Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
75f91ce4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
75f91ce4
编写于
2月 24, 2022
作者:
J
jakpiase
提交者:
GitHub
2月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix for split op in BF16 inference (#39548)
* Fix for split bf16 inference * added test for pass * changes after review
上级
c9699556
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
168 addition
and
48 deletion
+168
-48
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+9
-0
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+9
-0
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.cc
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.cc
+120
-46
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass_tester.cc
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass_tester.cc
+28
-1
paddle/phi/kernels/cpu/split_kernel.cc
paddle/phi/kernels/cpu/split_kernel.cc
+2
-1
未找到文件。
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
75f91ce4
...
...
@@ -2516,6 +2516,15 @@ PDNode *patterns::DuplicatedInputs::operator()() {
return
op
;
}
PDNode
*
patterns
::
DuplicatedOutputs
::
operator
()()
{
auto
op
=
pattern
->
NewNode
(
op_repr
())
->
assert_is_ops
({
"split"
});
op
->
assert_more
([
&
](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"mkldnn_data_type"
)
==
"bfloat16"
;
});
return
op
;
}
PDNode
*
patterns
::
MKLDNNInPlace
::
operator
()()
{
const
std
::
unordered_set
<
std
::
string
>
&
supported_op_types
=
{
"abs"
,
"gelu"
,
"leaky_relu"
,
"relu"
,
"softmax"
,
"sqrt"
,
"swish"
,
"tanh"
};
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
75f91ce4
...
...
@@ -1495,6 +1495,15 @@ struct DuplicatedInputs : public PatternBase {
PATTERN_DECL_NODE
(
op
);
};
struct
DuplicatedOutputs
:
public
PatternBase
{
DuplicatedOutputs
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"many_outputs_op"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
op
);
};
// Pattern used for enforcing inplace computation for in-place computation
// supporting DNNL ops. softmax, batch_norm and layer_norm
struct
MKLDNNInPlace
:
public
PatternBase
{
...
...
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.cc
浏览文件 @
75f91ce4
...
...
@@ -52,7 +52,7 @@ bool IsPermittedOutputName(const std::string& output_name) {
}
void
AddQuantize
(
Graph
*
g
,
ir
::
Node
*
op
,
ir
::
Node
*
op_in
,
int
*
quantize_counter
)
{
int
&
quantize_counter
)
{
std
::
vector
<
std
::
string
>
input_names
;
// Find the name of the input linking op to op_in
...
...
@@ -87,10 +87,10 @@ void AddQuantize(Graph* g, ir::Node* op, ir::Node* op_in,
IR_NODE_LINK_TO
(
op_in
,
quantize_op
);
IR_NODE_LINK_TO
(
quantize_op
,
quantize_out_node
);
IR_NODE_LINK_TO
(
quantize_out_node
,
op
);
(
*
quantize_counter
)
++
;
quantize_counter
++
;
}
void
AddQuantizes
(
Graph
*
g
,
ir
::
Node
*
op
,
int
*
quantize_counter
)
{
void
AddQuantizes
(
Graph
*
g
,
ir
::
Node
*
op
,
int
&
quantize_counter
)
{
auto
inputs
=
op
->
inputs
;
PADDLE_ENFORCE_GE
(
inputs
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
...
...
@@ -127,7 +127,7 @@ void AddQuantizes(Graph* g, ir::Node* op, int* quantize_counter) {
IR_NODE_LINK_TO
(
inputs
[
i
],
quantize_op
);
IR_NODE_LINK_TO
(
quantize_op
,
quantize_out_nodes
[
i
]);
IR_NODE_LINK_TO
(
quantize_out_nodes
[
i
],
op
);
(
*
quantize_counter
)
++
;
quantize_counter
++
;
}
op
->
Op
()
->
SetInput
(
"X"
,
quantize_out_node_names
);
...
...
@@ -136,7 +136,7 @@ void AddQuantizes(Graph* g, ir::Node* op, int* quantize_counter) {
// Operators like Concat and Sum have a single input name X, which actually
// consists of multiple inputs. Such operators require a different way to find
// pattern and add quantize ops.
void
AddReoderBeforeDuplicatedInputs
(
ir
::
Graph
*
graph
,
int
*
quantize_counter
)
{
void
AddReoderBeforeDuplicatedInputs
(
ir
::
Graph
*
graph
,
int
&
quantize_counter
)
{
GraphPatternDetector
gpd
;
patterns
::
DuplicatedInputs
duplicated_inputs
{
gpd
.
mutable_pattern
(),
"duplicated_inputs"
};
...
...
