          x->Op()->Input("ResidualData").size() == 0)
        return true;
      return false;
    });
  }
2123 2124 2125

  auto input_var = pattern->NewNode(conv_input_repr())
                       ->AsInput()
2126
                       ->assert_is_op_input(conv_type, "Input");
2127 2128 2129

  auto filter_var = pattern->NewNode(conv_filter_repr())
                        ->AsInput()
2130
                        ->assert_is_op_input(conv_type, "Filter");
2131 2132 2133

  auto output_var = pattern->NewNode(conv_output_repr())
                        ->AsOutput()
2134
                        ->assert_is_op_output(conv_type, "Output");
2135 2136 2137 2138 2139 2140

  std::vector<PDNode *> links_from{input_var, filter_var};

  if (with_residual_data) {
    auto res_conn_var = pattern->NewNode(conv_residual_data_repr())
                            ->AsInput()
2141
                            ->assert_is_op_input(conv_type, "ResidualData");
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
    links_from.push_back(res_conn_var);
  }

  conv_op->LinksFrom(links_from).LinksTo({output_var});
  return output_var;
}

PDNode *patterns::Pool::operator()() {
  auto pool_op = pattern->NewNode(pool_op_repr())->assert_is_op("pool2d");

  auto input_var = pattern->NewNode(pool_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("pool2d", "X");

  auto output_var = pattern->NewNode(pool_output_repr())
                        ->AsOutput()
                        ->assert_is_op_output("pool2d", "Out");
2159

2160
  pool_op->LinksFrom({input_var}).LinksTo({output_var});
2161 2162 2163
  return output_var;
}

2164 2165
PDNode *patterns::Elementwise::operator()(PDNode *x_var,
                                          PDNode *y_var,
2166
                                          const std::string &elementwise_type) {
Z
Zuza 已提交
2167 2168 2169 2170 2171 2172
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  x_var->AsInput()->assert_is_op_input(elementwise_type, "X");
  y_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
  auto out_var = pattern->NewNode(elementwise_out_repr())
2173
                     ->AsOutput()
Z
Zuza 已提交
2174
                     ->assert_is_op_output(elementwise_type, "Out");
2175

Z
Zuza 已提交
2176 2177
  elementwise_op->LinksFrom({x_var, y_var});
  elementwise_op->LinksTo({out_var});
2178 2179 2180

  return out_var;
}
2181

2182
PDNode *patterns::ElementwiseOp::operator()(
2183
    const std::string &elementwise_type) {
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  auto out_var = pattern->NewNode(elementwise_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output(elementwise_type, "Out");

  elementwise_op->LinksTo({out_var});

  return out_var;
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
PDNode *patterns::MatmulElementwiseAdd::operator()(
    const std::string &matmul_type, bool as_x) {
  auto matmul_op =
      pattern->NewNode(matmul_op_repr())->assert_is_op(matmul_type);
  auto matmul_out =
      pattern->NewNode(matmul_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output(matmul_type, "Out")
          ->assert_is_only_output_of_op(matmul_type)
          ->assert_is_op_input("elementwise_add", as_x ? "X" : "Y");
  auto elementwise_addend =
      pattern->NewNode(elementwise_addend_repr())
          ->AsInput()
          ->assert_is_op_input("elementwise_add", as_x ? "Y" : "X");
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_out =
      pattern->NewNode(elementwise_add_out_repr())
          ->AsOutput()
          ->assert_is_op_output("elementwise_add", "Out");

  matmul_op->LinksTo({matmul_out});
  elementwise_add_op->LinksFrom({matmul_out, elementwise_addend})
      .LinksTo({elementwise_add_out});
  return elementwise_add_out;
}

2223
PDNode *patterns::ResidualElementwise::operator()(
2224 2225
    PDNode *op_var,
    PDNode *residual_var,
2226
    const std::string &elementwise_type,
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
    bool as_x) {
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  if (as_x) {
    op_var->AsInput()->assert_is_op_input(elementwise_type, "X");
    residual_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
  } else {
    op_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
    residual_var->AsInput()->assert_is_op_input(elementwise_type, "X");
  }
  auto out_var = pattern->NewNode(elementwise_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output(elementwise_type, "Out");

  elementwise_op->LinksFrom({op_var, residual_var});
  elementwise_op->LinksTo({out_var});

  return out_var;
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
PDNode *patterns::Concat::operator()() {
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");

  auto output_var = pattern->NewNode(concat_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("concat", "Out");

  concat_op->LinksTo({output_var});
  return output_var;
}

J
joanna.wozna.intel 已提交
2259 2260 2261 2262 2263 2264 2265 2266
PDNode *patterns::OpRequant::operator()() {
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      return node->Op()->HasAttr("Scale_out") ? true : false;
                    });
  auto requant_in = pattern->NewNode(requant_in_repr())
                        ->assert_is_op_input("requantize", "Input");
2267 2268 2269 2270 2271 2272
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");

J
joanna.wozna.intel 已提交
2273 2274
  any_op->LinksTo({requant_in});
  requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
2275 2276 2277
  return requant_out;
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
PDNode *patterns::RequantOp::operator()() {
  auto requant_in = pattern->NewNode(requant_in_repr())
                        ->assert_is_op_input("requantize", "Input");
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      return (node->Op()->HasAttr("Scale_in") ||
                              node->Op()->HasAttr("Scale_x") ||
                              node->Op()->HasAttr("Scale_y"));
                    });

  requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
  any_op->LinksFrom({requant_out});
  return any_op;
}

2299 2300 2301 2302
PDNode *patterns::OpDequant::operator()() {
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
2303 2304
                      return (node->Op()->HasAttr("force_fp32_output") ||
                              node->Op()->HasProtoAttr("force_fp32_output"));
2305 2306 2307
                    });
  auto dequant_in = pattern->NewNode(dequant_in_repr())
                        ->assert_is_op_input("dequantize", "Input");
2308 2309 2310 2311 2312 2313
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");

2314 2315
  any_op->LinksTo({dequant_in});
  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
2316 2317 2318
  return dequant_out;
}

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
PDNode *patterns::DequantScale::operator()() {
  // Create Operators
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");

  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");

  dequant_op->LinksTo({dequant_out});
  scale_op->LinksFrom({dequant_out}).LinksTo({scale_out});

  return scale_out;
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
PDNode *patterns::ScaleQuant::operator()() {
  auto scale_in = pattern->NewNode(scale_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("scale", "X");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");

  auto quant_in = pattern->NewNode(quant_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("quantize", "Input");
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");

  scale_op->LinksFrom({scale_in}).LinksTo({quant_in});
  quant_op->LinksFrom({quant_in});

  return quant_op;
}

2355
PDNode *patterns::QuantConv::operator()(const std::string &conv_type) {
2356 2357 2358 2359 2360 2361 2362
  auto quant_in = pattern->NewNode(quant_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("quantize", "Input");
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");

  auto conv_in = pattern->NewNode(conv_in_repr())
                     ->AsInput()
2363 2364
                     ->assert_is_op_input(conv_type, "Input");
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op(conv_type);
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
  conv_op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });

  quant_op->LinksFrom({quant_in}).LinksTo({conv_in});
  conv_op->LinksFrom({conv_in});

  return quant_op;
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
PDNode *patterns::ScaleMatmul::operator()() {
  auto scale_in = pattern->NewNode(scale_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("scale", "X");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  scale_op->LinksFrom({scale_in}).LinksTo({scale_out});
  matmul_op->LinksFrom({scale_out});
  return matmul_op;
}

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
PDNode *patterns::PriorBox::operator()() {
  auto prior_box_op =
      pattern->NewNode(prior_box_op_repr())->assert_is_op("prior_box");

  auto input_var = pattern->NewNode(prior_box_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Input");

  auto image_var = pattern->NewNode(prior_box_image_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Image");

  auto boxes_var = pattern->NewNode(prior_box_boxes_repr())
                       ->AsOutput()
                       ->assert_is_op_output("prior_box", "Boxes");

  auto variances_var = pattern->NewNode(prior_box_variances_repr())
                           ->AsOutput()
                           ->assert_is_op_output("prior_box", "Variances");

  prior_box_op->LinksFrom({input_var, image_var})
      .LinksTo({boxes_var, variances_var});
  return boxes_var;
}

2416 2417
PDNode *patterns::ConvElementwiseaddAct::operator()(
    PDNode *conv_in, const std::unordered_set<std::string> &conv_act_set) {
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2430
                                  ->assert_is_persistable_var()
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });

  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
  act_op->LinksFrom({elementwise_add_out}).LinksTo({act_out});

  return act_out;
}

F
feng_shuai 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
PDNode *patterns::VitAttention::operator()(PDNode *in) {
  in->AsInput();
  std::unordered_set<std::string> matmul_ops{"matmul", "matmul_v2"};

  auto matmul0_op =
      pattern->NewNode(matmul0_op_repr())->assert_is_ops(matmul_ops);
  auto matmul0_in_y = pattern->NewNode(matmul0_in_y_repr())
                          ->AsInput()
                          ->assert_is_ops_input(matmul_ops, "Y");
  auto matmul0_out = pattern->NewNode(matmul0_out_repr())
                         ->assert_is_ops_output(matmul_ops, "Out")
                         ->assert_is_op_input("elementwise_add", "X")
                         ->AsIntermediate();

  auto elementwise0_op =
      pattern->NewNode(elementwise0_op_repr())->assert_is_op("elementwise_add");
  auto elementwise0_in_y = pattern->NewNode(elementwise0_in_y_repr())
                               ->AsInput()
                               ->assert_is_op_input("elementwise_add", "Y");
  auto elementwise0_out = pattern->NewNode(elementwise0_out_repr())
                              ->assert_is_op_output("elementwise_add", "Out")
                              ->assert_is_op_input("reshape2", "X")
                              ->AsIntermediate();

  auto reshape1_op =
      pattern->NewNode(reshape1_op_repr())->assert_is_op("reshape2");
  auto reshape1_out = pattern->NewNode(reshape1_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->assert_is_op_input("transpose2", "X")
                          ->AsIntermediate();

  auto transpose1_op =
      pattern->NewNode(transpose1_op_repr())->assert_is_op("transpose2");
  auto transpose1_out = pattern->NewNode(transpose1_out_repr())
                            ->assert_is_op_output("transpose2", "Out")
                            ->assert_is_op_input("slice", "Input")
                            ->AsIntermediate();

  auto slice1_op = pattern->NewNode(slice1_op_repr())->assert_is_op("slice");
  auto slice1_out = pattern->NewNode(slice1_out_repr())
                        ->assert_is_op_output("slice", "Out")
                        ->assert_is_op_input("matmul_v2", "Y")
                        ->AsIntermediate();

  auto slice2_op = pattern->NewNode(slice2_op_repr())->assert_is_op("slice");
  auto slice2_out = pattern->NewNode(slice2_out_repr())
                        ->assert_is_op_output("slice", "Out")
                        ->assert_is_op_input("matmul_v2", "X")
                        ->AsIntermediate();

  auto slice3_op = pattern->NewNode(slice3_op_repr())->assert_is_op("slice");
  auto slice3_out = pattern->NewNode(slice3_out_repr())
                        ->assert_is_op_output("slice", "Out")
                        ->assert_is_op_input("transpose2", "X")
                        ->AsIntermediate();

