helper.h 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

L
luotao1 已提交
17
#include <glog/logging.h>
18

Y
Yan Chunwei 已提交
19 20 21 22
#include <fstream>
#if !defined(_WIN32)
#include <sys/time.h>
#endif
23
#include <algorithm>
L
luotao1 已提交
24
#include <chrono>  // NOLINT
L
liuwei1031 已提交
25
#include <functional>
P
peizhilin 已提交
26
#include <iterator>
27
#include <numeric>
28 29 30
#include <sstream>
#include <string>
#include <vector>
W
wanghuancoder 已提交
31

32
#include "paddle/fluid/framework/data_type.h"
33
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
34
#include "paddle/fluid/inference/api/paddle_inference_api.h"
35
#include "paddle/fluid/memory/stats.h"
36
#include "paddle/fluid/platform/enforce.h"
37
#include "paddle/fluid/platform/place.h"
38
#include "paddle/fluid/string/printf.h"
39
#include "paddle/phi/backends/dynload/port.h"
40

41 42 43
extern std::string paddle::framework::DataTypeToString(
    const framework::proto::VarType::Type type);

44 45 46
namespace paddle {
namespace inference {

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
template <typename T>
constexpr PaddleDType PaddleTensorGetDType();

template <>
constexpr PaddleDType PaddleTensorGetDType<int32_t>() {
  return PaddleDType::INT32;
}

template <>
constexpr PaddleDType PaddleTensorGetDType<int64_t>() {
  return PaddleDType::INT64;
}

template <>
constexpr PaddleDType PaddleTensorGetDType<float>() {
  return PaddleDType::FLOAT32;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
inline PaddleDType ConvertToPaddleDType(
    paddle::framework::proto::VarType::Type type) {
  if (type == paddle::framework::proto::VarType::FP32) {
    return PaddleDType::FLOAT32;
  } else if (type == paddle::framework::proto::VarType::INT64) {
    return PaddleDType::INT64;
  } else if (type == paddle::framework::proto::VarType::INT32) {
    return PaddleDType::INT32;
  } else if (type == paddle::framework::proto::VarType::UINT8) {
    return PaddleDType::UINT8;
  } else {
    PADDLE_THROW(paddle::platform::errors::Unimplemented(
        "The paddle dtype convert function only supports FLOAT32, INT64, INT32 "
        "and UINT8 now. But "
        "we get %d here.",
        static_cast<int>(type)));
    return PaddleDType::FLOAT32;
  }
}

85 86 87 88 89 90 91 92 93
inline bool IsFloatVar(framework::proto::VarType::Type t) {
  if (t == framework::proto::VarType::FP16 ||
      t == framework::proto::VarType::FP32 ||
      t == framework::proto::VarType::FP64 ||
      t == framework::proto::VarType::BF16)
    return true;
  return false;
}

94 95
using paddle::framework::DataTypeToString;

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
// Timer for timer
class Timer {
 public:
  std::chrono::high_resolution_clock::time_point start;
  std::chrono::high_resolution_clock::time_point startu;

  void tic() { start = std::chrono::high_resolution_clock::now(); }
  double toc() {
    startu = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> time_span =
        std::chrono::duration_cast<std::chrono::duration<double>>(startu -
                                                                  start);
    double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
    return used_time_ms;
  }
};

N
nhzlx 已提交
113 114 115 116 117
static int GetUniqueId() {
  static int id = 0;
  return id++;
}

118 119 120 121
static void split(const std::string &str,
                  char sep,
                  std::vector<std::string> *pieces,
                  bool ignore_null = true) {
122 123
  pieces->clear();
  if (str.empty()) {
124 125 126
    if (!ignore_null) {
      pieces->push_back(str);
    }
127 128 129 130 131 132 133 134 135 136 137 138 139
    return;
  }
  size_t pos = 0;
  size_t next = str.find(sep, pos);
  while (next != std::string::npos) {
    pieces->push_back(str.substr(pos, next - pos));
    pos = next + 1;
    next = str.find(sep, pos);
  }
  if (!str.substr(pos).empty()) {
    pieces->push_back(str.substr(pos));
  }
}
L
liuwei1031 已提交
140 141 142 143 144 145 146 147 148 149 150

template <typename T>
static T convert(const std::string &item,
                 std::function<T(const std::string &item)> func) {
  T res;
  try {
    res = func(item);
  } catch (std::invalid_argument &e) {
    std::string message =
        "invalid_argument exception when try to convert : " + item;
    LOG(ERROR) << message;
151 152
    PADDLE_THROW(platform::errors::InvalidArgument(
        "invalid_argument exception when try to convert %s.", item));
L
liuwei1031 已提交
153 154 155 156
  } catch (std::out_of_range &e) {
    std::string message =
        "out_of_range exception when try to convert : " + item;
    LOG(ERROR) << message;
157 158
    PADDLE_THROW(platform::errors::InvalidArgument(
        "out_of_range exception when try to convert %s.", item));
L
liuwei1031 已提交
159 160 161
  } catch (...) {
    std::string message = "unexpected exception when try to convert " + item;
    LOG(ERROR) << message;
162 163
    PADDLE_THROW(platform::errors::InvalidArgument(
        "unexpected exception when try to convert %s.", item));
L
liuwei1031 已提交
164 165 166 167
  }
  return res;
}