@@ -151,7 +151,7 @@ void AddReoderBeforeDuplicatedInputs(ir::Graph* graph, int* quantize_counter) {
// Adding quantize ops before all operators except Concat and Sum, which have
// already been handled in AddReoderBeforeDuplicatedInputs
void
AddReoderBeforeSingleInputs
(
ir
::
Graph
*
graph
,
int
*
quantize_counter
)
{
void
AddReoderBeforeSingleInputs
(
ir
::
Graph
*
graph
,
int
&
quantize_counter
)
{
GraphPatternDetector
gpd
;
patterns
::
FirstBfloat16Ops
bfloat16_ops
{
gpd
.
mutable_pattern
(),
"first_bfloat16_ops"
};
...
...
@@ -169,60 +169,134 @@ void AddReoderBeforeSingleInputs(ir::Graph* graph, int* quantize_counter) {
void
CPUBFloat16Pass
::
SetInputDataType
(
ir
::
Graph
*
graph
)
const
{
int
quantize_counter
=
0
;
AddReoderBeforeDuplicatedInputs
(
graph
,
&
quantize_counter
);
AddReoderBeforeSingleInputs
(
graph
,
&
quantize_counter
);
AddReoderBeforeDuplicatedInputs
(
graph
,
quantize_counter
);
AddReoderBeforeSingleInputs
(
graph
,
quantize_counter
);
PrettyLogDetail
(
"--- added %d quantize ops before bfloat16 op"
,
quantize_counter
);
}
void
CPUBFloat16Pass
::
SetOutputDataType
(
ir
::
Graph
*
graph
)
const
{
void
AddDequantize
(
Graph
*
g
,
ir
::
Node
*
op
,
ir
::
Node
*
op_out
,
int
&
dequantize_counter
)
{
if
(
op
->
Op
()
->
Type
()
==
"prior_box"
)
return
;
// Find the name of the output linking op to op_out
std
::
vector
<
std
::
string
>
output_names
;
for
(
auto
name
:
op
->
Op
()
->
OutputNames
())
for
(
auto
output_name
:
op
->
Op
()
->
Output
(
name
))
if
(
output_name
==
op_out
->
Name
()
&&
IsPermittedOutputName
(
name
))
output_names
.
push_back
(
name
);
if
(
output_names
.
empty
())
return
;
VarDesc
dequantize_in_desc
(
patterns
::
PDNodeName
(
"dequantize"
,
"in"
));
auto
*
dequantize_in_node
=
g
->
CreateVarNode
(
&
dequantize_in_desc
);
OpDesc
deq_desc
;
deq_desc
.
SetType
(
"dequantize"
);
deq_desc
.
SetInput
(
"Input"
,
std
::
vector
<
std
::
string
>
({
dequantize_in_node
->
Name
()}));
deq_desc
.
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
op_out
->
Name
()}));
deq_desc
.
SetAttr
(
"Scale"
,
1.0
f
);
deq_desc
.
SetAttr
(
"Shift"
,
0.0
f
);
auto
dequantize_op
=
g
->
CreateOpNode
(
&
deq_desc
);
// OpDesc will be copied.
for
(
auto
name
=
output_names
.
begin
();
name
<
output_names
.
end
();
name
++
)
op
->
Op
()
->
SetOutput
(
*
name
,
std
::
vector
<
std
::
string
>
({
dequantize_in_node
->
Name
()}));
UnlinkNodes
(
op
,
op_out
);
IR_NODE_LINK_TO
(
op
,
dequantize_in_node
);
IR_NODE_LINK_TO
(
dequantize_in_node
,
dequantize_op
);
IR_NODE_LINK_TO
(
dequantize_op
,
op_out
);
dequantize_counter
++
;
}
void
AddDequantizes
(
Graph
*
g
,
ir
::
Node
*
op
,
int
&
dequantize_counter
)
{
auto
outputs
=
op
->
outputs
;
PADDLE_ENFORCE_GE
(
outputs
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"OP(%s)'s outputs(%d) must be equal or greater than 1."
,
op
->
Name
(),
outputs
.
size
()));
PADDLE_ENFORCE_EQ
(
op
->
inputs
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"OP(%s)'s inputs(%d) must be equal to 1."
,
op
->
Name
(),
op
->
inputs
.
size
()));
OpDesc
deq_desc
;
deq_desc
.
SetType
(
"dequantize"
);
std
::
vector
<
Node
*>
dequantize_in_nodes
(
outputs
.
size
());
std
::
vector
<
std
::
string
>
dequantize_in_node_names
(
outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
VarDesc
dequantize_in_desc
(
patterns
::
PDNodeName
(
"dequantize"
,
"in"
));
dequantize_in_nodes
[
i
]
=
g
->
CreateVarNode
(
&
dequantize_in_desc
);
dequantize_in_node_names
[
i
]
=
dequantize_in_nodes
[
i
]
->
Name
();
deq_desc
.