  auto transpose2_op =
      pattern->NewNode(transpose2_op_repr())->assert_is_op("transpose2");
  auto transpose2_out = pattern->NewNode(transpose2_out_repr())
                            ->assert_is_op_output("transpose2", "Out")
                            ->assert_is_op_input("matmul_v2", "Y")
                            ->AsIntermediate();

  auto matmul1_op =
      pattern->NewNode(matmul1_op_repr())->assert_is_op("matmul_v2");
  auto matmul1_out = pattern->NewNode(matmul1_out_repr())
                         ->assert_is_op_output("matmul_v2", "Out")
                         ->assert_is_op_input("scale", "X")
                         ->AsIntermediate();

  auto scale1_op = pattern->NewNode(scale1_op_repr())->assert_is_op("scale");
  auto scale1_out = pattern->NewNode(scale1_out_repr())
                        ->assert_is_op_output("scale", "Out")
                        ->assert_is_op_input("softmax", "X")
                        ->AsIntermediate();

  auto softmax1_op =
      pattern->NewNode(softmax1_op_repr())->assert_is_op("softmax");
  auto softmax1_out = pattern->NewNode(softmax1_out_repr())
                          ->assert_is_op_output("softmax", "Out")
                          ->assert_is_op_input("matmul_v2", "X")
                          ->AsIntermediate();

  auto matmul2_op =
      pattern->NewNode(matmul2_op_repr())->assert_is_op("matmul_v2");
  auto matmul2_out = pattern->NewNode(matmul2_out_repr())
                         ->assert_is_op_output("matmul_v2", "Out")
                         ->assert_is_op_input("transpose2", "X")
                         ->AsIntermediate();

  auto transpose3_op =
      pattern->NewNode(transpose3_op_repr())->assert_is_op("transpose2");
  auto transpose3_out = pattern->NewNode(transpose3_out_repr())
                            ->assert_is_op_output("transpose2", "Out")
                            ->assert_is_op_input("reshape2", "X")
                            ->AsIntermediate();

  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto reshape2_out = pattern->NewNode(reshape2_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->AsOutput();

  matmul0_op->LinksFrom({in, matmul0_in_y});
  matmul0_out->LinksFrom({matmul0_op});

  elementwise0_op->LinksFrom({matmul0_out, elementwise0_in_y});
  elementwise0_out->LinksFrom({elementwise0_op});

  reshape1_op->LinksFrom({elementwise0_out});
  reshape1_out->LinksFrom({reshape1_op});

  transpose1_op->LinksFrom({reshape1_out});
  transpose1_out->LinksFrom({transpose1_op});

  slice1_op->LinksFrom({transpose1_out});
  slice1_out->LinksFrom({slice1_op});

  slice2_op->LinksFrom({transpose1_out});
  slice2_out->LinksFrom({slice2_op});

  slice3_op->LinksFrom({transpose1_out});
  slice3_out->LinksFrom({slice3_op});

  transpose2_op->LinksFrom({slice3_out});
  transpose2_out->LinksFrom({transpose2_op});

  matmul1_op->LinksFrom({slice2_out, transpose2_out});
  matmul1_out->LinksFrom({matmul1_op});

  scale1_op->LinksFrom({matmul1_out});
  scale1_out->LinksFrom({scale1_op});

  softmax1_op->LinksFrom({scale1_out});
  softmax1_out->LinksFrom({softmax1_op});

  matmul2_op->LinksFrom({slice1_out, softmax1_out});
  matmul2_out->LinksFrom({matmul2_op});

  transpose3_op->LinksFrom({matmul2_out});
  transpose3_out->LinksFrom({transpose3_op});

  reshape2_op->LinksFrom({transpose3_out});
  reshape2_out->LinksFrom({reshape2_op});

  return reshape2_out;
}

2614 2615
PDNode *patterns::ConvElementwiseadd2Act::operator()(
    PDNode *conv_in, const std::unordered_set<std::string> &conv_act_set) {
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2627
                                  ->assert_is_persistable_var()
2628 2629 2630 2631
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
H
hjchen2 已提交
2632
                                 ->assert_is_op_input("elementwise_add", "Y")
2633 2634 2635 2636 2637
                                 ->AsIntermediate();

  auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr())
                                  ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr())
H
hjchen2 已提交
2638
                                    ->assert_is_op_input("elementwise_add", "X")
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
                                    ->AsInput();
  auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr())
                                   ->assert_is_op_output("elementwise_add")
                                   ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });
  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
H
hjchen2 已提交
2666 2667
  elementwise_add_op_1->LinksFrom({elementwise_add_out, elementwise_add_in_y_1})
      .LinksTo({elementwise_add_out_1});
2668 2669 2670 2671
  act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out});
  return act_out;
}

N
nhzlx 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
PDNode *patterns::ConvElementwiseadd::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2685
                                  ->assert_is_persistable_var()
N
nhzlx 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});

  return elementwise_add_out;
}

N
nhzlx 已提交
2700
PDNode *patterns::ConvAffineChannel::operator()(
Z
zyfncg 已提交
2701 2702 2703
    paddle::framework::ir::PDNode *conv_input,
    const std::string &conv_type,
    bool with_eltwise_add) {
N
nhzlx 已提交
2704
  // Create Operators
Z
zyfncg 已提交
2705 2706
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
N
nhzlx 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }

  auto *affine_channel_op =
      pattern->NewNode(affine_channel_repr())->assert_is_op("affine_channel");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
Z
zyfncg 已提交
2721
                              ->assert_is_op_input(conv_type, "Filter");
N
nhzlx 已提交
2722 2723 2724

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
Z
zyfncg 已提交
2725
                           ->assert_is_only_output_of_op(conv_type);
N
nhzlx 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as AffineChannel input
    conv_out_var->assert_is_op_input("affine_channel", "X");
  }

  // AC Scale
  auto *ac_scale_var = pattern->NewNode(ac_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
2748
                           ->assert_has_n_outputs(1)
N
nhzlx 已提交
2749 2750 2751 2752 2753
                           ->assert_is_op_input("affine_channel", "Scale");
  // AC Bias
  auto *ac_bias_var = pattern->NewNode(ac_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
2754
                          ->assert_has_n_outputs(1)
N
nhzlx 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
                          ->assert_is_op_input("affine_channel", "Bias");

  // AC output
  auto *ac_out_var = pattern->NewNode(ac_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("affine_channel");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    affine_channel_op->LinksFrom({eltwise_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  } else {
    affine_channel_op->LinksFrom({conv_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  }
  return ac_out_var;
}

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
PDNode *patterns::DequantQuantAny::operator()() {
  auto *dequant_in = pattern->NewNode(dequant_in_repr())
                         ->AsInput()
                         ->assert_is_op_input("dequantize", "Input");

  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *quant_op = pattern->NewNode(quant_op_repr())
                       ->assert_is_op("quantize")
                       ->AsIntermediate();

  auto *quant_out = pattern->NewNode(quant_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("quantize");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
  quant_op->LinksFrom({dequant_out}).LinksTo({quant_out});
  next_op->LinksFrom({quant_out});

  return quant_out;
}

PDNode *patterns::DequantAny::operator()() {
  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksTo({dequant_out});
  next_op->LinksFrom({dequant_out});

  return dequant_out;
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
PDNode *patterns::MultipleQuantize::operator()() {
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  // find nodes that are inputs to quantize operators
  prev_out->assert_more([&](Node *node) {
    int counter = std::count_if(
        node->outputs.begin(), node->outputs.end(), [&](Node const *iter) {
          return iter && iter->IsOp() && iter->Op()->Type() == "quantize";
        });
    return (counter > 1);
  });

  return prev_out;
}

2836 2837
PDNode *patterns::QuantizePlacement::operator()(
    const std::unordered_set<std::string> &quantize_enabled_op_types) {
2838 2839
  auto *op =
      pattern->NewNode(op_repr())->assert_is_ops(quantize_enabled_op_types);
2840 2841 2842
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<bool>("use_mkldnn");
  });
2843 2844 2845
  return op;
}

2846 2847
PDNode *patterns::Bfloat16Placement::operator()(
    const std::unordered_set<std::string> &bfloat16_enabled_op_types) {
J
Jacek Czaja 已提交
2848
  std::unordered_set<std::string> supported_op_types =
2849 2850
      std::unordered_set<std::string>({"bilinear_interp_v2",
                                       "cast",
J
jakpiase 已提交
2851 2852 2853
                                       "clip",
                                       "concat",
                                       "conv2d",
2854
                                       "fused_conv2d",
J
jakpiase 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
                                       "conv2d_transpose",
                                       "elementwise_add",
                                       "elementwise_mul",
                                       "expand_v2",
                                       "fc",
                                       "fusion_gru",
                                       "fusion_lstm",
                                       "gelu",
                                       "layer_norm",
                                       "matmul",
                                       "matmul_v2",
2866
                                       "fused_matmul",
J
jakpiase 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
                                       "pool2d",
                                       "prelu",
                                       "relu",
                                       "reshape2",
                                       "scale",
                                       "sigmoid",
                                       "slice",
                                       "softmax",
                                       "split",
                                       "squeeze",
                                       "squeeze2",
                                       "sum",
                                       "transpose2"});
2880 2881 2882
  if (!bfloat16_enabled_op_types.empty()) {
    supported_op_types = bfloat16_enabled_op_types;
  }
2883
  auto *op_in = pattern->NewNode(op_in_repr())->AsInput();
2884
  auto *op = pattern->NewNode(op_repr())->assert_is_ops(supported_op_types);
2885 2886 2887 2888
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<bool>("use_mkldnn") ||
           node->Op()->Type() == "reshape2";
  });
2889
  op->LinksFrom({op_in});
2890 2891 2892 2893 2894 2895
  return op;
}

PDNode *patterns::OrphanedBfloat16::operator()() {
  auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
  prev_op->assert_more([&](Node *node) {
2896 2897 2898 2899
    bool data_type_is_missing = !node->Op()->HasAttr("mkldnn_data_type");
    bool data_type_is_fp32 = node->Op()->GetAttrIfExists<std::string>(
                                 "mkldnn_data_type") == "float32";
    return data_type_is_missing || data_type_is_fp32;
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
  });
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  auto *op_out = pattern->NewNode(op_out_repr())->AsOutput();

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();
  next_op->assert_more([&](Node *node) {
2912 2913 2914 2915
    bool data_type_is_missing = !node->Op()->HasAttr("mkldnn_data_type");
    bool data_type_is_fp32 = node->Op()->GetAttrIfExists<std::string>(
                                 "mkldnn_data_type") == "float32";
    return data_type_is_missing || data_type_is_fp32;
2916 2917 2918 2919 2920 2921 2922 2923
  });

  prev_op->LinksTo({prev_out});
  op->LinksFrom({prev_out}).LinksTo({op_out});
  next_op->LinksFrom({op_out});
  return next_op;
}

W
wenbin 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
PDNode *patterns::UnsupportedBfloat16::operator()() {
  auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
  prev_op->assert_more([&](Node *node) {
    return node->Op()->HasAttr("mkldnn_data_type") == false;
  });
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  prev_op->LinksTo({prev_out});
  op->LinksFrom({prev_out});
  return op;
}