168 169
static void split_to_float(const std::string &str,
                           char sep,
170
                           std::vector<float> *fs) {
171 172
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
173 174 175
  std::transform(pieces.begin(),
                 pieces.end(),
                 std::back_inserter(*fs),
L
liuwei1031 已提交
176 177 178 179 180
                 [](const std::string &v) {
                   return convert<float>(v, [](const std::string &item) {
                     return std::stof(item);
                   });
                 });
181
}
182 183
static void split_to_int64(const std::string &str,
                           char sep,
L
luotao1 已提交
184 185 186
                           std::vector<int64_t> *is) {
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
187 188 189
  std::transform(pieces.begin(),
                 pieces.end(),
                 std::back_inserter(*is),
L
liuwei1031 已提交
190 191 192 193 194
                 [](const std::string &v) {
                   return convert<int64_t>(v, [](const std::string &item) {
                     return std::stoll(item);
                   });
                 });
L
luotao1 已提交
195
}
196 197
static void split_to_int(const std::string &str,
                         char sep,
T
Tao Luo 已提交
198 199 200
                         std::vector<int> *is) {
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
201 202 203
  std::transform(pieces.begin(),
                 pieces.end(),
                 std::back_inserter(*is),
L
liuwei1031 已提交
204 205 206 207 208
                 [](const std::string &v) {
                   return convert<int>(v, [](const std::string &item) {
                     return std::stoi(item);
                   });
                 });
L
luotao1 已提交
209
}
210 211 212 213 214 215 216 217 218 219
template <typename T>
std::string to_string(const std::vector<T> &vec) {
  std::stringstream ss;
  for (const auto &c : vec) {
    ss << c << " ";
  }
  return ss.str();
}
template <>
std::string to_string<std::vector<float>>(
220 221
    const std::vector<std::vector<float>> &vec);

222 223
template <>
std::string to_string<std::vector<std::vector<float>>>(
224 225
    const std::vector<std::vector<std::vector<float>>> &vec);

226 227 228 229 230
template <typename T>
int VecReduceToInt(const std::vector<T> &v) {
  return std::accumulate(v.begin(), v.end(), 1, [](T a, T b) { return a * b; });
}

231 232 233 234 235 236 237 238
template <typename T>
void CheckAssignedData(const std::vector<std::vector<T>> &data,
                       const int num_elems) {
  int num = 0;
  for (auto it = data.begin(); it != data.end(); ++it) {
    num += (*it).size();
  }
  PADDLE_ENFORCE_EQ(
239 240
      num,
      num_elems,
241 242 243 244 245
      platform::errors::OutOfRange(
          "The number of elements out of bounds. "
          "Expected number of elements = %d. But received %d. Suggested Fix: "
          "If the tensor is expected to assign %d elements, check the number "
          "of elements of your 'infer_data'.",
246 247 248
          num_elems,
          num,
          num_elems));
249 250
}

L
luotao1 已提交
251 252 253
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data) {
254
  // Assign buffer
255
  int num_elems = VecReduceToInt(tensor->shape);
256
  CheckAssignedData(data, num_elems);
257
  tensor->data.Resize(sizeof(T) * num_elems);
258 259
  int c = 0;
  for (const auto &f : data) {
L
luotao1 已提交
260 261 262
    for (T v : f) {
      static_cast<T *>(tensor->data.data())[c++] = v;
    }
263 264 265
  }
}

T
Tao Luo 已提交
266 267 268 269 270 271 272 273 274 275
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data,
                             const std::vector<size_t> &lod) {
  int size = lod[lod.size() - 1];
  tensor->shape.assign({size, 1});
  tensor->lod.assign({lod});
  TensorAssignData(tensor, data);
}

276
template <typename T>
L
luotao1 已提交
277 278
static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
                                     const std::vector<std::vector<T>> &data) {
279 280 281 282 283 284 285
  auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
  int c = 0;
  for (const auto &f : data) {
    for (T v : f) {
      ptr[c++] = v;
    }
  }
L
luotao1 已提交
286 287 288 289 290 291 292 293 294
}

template <typename T>
static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
                                     const PaddleBuf &data) {
  auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
  for (size_t i = 0; i < data.length() / sizeof(T); i++) {
    ptr[i] = *(reinterpret_cast<T *>(data.data()) + i);
  }
295 296
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static bool CompareTensor(const PaddleTensor &a, const PaddleTensor &b) {
  if (a.dtype != b.dtype) {
    LOG(ERROR) << "dtype not match";
    return false;
  }