SetInput
(
"Input"
,
std
::
vector
<
std
::
string
>
({
dequantize_in_node_names
[
i
]}));
deq_desc
.
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
outputs
[
i
]
->
Name
()}));
deq_desc
.
SetAttr
(
"Scale"
,
1.
f
);
deq_desc
.
SetAttr
(
"Shift"
,
0.0
f
);
deq_desc
.
SetAttr
(
"bfloat16"
,
true
);
deq_desc
.
SetAttr
(
"output_format"
,
op
->
Op
()
->
HasAttr
(
"data_layout"
)
?
op
->
Op
()
->
GetAttr
(
"data_layout"
)
:
std
::
string
(
"NCHW"
));
auto
dequantize_op
=
g
->
CreateOpNode
(
&
deq_desc
);
// OpDesc will be copied.
UnlinkNodes
(
op
,
outputs
[
i
]);
IR_NODE_LINK_TO
(
op
,
dequantize_in_nodes
[
i
]);
IR_NODE_LINK_TO
(
dequantize_in_nodes
[
i
],
dequantize_op
);
IR_NODE_LINK_TO
(
dequantize_op
,
outputs
[
i
]);
dequantize_counter
++
;
}
op
->
Op
()
->
SetOutput
(
"Out"
,
dequantize_in_node_names
);
}
// Operators like split have a single output name Out, which actually
// consists of multiple outputs. Such operators require a different way to find
// pattern and add dequantize ops.
void
AddReoderAfterDuplicatedOutputs
(
ir
::
Graph
*
graph
,
int
&
dequantize_counter
)
{
GraphPatternDetector
gpd
;
patterns
::
DuplicatedOutputs
duplicated_outputs
{
gpd
.
mutable_pattern
(),
"duplicated_outputs"
};
duplicated_outputs
();
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
op
,
op
,
duplicated_outputs
);
AddDequantizes
(
g
,
op
,
dequantize_counter
);
};
gpd
(
graph
,
handler
);
}
// Adding dequantize ops after all operators except split, which has
// already been handled in AddReoderAfterDuplicatedOutputs
void
AddReoderAfterSingleOutputs
(
ir
::
Graph
*
graph
,
int
&
dequantize_counter
)
{
GraphPatternDetector
gpd
;
patterns
::
LastBfloat16Ops
bfloat16_ops
{
gpd
.
mutable_pattern
(),
"last_bfloat16_ops"
};
bfloat16_ops
();
int
dequantize_counter
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
op
,
op
,
bfloat16_ops
);
GET_IR_NODE_FROM_SUBGRAPH
(
op_out
,
op_out
,
bfloat16_ops
);
if
(
op
->
Op
()
->
Type
()
!=
"prior_box"
)
{
// Find the name of the output linking op to op_out
std
::
vector
<
std
::
string
>
output_names
;
for
(
auto
name
:
op
->
Op
()
->
OutputNames
())
for
(
auto
output_name
:
op
->
Op
()
->
Output
(
name
))
if
(
output_name
==
op_out
->
Name
()
&&
IsPermittedOutputName
(
name
))
output_names
.
push_back
(
name
);
if
(
output_names
.
empty
())
return
;
VarDesc
dequantize_in_desc
(
patterns
::
PDNodeName
(
"dequantize"
,
"in"
));
auto
*
dequantize_in_node
=
g
->
CreateVarNode
(
&
dequantize_in_desc
);
OpDesc
deq_desc
;
deq_desc
.
SetType
(
"dequantize"
);
deq_desc
.
SetInput
(
"Input"
,
std
::
vector
<
std
::
string
>
({
dequantize_in_node
->
Name
()}));
deq_desc
.
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
op_out
->
Name
()}));
deq_desc
.
SetAttr
(
"Scale"
,
1.0
f
);
deq_desc
.
SetAttr
(
"Shift"
,
0.0
f
);
auto
dequantize_op
=
g
->
CreateOpNode
(
&
deq_desc
);
// OpDesc will be copied.
for
(
auto
name
=
output_names
.
begin
();
name
<
output_names
.
end
();
name
++
)
op
->
Op
()
->
SetOutput
(
*
name
,
std
::
vector
<
std
::
string
>
({
dequantize_in_node
->
Name
()}));
UnlinkNodes
(
op
,
op_out
);
IR_NODE_LINK_TO
(
op
,
dequantize_in_node
);
IR_NODE_LINK_TO
(
dequantize_in_node
,
dequantize_op
);
IR_NODE_LINK_TO
(
dequantize_op
,
op_out
);
dequantize_counter
++
;
GET_IR_NODE_FROM_SUBGRAPH
(
op
,
op
,
bfloat16_ops
);
if
(
op
->
Op
()
->
Type
()
!=
"split"
)
{
AddDequantize
(
g
,
op
,
op_out
,
dequantize_counter
);
}
};
gpd
(
graph
,
handler
);
}
void
CPUBFloat16Pass
::
SetOutputDataType
(
ir
::
Graph
*
graph
)
const
{
int
dequantize_counter
=
0
;
AddReoderAfterDuplicatedOutputs
(
graph
,
dequantize_counter
);
AddReoderAfterSingleOutputs
(
graph
,
dequantize_counter
);
PrettyLogDetail
(
"--- added %d dequantize ops after bfloat16 op"
,
dequantize_counter
);
}
...