T
Tomasz Socha 已提交
2941 2942
PDNode *patterns::Bloat16Ops::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op();
2943 2944 2945 2946 2947 2948 2949
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  return op;
}

2950
PDNode *patterns::MKLDNNInPlace::operator()() {
2951
  const std::unordered_set<std::string> &supported_op_types = {
2952
      "abs", "gelu", "leaky_relu", "relu", "softmax", "sqrt", "swish", "tanh"};
2953 2954 2955

  auto possible_inplace_op = pattern->NewNode(inplace_to_be_op_repr())
                                 ->assert_is_ops(supported_op_types);
2956 2957

  auto input = pattern->NewNode(inplace_to_be_op_in_repr())
2958
                   ->assert_is_ops_input(supported_op_types)
2959 2960
                   ->AsInput();
  auto output = pattern->NewNode(inplace_to_be_op_out_repr())
2961
                    ->assert_is_ops_output(supported_op_types)
2962
                    ->AsOutput();
2963 2964

  auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();
2965
  auto next_output = pattern->NewNode(next_op_out_repr())->AsOutput();
2966 2967 2968 2969

  // Check if op is MKL-DNN enabled
  possible_inplace_op->assert_op_attr("use_mkldnn", true);

2970
  // linked structure
2971 2972 2973
  possible_inplace_op->LinksTo({output});
  possible_inplace_op->LinksFrom({input});
  next_op->LinksFrom({output});
2974
  next_op->LinksTo({next_output});
2975 2976 2977 2978

  return possible_inplace_op;
}

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
// a -> transpose_op(1) -> transpose_out_a -> flatten_op(1) -> flatten_out_a
// b -> transpose_op(2) -> transpose_out_b -> flatten_op(2) -> flatten_out_b
// ...
// z -> transpose_op(n) -> transpose_out_z -> flatten_op(n) -> flatten_out_z
// flatten_out_a -> concat_op  flatten_out_b -> concat_op ... flatten_out_z ->
// concat_op
PDNode *patterns::TransposeFlattenConcat::operator()(
    std::vector<PDNode *> conv_in, int times) {
  // The times represents the repeat times of the
  // {trans, trans_out, flatten, flatten_out}
  const int kNumFields = 4;
  const int kTransOutOffset = 1;
  const int kFlattenOffset = 2;
  const int kFlattenOutOffset = 3;

  std::vector<PDNode *> nodes;

  for (int i = 0; i < times; i++) {
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose" + std::to_string(i)))
            ->assert_is_op("transpose2"));
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose_out" + std::to_string(i)))
            ->assert_is_op_output("transpose2")
            ->assert_is_op_input("flatten2", "X")
            ->AsIntermediate());
    nodes.push_back(pattern->NewNode(GetNodeName("flatten" + std::to_string(i)))
                        ->assert_is_op("flatten2"));

    nodes.push_back(
        pattern->NewNode(GetNodeName("flatten_out" + std::to_string(i)))
            ->assert_is_op_output("flatten2")
            ->assert_is_op_nth_input("concat", "X", i)
            ->AsIntermediate());
  }

  auto concat_op = pattern->NewNode(GetNodeName("concat"))
                       ->assert_is_op("concat")
                       ->assert_op_has_n_inputs("concat", times);
  auto concat_out = pattern->NewNode(GetNodeName("concat_out"))
                        ->assert_is_op_output("concat")
                        ->AsOutput();

  std::vector<PDNode *> flatten_outs;
  for (int i = 0; i < times; i++) {
    conv_in[i]->AsInput();
    // trans
    nodes[i * kNumFields]->LinksFrom({conv_in[i]});
    // trans_out
    nodes[i * kNumFields + kTransOutOffset]->LinksFrom({nodes[i * kNumFields]});
    // flatten
    nodes[i * kNumFields + kFlattenOffset]->LinksFrom(
        {nodes[i * kNumFields + kTransOutOffset]});
    // flatten_out
    nodes[i * kNumFields + kFlattenOutOffset]->LinksFrom(
        {nodes[i * kNumFields + kFlattenOffset]});
    flatten_outs.push_back(nodes[i * kNumFields + kFlattenOutOffset]);
  }

  concat_op->LinksFrom(flatten_outs).LinksTo({concat_out});
  return concat_out;
}

3042
void patterns::DeleteDropoutOpPattern::operator()(bool with_mask) {
3043 3044 3045 3046 3047 3048 3049
  auto dropout_op_x = pattern->NewNode(dropout_op_x_repr())
                          ->assert_is_op_input("dropout", "X")
                          ->AsInput();
  auto dropout_op = pattern->NewNode(dropout_op_repr())
                        ->assert_is_op("dropout")
                        ->assert_op_attr("dropout_implementation",
                                         std::string("upscale_in_train"));
D
denglin-github 已提交
3050
  auto dropout_op_out = pattern->NewNode(dropout_op_out_repr())
3051
                            ->assert_is_op_output("dropout", "Out");
3052 3053 3054 3055 3056 3057 3058 3059
  if (with_mask) {
    auto dropout_op_mask = pattern->NewNode(dropout_op_mask_repr())
                               ->assert_is_op_output("dropout", "Mask");
    dropout_op->LinksFrom({dropout_op_x})
        .LinksTo({dropout_op_out, dropout_op_mask});
  } else {
    dropout_op->LinksFrom({dropout_op_x}).LinksTo({dropout_op_out});
  }
D
denglin-github 已提交
3060 3061
}

3062 3063 3064
void patterns::DeleteQuantOpFuse::operator()(PDNode *input_act_node,
                                             const std::string &quant_type) {
  auto *input_scale_node = pattern->NewNode(GetNodeName("input_scale_node"))
3065 3066
                               ->assert_is_op_input(quant_type, "InScale")
                               ->AsInput();
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
  auto *quant_node =
      pattern->NewNode(GetNodeName("quant_node"))->assert_is_op(quant_type);
  auto *output_scale_node = pattern->NewNode(GetNodeName("output_scale_node"))
                                ->assert_is_op_output(quant_type, "OutScale")
                                ->AsOutput();
  auto *output_act_node = pattern->NewNode(GetNodeName("output_act_node"))
                              ->assert_is_op_output(quant_type, "Out")
                              ->AsOutput();
  quant_node->LinksFrom({input_scale_node, input_act_node});
  output_scale_node->LinksFrom({quant_node});
  output_act_node->LinksFrom({quant_node});
}

void patterns::DequantOpFuse::operator()(PDNode *quantized_op_input,
                                         const std::string &quantized_op_type,
                                         const std::string &dequant_type,
                                         const std::string &weight_name) {
  auto *quantized_op_weight =
      pattern->NewNode(GetNodeName("quantized_op_weight"))
          ->assert_is_op_input(quantized_op_type, weight_name)
          ->AsInput();
  auto *quantized_op = pattern->NewNode(GetNodeName("quantized_op"))
                           ->assert_is_op(quantized_op_type);
  auto *quantized_op_out = pattern->NewNode(GetNodeName("quantized_op_out"))
                               ->assert_is_op_output(quantized_op_type)
                               ->assert_is_op_input(dequant_type, "X");
  auto *dequant_op =
      pattern->NewNode(GetNodeName("dequant_op"))->assert_is_op(dequant_type);
  auto *dequant_op_out = pattern->NewNode(GetNodeName("dequant_op_out"))
                             ->assert_is_op_output(dequant_type, "Out")
                             ->AsOutput();
  PDNode *dequant_channel_scale = nullptr;
3099
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
3100 3101 3102 3103
    dequant_channel_scale =
        pattern->NewNode(GetNodeName("dequant_channel_scale"))
            ->assert_is_op_nth_input(dequant_type, "Scales", 0)
            ->AsInput();
N
nhzlx 已提交
3104
  }
3105 3106
  quantized_op->LinksFrom({quantized_op_input, quantized_op_weight});
  quantized_op_out->LinksFrom({quantized_op});
N
nhzlx 已提交
3107

3108 3109 3110 3111
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
    dequant_op->LinksFrom({quantized_op_out, dequant_channel_scale});
  } else {
    dequant_op->LinksFrom({quantized_op_out});
N
nhzlx 已提交
3112
  }
3113
  dequant_op_out->LinksFrom({dequant_op});
N
nhzlx 已提交
3114 3115
}

3116 3117 3118
void patterns::ShuffleChannelPattern::operator()(PDNode *reshape1_in) {
  auto reshape1_op =
      pattern->NewNode(reshape1_op_repr())->assert_is_op("reshape2");
3119
  reshape1_op->assert_more([&](Node *x) {
R
Ruibiao Chen 已提交
3120
    return PADDLE_GET_CONST(std::vector<int>, x->Op()->GetAttr("shape"))
3121
               .size() == 5;
3122
  });
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150

  auto reshape1_out = pattern->NewNode(reshape1_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->assert_is_op_input("transpose2")
                          ->AsIntermediate();

  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2")
                           ->AsIntermediate();

  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto reshape2_out = pattern->NewNode(reshape2_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->AsOutput();

  reshape1_op->LinksFrom({reshape1_in});
  reshape1_out->LinksFrom({reshape1_op});
  transpose_op->LinksFrom({reshape1_out});
  transpose_out->LinksFrom({transpose_op});
  reshape2_op->LinksFrom({transpose_out});
  reshape2_out->LinksFrom({reshape2_op});
}

3151 3152
void patterns::DeleteQuantDequantOpPattern::operator()(
    PDNode *input_node, const std::string &quantdequant_types) {
3153 3154
  auto quant_dequant_op_inscale =
      pattern->NewNode(quant_dequant_op_inscale_repr())
3155
          ->assert_is_op_input(quantdequant_types, "InScale")
3156
          ->AsInput();
3157 3158
  auto quant_dequant_op = pattern->NewNode(quant_dequant_op_repr())
                              ->assert_is_op(quantdequant_types);
3159

3160
  auto quant_dequant_op_out =
3161
      pattern->NewNode(quant_dequant_op_out_repr())
3162 3163
          ->assert_is_op_output(quantdequant_types, "Out")
          ->AsOutput();
3164 3165 3166

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
3167
          ->assert_is_op_output(quantdequant_types, "OutScale")
3168 3169
          ->AsOutput();

3170
  quant_dequant_op->LinksFrom({quant_dequant_op_inscale, input_node});
3171
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
3172
  quant_dequant_op_out->LinksFrom({quant_dequant_op});
3173 3174
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
void patterns::DeleteQuantDequantFilterOpPattern::operator()() {
  auto quant_dequant_op_x =
      pattern->NewNode(quant_dequant_op_x_repr())
          ->assert_is_ops_input(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "X")
          ->AsInput();

  auto quant_dequant_op =
      pattern->NewNode(quant_dequant_op_repr())
          ->assert_is_ops({"fake_channel_wise_quantize_dequantize_abs_max",
                           "fake_quantize_dequantize_abs_max"});

  auto quant_dequant_out =
      pattern->NewNode(quant_dequant_op_out_repr())
          ->assert_is_ops_output(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "Out")
          ->AsIntermediate();

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
          ->assert_is_ops_output(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "OutScale")
          ->AsOutput();
  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  quant_dequant_op->LinksFrom({quant_dequant_op_x});
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
  quant_dequant_out->LinksFrom({quant_dequant_op});
  any_op2->LinksFrom({quant_dequant_out});
}

3212 3213 3214 3215 3216 3217
void patterns::DeleteWeightQuantDequantLinearOpPattern::operator()() {
  auto weight_dequantize_linear_op_x =
      pattern->NewNode(weight_dequantize_linear_op_x_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_is_persistable_var();
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284

  auto weight_dequantize_linear_op_scale =
      pattern->NewNode(weight_dequantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op =
      pattern->NewNode(weight_dequantize_linear_op_repr())
          ->assert_is_op("dequantize_linear");

  auto weight_dequantize_linear_op_out =
      pattern->NewNode(weight_dequantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("dequantize_linear", "Y");

  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  weight_dequantize_linear_op
      ->LinksFrom(
          {weight_dequantize_linear_op_x, weight_dequantize_linear_op_scale})
      .LinksTo({weight_dequantize_linear_op_out});
  any_op2->LinksFrom({weight_dequantize_linear_op_out});
}

void patterns::DeleteWeightDequantLinearOpEncoderPattern::operator()() {
  auto weight_dequantize_linear_op_x =
      pattern->NewNode(weight_dequantize_linear_op_x_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op_scale =
      pattern->NewNode(weight_dequantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op =
      pattern->NewNode(weight_dequantize_linear_op_repr())
          ->assert_is_op("dequantize_linear");

  auto weight_dequantize_linear_op_out =
      pattern->NewNode(weight_dequantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("dequantize_linear", "Y");

  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  // while loop
  auto *while0 =
      pattern->NewNode(while0_repr())->assert_is_op("while")->AsOutput();
  while0->LinksFrom({weight_dequantize_linear_op_out});

  weight_dequantize_linear_op
      ->LinksFrom(
          {weight_dequantize_linear_op_x, weight_dequantize_linear_op_scale})
      .LinksTo({weight_dequantize_linear_op_out});
  any_op2->LinksFrom({weight_dequantize_linear_op_out});
}

void patterns::DeleteWeightDequantLinearOpDecoderPattern::operator()() {
  auto weight_dequantize_linear_op_x =
      pattern->NewNode(weight_dequantize_linear_op_x_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_is_persistable_var();
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

  auto weight_dequantize_linear_op_scale =
      pattern->NewNode(weight_dequantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op =
      pattern->NewNode(weight_dequantize_linear_op_repr())
          ->assert_is_op("dequantize_linear");

  auto weight_dequantize_linear_op_out =
      pattern->NewNode(weight_dequantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("dequantize_linear", "Y");

  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  weight_dequantize_linear_op
      ->LinksFrom(
          {weight_dequantize_linear_op_x, weight_dequantize_linear_op_scale})
      .LinksTo({weight_dequantize_linear_op_out});
  any_op2->LinksFrom({weight_dequantize_linear_op_out});
}

void patterns::DeleteQuantDequantLinearOpPattern::operator()() {
  auto quantize_linear_op_x = pattern->NewNode(quantize_linear_op_x_repr())
                                  ->AsInput()
                                  ->assert_is_op_input("quantize_linear", "X");

  auto quantize_linear_op_scale =
      pattern->NewNode(quantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("quantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto quantize_linear_op = pattern->NewNode(quantize_linear_op_repr())
                                ->assert_is_op("quantize_linear");

  auto quantize_linear_op_out =
      pattern->NewNode(quantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("quantize_linear", "Y")
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_var_not_persistable();

  // Can not add this node. Todo: Wangzheee
  /*
    auto dequantize_linear_op_scale =
        pattern->NewNode(dequantize_linear_op_scale_repr())
            ->assert_is_op_input("dequantize_linear", "Scale")
            ->AsIntermediate();
  */

  auto dequantize_linear_op = pattern->NewNode(dequantize_linear_op_repr())
                                  ->assert_is_op("dequantize_linear");

  auto dequantize_linear_op_out =
      pattern->NewNode(dequantize_linear_op_out_repr())
          ->AsIntermediate()
W
Wangzheee 已提交
3345 3346
          ->assert_is_op_output("dequantize_linear", "Y")
          ->AsOutput();
3347 3348 3349 3350 3351 3352 3353 3354

  quantize_linear_op
      ->LinksFrom({quantize_linear_op_x, quantize_linear_op_scale})
      .LinksTo({quantize_linear_op_out});
  dequantize_linear_op->LinksFrom({quantize_linear_op_out})
      .LinksTo({dequantize_linear_op_out});
}

3355
PDNode *patterns::ReshapeTransposeMatmulPattern::operator()(
3356 3357
    const std::string &op_name,
    bool with_reshape_xshape,
3358
    bool with_transpose_xshape) {
3359 3360 3361 3362
  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
3363
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op(op_name);
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

  auto reshape_in = pattern->NewNode(reshape_in_repr())
                        ->AsInput()
                        ->assert_is_op_input("reshape2", "X");

  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsIntermediate()
                         ->assert_is_op_input("transpose2", "X")
                         ->assert_is_op_output("reshape2", "Out");
  if (!with_reshape_xshape)
    reshape_out->assert_is_only_output_of_op("reshape2");

  auto reshape_xshape = with_reshape_xshape
                            ? pattern->NewNode(reshape_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("reshape2", "XShape")
                            : nullptr;

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
3384
                           ->assert_is_op_input(op_name)
3385 3386 3387 3388 3389
                           ->assert_is_op_output("transpose2", "Out");
  if (!with_transpose_xshape)
    transpose_out->assert_is_only_output_of_op("transpose2");

  auto transpose_xshape =
3390 3391 3392 3393
      with_transpose_xshape ? pattern->NewNode(transpose_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("transpose2", "XShape")
                            : nullptr;
3394 3395 3396

  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
3397
                        ->assert_is_op_output(op_name, "Out");
3398 3399 3400 3401 3402 3403 3404 3405 3406

  reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out});
  if (with_reshape_xshape) reshape_op->LinksTo({reshape_xshape});
  transpose_op->LinksFrom({reshape_out}).LinksTo({transpose_out});
  if (with_transpose_xshape) transpose_op->LinksTo({transpose_xshape});
  matmul_op->LinksFrom({transpose_out}).LinksTo({matmul_out});
  return matmul_out;
}

3407 3408 3409
// shared function for matmul and matmul_v2
PDNode *patterns::MatmulTransposeReshapePattern::operator()(
    const std::string &op_name) {
3410 3411 3412 3413
  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
3414
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op(op_name);
3415 3416 3417

  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsInput()
3418
                        ->assert_is_op_output(op_name, "Out")
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
                        ->assert_is_op_input("transpose2", "X");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2", "X");

  auto transpose_out_xshape = pattern->NewNode(transpose_out_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("transpose2", "XShape");

  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("reshape2");

  auto reshape_out_xshape = pattern->NewNode(reshape_out_xshape_repr())
                                ->AsIntermediate()
                                ->assert_is_op_output("reshape2", "XShape");

  matmul_op->LinksTo({matmul_out});
  transpose_op->LinksTo({transpose_out_xshape});
  reshape_op->LinksTo({reshape_out_xshape});
  transpose_op->LinksFrom({matmul_out}).LinksTo({transpose_out});
  reshape_op->LinksFrom({transpose_out}).LinksTo({reshape_out});
  return reshape_out;
}

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
PDNode *patterns::FusionGru::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_gru");
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "X");
  auto weight_h = pattern->NewNode(weight_h_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_gru", "WeightH");
  auto weight_x = pattern->NewNode(weight_x_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_gru", "WeightX");
  auto out = pattern->NewNode(out_repr())
                 ->AsOutput()
                 ->assert_is_op_output("fusion_gru", "Hidden");
  op->LinksFrom({x, weight_h, weight_x}).LinksTo({out});
  return out;
}

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
PDNode *patterns::FusionLSTM::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_lstm");
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_lstm", "X");
  auto weight_h = pattern->NewNode(weight_h_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_lstm", "WeightH");
  auto weight_x = pattern->NewNode(weight_x_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_lstm", "WeightX");
  auto hidden = pattern->NewNode(hidden_repr())
                    ->AsOutput()
                    ->assert_is_op_output("fusion_lstm", "Hidden");
  auto cell = pattern->NewNode(cell_repr())
                  ->AsOutput()
                  ->assert_is_op_output("fusion_lstm", "Cell");
  op->LinksFrom({x, weight_h, weight_x}).LinksTo({hidden, cell});
  return hidden;
}

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
PDNode *patterns::TwoFusionGruConcat::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "X");
  auto gru1 =
      pattern->NewNode(gru1_repr())
          ->assert_is_op("fusion_gru")
          ->assert_more([&](Node *node) {
            return node->Op()->GetAttrIfExists<bool>("is_reverse") == false;
          });
  auto gru2 =
      pattern->NewNode(gru2_repr())
          ->assert_is_op("fusion_gru")
          ->assert_more([&](Node *node) {
            return node->Op()->GetAttrIfExists<bool>("is_reverse") == true;
          });
  auto wh1 = pattern->NewNode(wh1_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightH");
  auto wh2 = pattern->NewNode(wh2_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightH");
  auto wx1 = pattern->NewNode(wx1_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightX");
  auto wx2 = pattern->NewNode(wx2_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightX");
  auto b1 = pattern->NewNode(b1_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "Bias");
  auto b2 = pattern->NewNode(b2_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "Bias");
  auto h1 = pattern->NewNode(h1_repr())
                ->AsOutput()
                ->assert_is_op_output("fusion_gru", "Hidden")
                ->assert_is_op_input("concat")
                ->AsIntermediate();
  auto h2 = pattern->NewNode(h2_repr())
                ->AsOutput()
                ->assert_is_op_output("fusion_gru", "Hidden")
                ->assert_is_op_input("concat")
                ->AsIntermediate();
  auto concat = pattern->NewNode(concat_repr())->assert_is_op("concat");
  auto out = pattern->NewNode(out_repr())
                 ->AsOutput()
                 ->assert_is_op_output("concat", "Out");
  gru1->LinksFrom({x, wh1, wx1, b1}).LinksTo({h1});
  gru2->LinksFrom({x, wh2, wx2, b2}).LinksTo({h2});
  concat->LinksFrom({h1, h2}).LinksTo({out});
  return out;
}

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
PDNode *patterns::MultiGruSeq::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "multi_gru", "X");
  auto gru1 = pattern->NewNode(gru1_repr())->assert_is_op("multi_gru");
  auto wx11 = pattern->NewNode(wx11_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 0);
  auto wx12 = pattern->NewNode(wx12_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 1);
  auto wh11 = pattern->NewNode(wh11_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 0);
  auto wh12 = pattern->NewNode(wh12_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 1);
  auto b11 = pattern->NewNode(b11_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 0);
  auto b12 = pattern->NewNode(b12_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 1);
  auto h1 = pattern->NewNode(h1_repr())
                ->AsOutput()
                ->assert_is_op_output("multi_gru", "Hidden")
                ->assert_is_op_input("multi_gru", "X")
                ->AsIntermediate();
  auto gru2 = pattern->NewNode(gru2_repr())->assert_is_op("multi_gru");
  auto wx21 = pattern->NewNode(wx21_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 0);
  auto wx22 = pattern->NewNode(wx22_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 1);
  auto wh21 = pattern->NewNode(wh21_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 0);
  auto wh22 = pattern->NewNode(wh22_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 1);
  auto b21 = pattern->NewNode(b21_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 0);
  auto b22 = pattern->NewNode(b22_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 1);
  auto h2 = pattern->NewNode(h2_repr())->AsOutput()->assert_is_op_output(
      "multi_gru", "Hidden");
  gru1->LinksFrom({x, wx11, wx12, wh11, wh12, b11, b12}).LinksTo({h1});
  gru2->LinksFrom({h1, wx21, wx22, wh21, wh22, b21, b22}).LinksTo({h2});
  return h2;
}