...
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass_tester.cc
浏览文件 @
75f91ce4
...
...
@@ -45,7 +45,7 @@ void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"mkldnn_data_type"
,
mkldnn_data_type
);
}
else
if
(
type
==
"concat"
||
type
==
"sum"
)
{
}
else
if
(
type
==
"concat"
||
type
==
"sum"
||
type
==
"split"
)
{
op
->
SetInput
(
"X"
,
inputs
);
op
->
SetOutput
(
"Out"
,
outputs
);
op
->
SetAttr
(
"mkldnn_data_type"
,
mkldnn_data_type
);
...
...
@@ -117,6 +117,7 @@ TEST(CpuBfloat16Pass, convolution) {
bool
use_mkldnn
=
true
;
int
quant_op
=
3
;
int
dequant_op
=
3
;
// each added op consists of 2 nodes
int
added_nodes
=
quant_op
*
2
+
dequant_op
*
2
;
MainTest
(
BuildProgramDescConv
(
use_mkldnn
),
quant_op
,
dequant_op
,
added_nodes
);
}
...
...
@@ -140,6 +141,7 @@ TEST(CpuBfloat16Pass, double_input_ops) {
bool
use_mkldnn
=
true
;
int
quant_op
=
4
;
int
dequant_op
=
3
;
// each added op consists of 2 nodes
int
added_nodes
=
quant_op
*
2
+
dequant_op
*
2
;
MainTest
(
BuildProgramDescDoubleInput
(
use_mkldnn
),
quant_op
,
dequant_op
,
added_nodes
);
...
...
@@ -164,11 +166,35 @@ TEST(CpuBfloat16Pass, duplicated_input_ops) {
bool
use_mkldnn
=
true
;
int
quant_op
=
5
;
int
dequant_op
=
3
;
// each added op consists of 2 nodes
int
added_nodes
=
quant_op
*
2
+
dequant_op
*
2
;
MainTest
(
BuildProgramDescDuplicatedInput
(
use_mkldnn
),
quant_op
,
dequant_op
,
added_nodes
);
}
ProgramDesc
BuildProgramDescDuplicatedOutput
(
bool
use_mkldnn
)
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names
)
{
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
}
SetOp
(
&
prog
,
"dropout"
,
"Dropout"
,
{
"a"
},
{
"b"
},
use_mkldnn
,
"float32"
);
SetOp
(
&
prog
,
"split"
,
"Split"
,
{
"b"
},
{
"c"
,
"d"
},
use_mkldnn
,
"bfloat16"
);
SetOp
(
&
prog
,
"transpose2"
,
"Transpose"
,
{
"c"
},
{
"e"
},
use_mkldnn
,
"float32"
);
SetOp
(
&
prog
,
"reshape2"
,
"Reshape"
,
{
"d"
},
{
"f"
},
use_mkldnn
,
"bfloat16"
);
return
prog
;
}
TEST
(
CpuBfloat16Pass
,
duplicated_output_ops
)
{
bool
use_mkldnn
=
true
;
int
quant_op
=
2
;
int
dequant_op
=
3
;
// each added op consists of 2 nodes
int
added_nodes
=
quant_op
*
2
+
dequant_op
*
2
;
MainTest
(
BuildProgramDescDuplicatedOutput
(
use_mkldnn
),
quant_op
,
dequant_op
,
added_nodes
);
}
ProgramDesc
BuildProgramDescDoubleOutputs
(
bool
use_mkldnn
)
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names
)
{
...
...
@@ -190,6 +216,7 @@ TEST(CpuBfloat16Pass, double_outputs_ops) {
bool
use_mkldnn
=
true
;
int
quant_op
=
3
;
int
dequant_op
=
3
;
// each added op consists of 2 nodes
int
added_nodes
=
quant_op
*
2
+
dequant_op
*
2
;
MainTest
(
BuildProgramDescDoubleOutputs
(
use_mkldnn
),
quant_op
,
dequant_op
,
added_nodes
);
...
...
paddle/phi/kernels/cpu/split_kernel.cc
浏览文件 @
75f91ce4
...
...
@@ -70,4 +70,5 @@ PD_REGISTER_KERNEL(split,
int64_t
,
int
,
bool
,
phi
::
dtype
::
float16
)
{}
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录