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
PDNode *patterns::MultiGru::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "multi_gru", "X");
  auto gru = pattern->NewNode(gru_repr())->assert_is_op("multi_gru");
  auto wx = pattern->NewNode(wx_repr())->AsInput()->assert_is_op_nth_input(
      "multi_gru", "WeightX", 0);
  auto wh = pattern->NewNode(wh_repr())->AsInput()->assert_is_op_nth_input(
      "multi_gru", "WeightH", 0);
  auto h = pattern->NewNode(h_repr())->AsOutput()->assert_is_op_output(
      "multi_gru", "Hidden");
  gru->LinksFrom({x, wx, wh}).LinksTo({h});
  return h;
}

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
PDNode *patterns::LayerNorm::operator()() {
  auto *x = pattern->NewNode(x_repr())->AsInput()->assert_is_ops_input(
      {"reduce_mean", "elementwise_sub"});
  auto *x_mean = pattern->NewNode(x_mean_repr())->assert_is_op("reduce_mean");
  auto *x_mean_out = pattern->NewNode(x_mean_out_repr())
                         ->assert_is_op_output("reduce_mean", "Out")
                         ->assert_is_op_input("elementwise_sub", "Y")
                         ->AsIntermediate();
  auto *x_sub_mean =
      pattern->NewNode(x_sub_mean_repr())->assert_is_op("elementwise_sub");
  auto *x_sub_mean_out =
      pattern->NewNode(x_sub_mean_out_repr())
          ->assert_is_op_output("elementwise_sub")
          ->assert_is_ops_input({"elementwise_pow", "elementwise_div"}, "X")
          ->AsIntermediate();
  auto *sqr_pow = pattern->NewNode(sqr_pow_repr())
                      ->assert_is_op_input("elementwise_pow", "Y")
                      ->assert_is_persistable_var()
                      ->AsInput();
  auto *x_sub_mean_sqr =
      pattern->NewNode(x_sub_mean_sqr_repr())->assert_is_op("elementwise_pow");
  auto *x_sub_mean_sqr_out = pattern->NewNode(x_sub_mean_sqr_out_repr())
                                 ->assert_is_op_output("elementwise_pow")
                                 ->assert_is_op_input("reduce_mean")
                                 ->AsIntermediate();
  auto *std_dev = pattern->NewNode(std_dev_repr())->assert_is_op("reduce_mean");
  auto *std_dev_out = pattern->NewNode(std_dev_out_repr())
                          ->assert_is_op_output("reduce_mean")
                          ->assert_is_op_input("elementwise_add")
                          ->AsIntermediate();
  auto *eps = pattern->NewNode(eps_repr())
                  ->assert_is_op_input("elementwise_add", "Y")
                  ->assert_is_persistable_var()
                  ->AsInput();
  auto *std_dev_eps =
      pattern->NewNode(std_dev_eps_repr())->assert_is_op("elementwise_add");
  auto *std_dev_eps_out = pattern->NewNode(std_dev_eps_out_repr())
                              ->assert_is_op_output("elementwise_add")
                              ->assert_is_op_input("sqrt")
                              ->AsIntermediate();
  auto *std_dev_eps_sqrt =
      pattern->NewNode(std_dev_eps_sqrt_repr())->assert_is_op("sqrt");
  auto *std_dev_eps_sqrt_out = pattern->NewNode(std_dev_eps_sqrt_out_repr())
                                   ->assert_is_op_output("sqrt")
                                   ->assert_is_op_input("elementwise_div", "Y")
                                   ->AsIntermediate();
  auto *division =
      pattern->NewNode(division_repr())->assert_is_op("elementwise_div");
  auto *division_out = pattern->NewNode(division_out_repr())
                           ->assert_is_op_output("elementwise_div")
                           ->assert_is_op_input("elementwise_mul")
                           ->AsIntermediate();
  auto *gamma = pattern->NewNode(gamma_repr())
                    ->assert_is_op_input("elementwise_mul", "Y")
                    ->assert_is_persistable_var()
                    ->AsInput();
  auto *scale = pattern->NewNode(scale_repr())->assert_is_op("elementwise_mul");
  auto *scale_out = pattern->NewNode(scale_out_repr())
                        ->assert_is_op_output("elementwise_mul")
                        ->assert_is_op_input("elementwise_add")
                        ->AsIntermediate();
  auto *beta = pattern->NewNode(beta_repr())
                   ->assert_is_op_input("elementwise_add", "Y")
                   ->assert_is_persistable_var()
                   ->AsInput();
  auto *shift = pattern->NewNode(shift_repr())->assert_is_op("elementwise_add");
  auto *shift_out = pattern->NewNode(shift_out_repr())
                        ->assert_is_op_output("elementwise_add")
                        ->AsOutput();

  /*
   *            X
   *           / \
   *          /   reduce_mean "u(x)"
   *          \   /
   *      elementwise_sub     "x - u(x)"
   *      /           \    2
   *      |            \  /
   *      |      elementwise_pow  "(x - u(x))^2"
   *      |             |
   *      |       reduce_mean     "sigma^2 = 1/C*Sum{(x - u(x))^2}"
   *      |             |     eps
   *      |             |     /
   *      |       elementwise_add "sigma^2 + epsilon"
   *      \             |
   *       \           sqrt       "sqrt(sigma^2 + epsilon)"
   *        \          /
   *         \        /
   *       elementwise_div        "lnorm = {x-u(x)}/{sqrt(sigma^2 + epsilon)}"
   *              |
   *       gamma  |
   *          \   |
   *       elementwise_mul        "scale: gamma(C) * lnorm"
   *              |
   *        beta  |
   *          \   |
   *       elementwise_add        "shift: gamma(C) * lnorm + beta(C)"
   */

  x_mean->LinksFrom({x}).LinksTo({x_mean_out});
  x_sub_mean->LinksFrom({x, x_mean_out}).LinksTo({x_sub_mean_out});
  x_sub_mean_sqr->LinksFrom({x_sub_mean_out, sqr_pow})
      .LinksTo({x_sub_mean_sqr_out});
  std_dev->LinksFrom({x_sub_mean_sqr_out}).LinksTo({std_dev_out});
  std_dev_eps->LinksFrom({std_dev_out, eps}).LinksTo({std_dev_eps_out});

  std_dev_eps_sqrt->LinksFrom({std_dev_eps_out})
      .LinksTo({std_dev_eps_sqrt_out});
  division->LinksFrom({x_sub_mean_out, std_dev_eps_sqrt_out})
      .LinksTo({division_out});
  scale->LinksFrom({division_out, gamma}).LinksTo({scale_out});
  shift->LinksFrom({scale_out, beta}).LinksTo({shift_out});

  return shift_out;
}

3717
// Add support int8 flag and out_threshold
3718
PDNode *patterns::AddSupportInt8::operator()() {
3719
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op();
3720
  auto quant_out =
3721 3722 3723 3724
      pattern->NewNode(quant_out_repr())
          ->assert_is_var()
          ->assert_more([&](Node *node) { return node->outputs.size() > 0; })
          ->AsOutput();
3725 3726 3727 3728
  quant_op->LinksTo({quant_out});
  return quant_out;
}

W
wenbin 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
PDNode *patterns::SplitLayerNorm::operator()() {
  auto layer_norm_op =
      pattern->NewNode(layer_norm_op_repr())->assert_is_op("layer_norm");
  auto layer_norm_in = pattern->NewNode(layer_norm_in_repr())
                           ->AsInput()
                           ->assert_is_op_input("layer_norm", "X");
  auto layer_norm_bias = pattern->NewNode(layer_norm_bias_repr())
                             ->AsInput()
                             ->assert_is_op_input("layer_norm", "Bias");
  auto layer_norm_scale = pattern->NewNode(layer_norm_scale_repr())
                              ->AsInput()
                              ->assert_is_op_input("layer_norm", "Scale");
  auto layer_norm_out = pattern->NewNode(layer_norm_out_repr())
                            ->assert_is_op_output("layer_norm", "Y");

  layer_norm_op->LinksFrom({layer_norm_in, layer_norm_bias, layer_norm_scale})
      .LinksTo({layer_norm_out});

  return layer_norm_out;
}

W
wenbin 已提交
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
PDNode *patterns::LayernormShiftPartitionPattern::operator()() {
  auto layer_norm_op =
      pattern->NewNode(layer_norm_op_repr())
          ->assert_is_op("layer_norm")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("begin_norm_axis") &&
                   (PADDLE_GET_CONST(
                        int, node->Op()->GetAttr("begin_norm_axis")) == 2);
          });
  auto layer_norm_in = pattern->NewNode(layer_norm_in_repr())
                           ->AsInput()
                           ->assert_is_op_input("layer_norm", "X");
  auto layer_norm_bias = pattern->NewNode(layer_norm_bias_repr())
                             ->AsInput()
                             ->assert_is_op_input("layer_norm", "Bias");
  auto layer_norm_scale = pattern->NewNode(layer_norm_scale_repr())
                              ->AsInput()
                              ->assert_is_op_input("layer_norm", "Scale");
  auto layer_norm_out = pattern->NewNode(layer_norm_out_repr())
                            ->AsIntermediate()
                            ->assert_is_op_input("reshape2", "X")
                            ->assert_is_op_output("layer_norm", "Y");
  auto reshape1_op =
      pattern->NewNode(reshape1_op_repr())
          ->assert_is_op("reshape2")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("shape") &&
                   (PADDLE_GET_CONST(std::vector<int>,
                                     node->Op()->GetAttr("shape"))
                        .size() == 4);
          });
  auto reshape1_out = pattern->NewNode(reshape1_out_repr())
                          ->AsIntermediate()
                          ->assert_is_op_output("reshape2", "Out");
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
  PDNode *roll1_op = nullptr;
  PDNode *roll1_out = nullptr;

  if (!with_roll_) {
    reshape1_out->assert_is_op_input("reshape2", "X");
  } else {
    reshape1_out->assert_is_op_input("roll", "X");
    roll1_op = pattern->NewNode(roll1_op_repr())->assert_is_op("roll");
    roll1_out = pattern->NewNode(roll1_out_repr())
                    ->AsIntermediate()
                    ->assert_is_op_output("roll", "Out")
                    ->assert_is_op_input("reshape2", "X");
  }
W
wenbin 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805
  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())
          ->assert_is_op("reshape2")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("shape") &&
                   (PADDLE_GET_CONST(std::vector<int>,
                                     node->Op()->GetAttr("shape"))
                        .size() == 6);
          });
3806

W
wenbin 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
  auto reshape2_out = pattern->NewNode(reshape2_out_repr())
                          ->AsIntermediate()
                          ->assert_is_op_input("transpose2", "X")
                          ->assert_is_op_output("reshape2", "Out");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())
          ->assert_is_op("transpose2")
          ->assert_more([&](Node *node) {
            if (!node->Op()->HasAttr("axis")) return false;
            std::vector<int> axis =
                PADDLE_GET_CONST(std::vector<int>, node->Op()->GetAttr("axis"));
            if (axis.size() != 6) return false;
            const std::vector<int> axis_cmp{0, 1, 3, 2, 4, 5};
            return std::equal(axis.begin(), axis.end(), axis_cmp.begin());
          });
  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
                           ->assert_is_op_input("reshape2", "X")
                           ->assert_is_op_output("transpose2", "Out");
  auto reshape3_op =
      pattern->NewNode(reshape3_op_repr())
          ->assert_is_op("reshape2")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("shape") &&
                   (PADDLE_GET_CONST(std::vector<int>,
                                     node->Op()->GetAttr("shape"))
                        .size() == 4);
          });
  auto reshape3_out = pattern->NewNode(reshape3_out_repr())
                          ->AsIntermediate()
                          ->assert_is_op_input("reshape2", "X")
                          ->assert_is_op_output("reshape2", "Out");
  auto reshape4_op =
      pattern->NewNode(reshape4_op_repr())
          ->assert_is_op("reshape2")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("shape") &&
                   (PADDLE_GET_CONST(std::vector<int>,
                                     node->Op()->GetAttr("shape"))
                        .size() == 3);
          });
  auto reshape4_out = pattern->NewNode(reshape4_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->AsOutput();

  layer_norm_op->LinksFrom({layer_norm_in, layer_norm_bias, layer_norm_scale})
      .LinksTo({layer_norm_out});
  reshape1_op->LinksFrom({layer_norm_out}).LinksTo({reshape1_out});
3855 3856 3857 3858 3859 3860
  if (!with_roll_) {
    reshape2_op->LinksFrom({reshape1_out}).LinksTo({reshape2_out});
  } else {
    roll1_op->LinksFrom({reshape1_out}).LinksTo({roll1_out});
    reshape2_op->LinksFrom({roll1_out}).LinksTo({reshape2_out});
  }
W
wenbin 已提交
3861 3862 3863 3864 3865 3866 3867
  transpose_op->LinksFrom({reshape2_out}).LinksTo({transpose_out});
  reshape3_op->LinksFrom({transpose_out}).LinksTo({reshape3_out});
  reshape4_op->LinksFrom({reshape3_out}).LinksTo({reshape4_out});

  return reshape4_out;
}

W
Wang Bojun 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
PDNode *patterns::ReverseRollPattern::operator()(PDNode *in) {
  in->AsInput();
  auto reshape2_00_op =
      pattern->NewNode(reshape2_00_op_repr())->assert_is_op("reshape2");

  auto reshape2_00_out = pattern->NewNode(reshape2_00_out_repr())
                             ->AsIntermediate()
                             ->assert_is_op_output("reshape2", "Out")
                             ->assert_is_op_input("reshape2", "X");

  auto reshape2_10_op =
      pattern->NewNode(reshape2_10_op_repr())->assert_is_op("reshape2");
  auto reshape2_10_out = pattern->NewNode(reshape2_10_out_repr())
                             ->AsIntermediate()
                             ->assert_is_op_output("reshape2", "Out")
                             ->assert_is_op_input("transpose2", "X");

  auto transpose2_20_op =
      pattern->NewNode(transpose2_20_op_repr())->assert_is_op("transpose2");
  auto transpose2_20_out = pattern->NewNode(transpose2_20_out_repr())
                               ->AsIntermediate()
                               ->assert_is_op_output("transpose2", "Out")
                               ->assert_is_op_input("reshape2", "X");

  auto reshape2_30_op =
      pattern->NewNode(reshape2_30_op_repr())->assert_is_op("reshape2");
  auto reshape2_30_out = pattern->NewNode(reshape2_30_out_repr())
                             ->AsIntermediate()
                             ->assert_is_op_output("reshape2", "Out");
  PDNode *roll_40_op = nullptr;
  PDNode *roll_40_out = nullptr;
  if (with_roll_) {
    reshape2_30_out->assert_is_op_input("roll", "X");
    roll_40_op = pattern->NewNode(roll_40_op_repr())->assert_is_op("roll");
    roll_40_out = pattern->NewNode(roll_40_out_repr())
                      ->AsIntermediate()
                      ->assert_is_op_output("roll", "Out")
                      ->assert_is_op_input("reshape2", "X");
  } else {
    reshape2_30_out->assert_is_op_input("reshape2", "X");
  }
  auto reshape2_50_op =
      pattern->NewNode(reshape2_50_op_repr())->assert_is_op("reshape2");
  auto reshape2_50_out = pattern->NewNode(reshaep2_50_out_repr())
                             ->assert_is_op_output("reshape2", "Out")
                             ->AsOutput();
  reshape2_00_op->LinksFrom({in});
  reshape2_00_out->LinksFrom({reshape2_00_op});
  reshape2_10_op->LinksFrom({reshape2_00_out});
  reshape2_10_out->LinksFrom({reshape2_10_op});
  transpose2_20_op->LinksFrom({reshape2_10_out});
  transpose2_20_out->LinksFrom({transpose2_20_op});
  reshape2_30_op->LinksFrom({transpose2_20_out});
  reshape2_30_out->LinksFrom({reshape2_30_op});
  if (with_roll_) {
    roll_40_op->LinksFrom({reshape2_30_out});
    roll_40_out->LinksFrom({roll_40_op});
    reshape2_50_op->LinksFrom({roll_40_out});
  } else {
    reshape2_50_op->LinksFrom({reshape2_30_out});
  }
  reshape2_50_out->LinksFrom({reshape2_50_op});
  return reshape2_50_out;
}
W
Wang Bojun 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
PDNode *patterns::MergeLayernormPattern::operator()(PDNode *in) {
  in->AsInput();
  auto reshape2_00_op =
      pattern->NewNode(reshape2_00_op_repr())->assert_is_op("reshape2");
  auto reshape2_00_out = pattern->NewNode(reshape2_00_out_repr())
                             ->assert_is_op_output("reshape2", "Out")
                             ->assert_is_op_input("strided_slice", "Input")
                             ->AsIntermediate();
  auto strided_slice_10_op = pattern->NewNode(strided_slice_10_op_repr())
                                 ->assert_is_op("strided_slice");
  auto strided_slice_10_out = pattern->NewNode(strided_slice_10_out_repr())
                                  ->assert_is_op_output("strided_slice", "Out")
                                  ->assert_is_op_nth_input("concat", "X", 0)
                                  ->AsIntermediate();
  auto strided_slice_11_op = pattern->NewNode(strided_slice_11_op_repr())
                                 ->assert_is_op("strided_slice");
  auto strided_slice_11_out = pattern->NewNode(strided_slice_11_out_repr())
                                  ->assert_is_op_output("strided_slice", "Out")
                                  ->assert_is_op_nth_input("concat", "X", 1)
                                  ->AsIntermediate();
  auto strided_slice_12_op = pattern->NewNode(strided_slice_12_op_repr())
                                 ->assert_is_op("strided_slice");
  auto strided_slice_12_out = pattern->NewNode(strided_slice_12_out_repr())
                                  ->assert_is_op_output("strided_slice", "Out")
                                  ->assert_is_op_nth_input("concat", "X", 2)
                                  ->AsIntermediate();
  auto strided_slice_13_op = pattern->NewNode(strided_slice_13_op_repr())
                                 ->assert_is_op("strided_slice");
  auto strided_slice_13_out = pattern->NewNode(strided_slice_13_out_repr())
                                  ->assert_is_op_output("strided_slice", "Out")
                                  ->assert_is_op_nth_input("concat", "X", 3)
                                  ->AsIntermediate();
  auto concat_20_op = pattern->NewNode(concat_20_op_repr())
                          ->assert_is_op("concat")
                          ->assert_has_n_inputs(4);
  auto concat_20_out = pattern->NewNode(concat_20_out_repr())
                           ->assert_is_op_output("concat", "Out")
                           ->assert_is_op_input("reshape2", "X")
                           ->AsIntermediate();
  auto reshape2_30_op =
      pattern->NewNode(reshape2_30_op_repr())->assert_is_op("reshape2");
  auto reshape2_30_out = pattern->NewNode(reshape2_30_out_repr())
                             ->assert_is_op_output("reshape2", "Out")
                             ->assert_is_op_input("layer_norm", "X")
                             ->AsIntermediate();
  auto layernorm_40_op =
      pattern->NewNode(layernorm_40_op_repr())
          ->assert_is_op("layer_norm")
          ->assert_more([&](Node *node) {
            return node->Op()->HasAttr("begin_norm_axis") &&
                   (PADDLE_GET_CONST(
                        int, node->Op()->GetAttr("begin_norm_axis")) == 2);
          });
  auto layernorm_40_in_bias = pattern->NewNode(layernorm_40_in_bias_repr())
                                  ->assert_is_op_input("layer_norm", "Bias")
                                  ->AsInput();
  auto layernorm_40_in_scale = pattern->NewNode(layernorm_40_in_scale_repr())
                                   ->assert_is_op_input("layer_norm", "Scale")
                                   ->AsInput();
  auto layernorm_40_out = pattern->NewNode(layernorm_40_out_repr())
                              ->assert_is_op_output("layer_norm", "Y")
                              ->AsOutput();

  reshape2_00_op->LinksFrom({in});
  reshape2_00_out->LinksFrom({reshape2_00_op});
  strided_slice_10_op->LinksFrom({reshape2_00_out});
  strided_slice_10_out->LinksFrom({strided_slice_10_op});
  strided_slice_11_op->LinksFrom({reshape2_00_out});
  strided_slice_11_out->LinksFrom({strided_slice_11_op});
  strided_slice_12_op->LinksFrom({reshape2_00_out});
  strided_slice_12_out->LinksFrom({strided_slice_12_op});
  strided_slice_13_op->LinksFrom({reshape2_00_out});
  strided_slice_13_out->LinksFrom({strided_slice_13_op});
  concat_20_op->LinksFrom({strided_slice_10_out,
                           strided_slice_11_out,
                           strided_slice_12_out,
                           strided_slice_13_out});
  concat_20_out->LinksFrom({concat_20_op});
  reshape2_30_op->LinksFrom({concat_20_out});
  reshape2_30_out->LinksFrom({reshape2_30_op});
  layernorm_40_op->LinksFrom(
      {reshape2_30_out, layernorm_40_in_bias, layernorm_40_in_scale});
  layernorm_40_out->LinksFrom({layernorm_40_op});
  return layernorm_40_out;
}

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
PDNode *patterns::FusedFeedForwardFwd::operator()(
    paddle::framework::ir::PDNode *x_var,
    std::unordered_set<std::string> act_types,
    bool use_mp,
    bool pre_layer_norm,
    bool add_residual,
    bool use_dropout_1,
    bool use_dropout_2) {
  // Possible patterns
  // 1. layer_norm -> linear1 -> activation -> dropout1 -> linear2 -> dropout2
  // -> residual_add (pre_layer_norm)
  // 2. linear1 -> activation -> dropout1 -> linear2 -> dropout2 -> residual_add
  // -> layer_norm (pOST_layer_norm)
  // other cases: may delete residual_add, dropout1, dropout2 operators

  // intermediate input, and final pattern output
  PDNode *out_var = x_var;
  // LayerNorm
  auto *layer_norm_op =
      pattern->NewNode(layer_norm_op_repr())->assert_is_op("layer_norm");
  auto *layer_norm_bias_var = pattern->NewNode(layer_norm_bias_repr())
                                  ->AsInput()
                                  ->assert_is_op_input("layer_norm", "Bias");
  auto *layer_norm_scale_var = pattern->NewNode(layer_norm_scale_repr())
                                   ->AsInput()
                                   ->assert_is_op_input("layer_norm", "Scale");
  auto *layer_norm_out_var = pattern->NewNode(layer_norm_out_repr())
                                 ->AsOutput()
                                 ->assert_is_op_output("layer_norm", "Y");
  auto *layer_norm_mean_var = pattern->NewNode(layer_norm_mean_repr())
                                  ->AsOutput()
                                  ->assert_is_op_output("layer_norm", "Mean");
  auto *layer_norm_variance_var =
      pattern->NewNode(layer_norm_variance_repr())
          ->AsOutput()
          ->assert_is_op_output("layer_norm", "Variance");
  if (pre_layer_norm) {
    out_var->assert_is_op_input("layer_norm", "X");
    layer_norm_op
        ->LinksFrom({out_var, layer_norm_bias_var, layer_norm_scale_var})
        .LinksTo(
            {layer_norm_out_var, layer_norm_mean_var, layer_norm_variance_var});
    out_var = layer_norm_out_var;
  }

  // Model parallel, do nothing in forward.
  if (use_mp) {
    out_var->assert_is_op_input("c_identity", "X");
    auto *c_identity_op =
        pattern->NewNode(c_identity_op_repr())->assert_is_op("c_identity");
    auto *c_identity_out_var = pattern->NewNode(c_identity_out_repr())
                                   ->assert_is_op_output("c_identity", "Out");
    c_identity_op->LinksFrom({out_var}).LinksTo({c_identity_out_var});
    out_var = c_identity_out_var;
  }

  // Linear1
  out_var->assert_is_op_input("matmul_v2", "X");
  auto *matmul_op_1 =
      pattern->NewNode(matmul_op_1_repr())->assert_is_op("matmul_v2");
  auto *matmul_w_var_1 = pattern->NewNode(matmul_w_1_repr())
                             ->AsInput()
                             ->assert_is_op_input("matmul_v2", "Y");
  auto *matmul_out_var_1 = pattern->NewNode(matmul_out_1_repr())
                               ->assert_is_op_output("matmul_v2", "Out");
  matmul_op_1->LinksFrom({out_var, matmul_w_var_1}).LinksTo({matmul_out_var_1});
  out_var = matmul_out_var_1;

  out_var->assert_is_op_input("elementwise_add", "X");
  auto *ele_add_op_1 =
      pattern->NewNode(ele_add_op_1_repr())->assert_is_op("elementwise_add");
  auto *ele_add_bias_var_1 = pattern->NewNode(ele_add_bias_1_repr())
                                 ->AsInput()
                                 ->assert_is_op_input("elementwise_add", "Y");
  auto *ele_add_out_var_1 = pattern->NewNode(ele_add_out_1_repr())
                                ->assert_is_op_output("elementwise_add", "Out");
  ele_add_op_1->LinksFrom({out_var, ele_add_bias_var_1})
      .LinksTo({ele_add_out_var_1});
  out_var = ele_add_out_var_1;

  // Activation
  out_var->assert_is_ops_input(act_types);
  auto *act_op = pattern->NewNode(act_op_repr())->assert_is_ops(act_types);
  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");
  act_op->LinksFrom({out_var}).LinksTo({act_out_var});
  out_var = act_out_var;

  // Dropout1
  if (use_dropout_1) {
    out_var->assert_is_op_input("dropout", "X");
    auto *dropout_op_1 =
        pattern->NewNode(dropout_op_1_repr())->assert_is_op("dropout");
    auto *dropout_mask_var_1 = pattern->NewNode(dropout_mask_1_repr())
                                   ->assert_is_op_output("dropout", "Mask");
    auto *dropout_out_var_1 = pattern->NewNode(dropout_out_1_repr())
                                  ->assert_is_op_output("dropout", "Out");
    dropout_op_1->LinksFrom({out_var}).LinksTo(
        {dropout_mask_var_1, dropout_out_var_1});
    out_var = dropout_out_var_1;
  }

  // Linear2
  out_var->assert_is_op_input("matmul_v2", "X");
  auto *matmul_op_2 =
      pattern->NewNode(matmul_op_2_repr())->assert_is_op("matmul_v2");
  auto *matmul_w_var_2 =
      pattern->NewNode(matmul_w_2_repr())->assert_is_op_input("matmul_v2", "Y");
  auto *matmul_out_var_2 = pattern->NewNode(matmul_out_2_repr())
                               ->assert_is_op_output("matmul_v2", "Out");
  matmul_op_2->LinksFrom({out_var, matmul_w_var_2}).LinksTo({matmul_out_var_2});
  out_var = matmul_out_var_2;

  // Model parallel, do nothing in forward.
  if (use_mp) {
    out_var->assert_is_op_input("c_allreduce_sum", "X");
    auto *c_allreduce_sum_op = pattern->NewNode(c_allreduce_sum_op_repr())
                                   ->assert_is_op("c_allreduce_sum");
    auto *c_allreduce_sum_out_var =
        pattern->NewNode(c_allreduce_sum_out_repr())
            ->assert_is_op_output("c_allreduce_sum", "Out");
    c_allreduce_sum_op->LinksFrom({out_var}).LinksTo({c_allreduce_sum_out_var});
    out_var = c_allreduce_sum_out_var;
  }

  out_var->assert_is_op_input("elementwise_add", "X");
  auto *ele_add_op_2 =
      pattern->NewNode(ele_add_op_2_repr())->assert_is_op("elementwise_add");
  auto *ele_add_bias_var_2 = pattern->NewNode(ele_add_bias_2_repr())
                                 ->assert_is_op_input("elementwise_add", "Y");
  auto *ele_add_out_var_2 = pattern->NewNode(ele_add_out_2_repr())
                                ->assert_is_op_output("elementwise_add", "Out");
  ele_add_op_2->LinksFrom({out_var, ele_add_bias_var_2})
      .LinksTo({ele_add_out_var_2});
  out_var = ele_add_out_var_2;

  // Dropout 2
  if (use_dropout_2) {
    out_var->assert_is_op_input("dropout", "X");
    auto *dropout_op_2 =
        pattern->NewNode(dropout_op_2_repr())->assert_is_op("dropout");
    auto *dropout_mask_var_2 = pattern->NewNode(dropout_mask_2_repr())
                                   ->assert_is_op_output("dropout", "Mask");
    auto *dropout_out_var_2 = pattern->NewNode(dropout_out_2_repr())
                                  ->assert_is_op_output("dropout", "Out");
    dropout_op_2->LinksFrom({out_var}).LinksTo(
        {dropout_mask_var_2, dropout_out_var_2});
    out_var = dropout_out_var_2;
  }

  // Residual Add
  if (add_residual) {
    out_var->assert_is_op_input("elementwise_add", "X");
    x_var->assert_is_op_input("elementwise_add", "Y");
    auto *ele_add_op_3 =
        pattern->NewNode(ele_add_op_3_repr())->assert_is_op("elementwise_add");
    auto *ele_add_out_var_3 =
        pattern->NewNode(ele_add_out_3_repr())
            ->assert_is_op_output("elementwise_add", "Out");
    ele_add_op_3->LinksFrom({out_var, x_var}).LinksTo({ele_add_out_var_3});
    out_var = ele_add_out_var_3;
  }

  // Post LayerNorm
  if (!pre_layer_norm) {
    out_var->assert_is_op_input("layer_norm", "X");
    layer_norm_op
        ->LinksFrom({out_var, layer_norm_bias_var, layer_norm_scale_var})
        .LinksTo(
            {layer_norm_out_var, layer_norm_mean_var, layer_norm_variance_var});
    out_var = layer_norm_out_var;
  }
  return out_var;
}

PDNode *patterns::FusedFeedForwardBwd::operator()(
    paddle::framework::ir::PDNode *x_grad,
    std::unordered_set<std::string> act_grad_types,
    bool use_mp,
    bool pre_layer_norm,
    bool add_residual,
    bool use_dropout_1,
    bool use_dropout_2) {
  // Possible patterns
  // 1. residual_add_grad -> dropout2_grad -> linear2_grad -> dropout1_grad ->
  // activation_grad -> linear1_grad -> layer_norm_grad
  // 2. layer_norm_grad -> residual_add_grad -> dropout2_grad -> linear2_grad ->
  // dropout1_grad -> activation_grad -> linear1_grad
  // other cases: may delete residual_add_grad, dropout1_grad, dropout2_grad
  // operators

  // intermediate input_grad, and final pattern ouput_grad
  PDNode *out_grad = x_grad;
  // LayerNorm: in["Mean", "Variance", "Scale", "Bias", "Y@GRAD"],
  // out["X@GRAD", "Scale@GRAD", "Bias@GRAD"]
  auto *layer_norm_op_grad = pattern->NewNode(layer_norm_op_grad_repr())
                                 ->assert_is_op("layer_norm_grad");
  auto *layer_norm_in_var = pattern->NewNode(layer_norm_in_repr())
                                ->assert_is_op_input("layer_norm_grad", "X");
  auto *layer_norm_mean_var =
      pattern->NewNode(layer_norm_mean_repr())
          ->assert_is_op_input("layer_norm_grad", "Mean");
  auto *layer_norm_variance_var =
      pattern->NewNode(layer_norm_variance_repr())
          ->assert_is_op_input("layer_norm_grad", "Variance");
  auto *layer_norm_scale_var =
      pattern->NewNode(layer_norm_scale_repr())
          ->assert_is_op_input("layer_norm_grad", "Scale");
  auto *layer_norm_bias_var =
      pattern->NewNode(layer_norm_bias_repr())
          ->assert_is_op_input("layer_norm_grad", "Bias");
  auto *layer_norm_in_grad =
      pattern->NewNode(layer_norm_in_grad_repr())
          ->assert_is_op_output("layer_norm_grad", GradVarName("X"));
  auto *layer_norm_scale_grad =
      pattern->NewNode(layer_norm_scale_grad_repr())
          ->assert_is_op_output("layer_norm_grad", GradVarName("Scale"));
  auto *layer_norm_bias_grad =
      pattern->NewNode(layer_norm_bias_grad_repr())
          ->assert_is_op_output("layer_norm_grad", GradVarName("Bias"));
  // post_layer_norm
  if (!pre_layer_norm) {
    out_grad->assert_is_op_input("layer_norm_grad", GradVarName("Y"));
    layer_norm_op_grad
        ->LinksFrom({out_grad,
                     layer_norm_in_var,
                     layer_norm_mean_var,
                     layer_norm_variance_var,
                     layer_norm_scale_var,
                     layer_norm_bias_var})
        .LinksTo(
            {layer_norm_in_grad, layer_norm_scale_grad, layer_norm_bias_grad});
    out_grad = layer_norm_in_grad;
  }
  // partial input_grad of residual_add
  PDNode *tmp = nullptr;
  auto *matmul_in_var_1 = pattern->NewNode(matmul_in_1_repr())
                              ->assert_is_op_input("matmul_v2_grad", "X");
  if (add_residual) {
    // Residual Add: in["Out@GRAD", "X", "Y"], out["X@GRAD", "Y@GRAD"]
    out_grad->assert_is_op_input("elementwise_add_grad", GradVarName("Out"));
    auto *ele_add_op_grad_3 = pattern->NewNode(ele_add_op_grad_3_repr())
                                  ->assert_is_op("elementwise_add_grad");
    auto *ele_add_in_var_3 =
        pattern->NewNode(ele_add_in_3_repr())
            ->assert_is_op_input("elementwise_add_grad", "X");
    auto *ele_add_in_grad_3 =
        pattern->NewNode(ele_add_in_grad_3_repr())
            ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
    auto *ele_add_bias_grad_3 =
        pattern->NewNode(ele_add_bias_grad_3_repr())
            ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
    tmp = ele_add_bias_grad_3;
    if (pre_layer_norm) {
      ele_add_op_grad_3
          ->LinksFrom({out_grad, ele_add_in_var_3, layer_norm_in_var})
          .LinksTo({ele_add_in_grad_3, ele_add_bias_grad_3});
    } else {
      ele_add_op_grad_3
          ->LinksFrom({out_grad, ele_add_in_var_3, matmul_in_var_1})
          .LinksTo({ele_add_in_grad_3, ele_add_bias_grad_3});
    }
    out_grad = ele_add_in_grad_3;
  }

  // Dropout 2: in["Out@GRAD", "Mask"], out["X@GRAD"]
  if (use_dropout_2) {
    out_grad->assert_is_op_input("dropout_grad", GradVarName("Out"));
    auto *dropout_op_grad_2 = pattern->NewNode(dropout_op_grad_2_repr())
                                  ->assert_is_op("dropout_grad");
    auto *dropout_mask_grad_2 =
        pattern->NewNode(dropout_mask_2_repr())
            ->assert_is_op_input("dropout_grad", "Mask");
    auto *dropout_in_grad_2 =
        pattern->NewNode(dropout_in_grad_2_repr())
            ->assert_is_op_output("dropout_grad", GradVarName("X"));
    dropout_op_grad_2->LinksFrom({out_grad, dropout_mask_grad_2})
        .LinksTo({dropout_in_grad_2});
    out_grad = dropout_in_grad_2;
  }

  // Linear 2:
  // elementwise_add: in["Out@GRAD", "X", "Y"], out["X@GRAD", "Y@GRAD"]
  out_grad->assert_is_op_input("elementwise_add_grad", GradVarName("Out"));
  auto *ele_add_op_grad_2 = pattern->NewNode(ele_add_op_grad_2_repr())
                                ->assert_is_op("elementwise_add_grad");
  auto *ele_add_in_var_2 =
      pattern->NewNode(ele_add_in_2_repr())
          ->assert_is_op_input("elementwise_add_grad", "X");
  auto *ele_add_bias_var_2 =
      pattern->NewNode(ele_add_bias_2_repr())
          ->assert_is_op_input("elementwise_add_grad", "Y");
  auto *ele_add_in_grad_2 =
      pattern->NewNode(ele_add_in_grad_2_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
  auto *ele_add_bias_grad_2 =
      pattern->NewNode(ele_add_bias_grad_2_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
  ele_add_op_grad_2->LinksFrom({out_grad, ele_add_in_var_2, ele_add_bias_var_2})
      .LinksTo({ele_add_in_grad_2, ele_add_bias_grad_2});
  out_grad = ele_add_in_grad_2;

  // Model parallel, do nothing in backward.
  if (use_mp) {
    out_grad->assert_is_op_input("c_identity", "X");
    auto *c_identity_op =
        pattern->NewNode(c_identity_op_repr())->assert_is_op("c_identity");
    auto *c_identity_out_grad = pattern->NewNode(c_identity_out_repr())
                                    ->assert_is_op_output("c_identity", "Out");
    c_identity_op->LinksFrom({out_grad}).LinksTo({c_identity_out_grad});
    out_grad = c_identity_out_grad;
  }

  // matmul_v2: in["Out@GRAD", "X", "Y"], out["X@GRAD", "Y@GRAD"]
  out_grad->assert_is_op_input("matmul_v2_grad", GradVarName("Out"));
  auto *matmul_op_grad_2 =
      pattern->NewNode(matmul_op_grad_2_repr())->assert_is_op("matmul_v2_grad");
  auto *matmul_in_var_2 = pattern->NewNode(matmul_in_2_repr())
                              ->assert_is_op_input("matmul_v2_grad", "X");
  auto *matmul_w_var_2 = pattern->NewNode(matmul_w_2_repr())
                             ->assert_is_op_input("matmul_v2_grad", "Y");
  auto *matmul_in_grad_2 =
      pattern->NewNode(matmul_in_grad_2_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("X"));
  auto *matmul_w_grad_2 =
      pattern->NewNode(matmul_w_grad_2_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("Y"));
  matmul_op_grad_2->LinksFrom({out_grad, matmul_in_var_2, matmul_w_var_2})
      .LinksTo({matmul_in_grad_2, matmul_w_grad_2});
  out_grad = matmul_in_grad_2;

  // Dropout 1: in["Out@GRAD", "Mask"], out["X@GRAD"]
  if (use_dropout_1) {
    out_grad->assert_is_op_input("dropout_grad", GradVarName("Out"));
    auto *dropout_op_grad_1 = pattern->NewNode(dropout_op_grad_1_repr())
                                  ->assert_is_op("dropout_grad");
    auto *dropout_mask_var_1 = pattern->NewNode(dropout_mask_1_repr())
                                   ->assert_is_op_input("dropout_grad", "Mask");
    auto *dropout_in_grad_1 =
        pattern->NewNode(dropout_in_grad_1_repr())
            ->assert_is_op_output("dropout_grad", GradVarName("X"));
    dropout_op_grad_1->LinksFrom({out_grad, dropout_mask_var_1})
        .LinksTo({dropout_in_grad_1});
    out_grad = dropout_in_grad_1;
  }

  // Activation: in["Out", "Out@GRAD"], out["X@GRAD"]
  out_grad->assert_is_ops_input(act_grad_types, GradVarName("Out"));
  auto *act_op_grad =
      pattern->NewNode(act_op_grad_repr())->assert_is_ops(act_grad_types);
  auto *act_in_var =
      pattern->NewNode(act_in_repr())->assert_is_ops_input(act_grad_types, "X");
  auto *act_in_grad =
      pattern->NewNode(act_in_grad_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"));
  act_op_grad->LinksFrom({out_grad, act_in_var}).LinksTo({act_in_grad});
  out_grad = act_in_grad;

  // Linear 1:
  // elementwise_add: in["Out@GRAD", "X", "Y"], out["X@GRAD", "Y@GRAD"]
  out_grad->assert_is_op_input("elementwise_add_grad", GradVarName("Out"));
  auto *ele_add_op_grad_1 = pattern->NewNode(ele_add_op_grad_1_repr())
                                ->assert_is_op("elementwise_add_grad");
  auto *ele_add_in_var_1 =
      pattern->NewNode(ele_add_in_1_repr())
          ->assert_is_op_input("elementwise_add_grad", "X");
  auto *ele_add_bias_var_1 =
      pattern->NewNode(ele_add_bias_1_repr())
          ->assert_is_op_input("elementwise_add_grad", "Y");
  auto *ele_add_in_grad_1 =
      pattern->NewNode(ele_add_in_grad_1_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
  auto *ele_add_bias_grad_1 =
      pattern->NewNode(ele_add_bias_grad_1_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
  ele_add_op_grad_1->LinksFrom({out_grad, ele_add_in_var_1, ele_add_bias_var_1})
      .LinksTo({ele_add_in_grad_1, ele_add_bias_grad_1});
  out_grad = ele_add_in_grad_1;
  // matmul_v2: in["Out@GRAD", "X", "Y"], out["X@GRAD", "Y@GRAD"]
  out_grad->assert_is_op_input("matmul_v2_grad", GradVarName("Out"));
  auto *matmul_op_grad_1 =
      pattern->NewNode(matmul_op_grad_1_repr())->assert_is_op("matmul_v2_grad");
  // auto *matmul_in_var_1 = pattern->NewNode(matmul_in_1_repr())
  //                                 ->assert_is_op_input("matmul_v2_grad",
  //                                 "X");
  auto *matmul_w_var_1 = pattern->NewNode(matmul_w_1_repr())
                             ->assert_is_op_input("matmul_v2_grad", "Y");
  auto *matmul_in_grad_1 =
      pattern->NewNode(matmul_in_grad_1_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("X"));
  auto *matmul_w_grad_1 =
      pattern->NewNode(matmul_w_grad_1_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("Y"));
  matmul_op_grad_1->LinksFrom({out_grad, matmul_in_var_1, matmul_w_var_1})
      .LinksTo({matmul_in_grad_1, matmul_w_grad_1});
  out_grad = matmul_in_grad_1;

  // Model parallel, all_reduce in backward.
  if (use_mp) {
    out_grad->assert_is_op_input("c_allreduce_sum", "X");
    auto *c_allreduce_sum_op = pattern->NewNode(c_allreduce_sum_op_repr())
                                   ->assert_is_op("c_allreduce_sum");
    auto *c_allreduce_sum_out_grad =
        pattern->NewNode(c_allreduce_sum_out_repr())
            ->assert_is_op_output("c_allreduce_sum", "Out");
    c_allreduce_sum_op->LinksFrom({out_grad})
        .LinksTo({c_allreduce_sum_out_grad});
    out_grad = c_allreduce_sum_out_grad;
  }

  // pre LayerNorm
  if (pre_layer_norm) {
    out_grad->assert_is_op_input("layer_norm_grad", GradVarName("Y"));
    layer_norm_op_grad
        ->LinksFrom({out_grad,
                     layer_norm_in_var,
                     layer_norm_mean_var,
                     layer_norm_variance_var,
                     layer_norm_scale_var,
                     layer_norm_bias_var})
        .LinksTo(
            {layer_norm_in_grad, layer_norm_scale_grad, layer_norm_bias_grad});
    out_grad = layer_norm_in_grad;
  }

  // sum for final gradient
  if (add_residual) {
    auto *sum_op = pattern->NewNode(sum_op_repr())->assert_is_op("sum");
    auto *sum_out =
        pattern->NewNode(sum_out_repr())->assert_is_op_output("sum", "Out");
    sum_op->LinksFrom({tmp, out_grad}).LinksTo({sum_out});
    out_grad = sum_out;
  }

  return out_grad;
}

4455 4456 4457
}  // namespace ir
}  // namespace framework
}  // namespace paddle