  if (a.lod.size() != b.lod.size()) {
    LOG(ERROR) << "lod not match";
    return false;
  }
  for (size_t i = 0; i < a.lod.size(); i++) {
    if (a.lod[i].size() != b.lod[i].size()) {
      LOG(ERROR) << "lod not match";
      return false;
    }
    for (size_t j = 0; j < a.lod[i].size(); j++) {
      if (a.lod[i][j] != b.lod[i][j]) {
        LOG(ERROR) << "lod not match";
        return false;
      }
    }
  }

  if (a.shape.size() != b.shape.size()) {
    LOG(INFO) << "shape not match";
    return false;
  }
  for (size_t i = 0; i < a.shape.size(); i++) {
    if (a.shape[i] != b.shape[i]) {
      LOG(ERROR) << "shape not match";
      return false;
    }
  }

  auto *adata = static_cast<float *>(a.data.data());
  auto *bdata = static_cast<float *>(b.data.data());
  for (int i = 0; i < VecReduceToInt(a.shape); i++) {
    if (adata[i] != bdata[i]) {
      LOG(ERROR) << "data not match";
      return false;
    }
  }
  return true;
}

Y
Yan Chunwei 已提交
342
static std::string DescribeTensor(const PaddleTensor &tensor,
343
                                  int max_num_of_data UNUSED = 15) {
L
luotao1 已提交
344 345 346 347 348 349 350 351 352 353
  std::stringstream os;
  os << "Tensor [" << tensor.name << "]\n";
  os << " - type: ";
  switch (tensor.dtype) {
    case PaddleDType::FLOAT32:
      os << "float32";
      break;
    case PaddleDType::INT64:
      os << "int64";
      break;
354 355 356
    case PaddleDType::INT32:
      os << "int32";
      break;
L
luotao1 已提交
357 358 359 360 361 362 363 364 365 366 367
    default:
      os << "unset";
  }
  os << '\n';

  os << " - shape: " << to_string(tensor.shape) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod) {
    os << to_string(l) << "; ";
  }
  os << "\n";
T
tensor-tang 已提交
368 369
  os << " - memory length: " << tensor.data.length();
  os << "\n";
L
luotao1 已提交
370

T
tensor-tang 已提交
371
  os << " - data: ";
372
  int dim = VecReduceToInt(tensor.shape);
T
tensor-tang 已提交
373
  float *pdata = static_cast<float *>(tensor.data.data());
L
luotao1 已提交
374
  for (int i = 0; i < dim; i++) {
T
tensor-tang 已提交
375
    os << pdata[i] << " ";
L
luotao1 已提交
376 377 378 379 380
  }
  os << '\n';
  return os.str();
}

381 382 383 384 385 386 387 388 389 390 391 392 393
static std::string DescribeZeroCopyTensor(const ZeroCopyTensor &tensor) {
  std::stringstream os;
  os << "Tensor [" << tensor.name() << "]\n";

  os << " - shape: " << to_string(tensor.shape()) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod()) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  PaddlePlace place;
  int size;
  const auto *data = tensor.data<float>(&place, &size);
T
tensor-tang 已提交
394 395 396
  os << " - numel: " << size;
  os << "\n";
  os << " - data: ";
397 398 399 400 401 402
  for (int i = 0; i < size; i++) {
    os << data[i] << " ";
  }
  return os.str();
}

403 404 405 406 407 408
static void PrintTime(int batch_size,
                      int repeat,
                      int num_threads,
                      int tid,
                      double batch_latency,
                      int epoch = 1,
409 410
                      const framework::proto::VarType::Type data_type =
                          framework::proto::VarType::FP32) {
411
  PADDLE_ENFORCE_GT(
412 413
      batch_size,
      0,
414
      platform::errors::InvalidArgument("Non-positive batch size."));
415 416
  double sample_latency = batch_latency / batch_size;
  LOG(INFO) << "====== threads: " << num_threads << ", thread id: " << tid
S
Sylwester Fraczek 已提交
417
            << " ======";
418
  LOG(INFO) << "====== batch size: " << batch_size << ", iterations: " << epoch
419 420 421 422
            << ", repetitions: " << repeat << " ======";
  LOG(INFO) << "====== batch latency: " << batch_latency
            << "ms, number of samples: " << batch_size * epoch
            << ", sample latency: " << sample_latency
423 424
            << "ms, fps: " << 1000.f / sample_latency
            << ", data type: " << DataTypeToString(data_type) << " ======";
L
luotao1 已提交
425 426
}

Y
Yan Chunwei 已提交
427 428 429 430 431 432 433
static bool IsFileExists(const std::string &path) {
  std::ifstream file(path);
  bool exists = file.is_open();
  file.close();
  return exists;
}

434 435
void RegisterAllCustomOperator();

436 437
void InitGflagsFromEnv();

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static inline double ToMegaBytes(size_t bytes) {
  return static_cast<double>(bytes) / (1 << 20);
}

static inline void DisplayMemoryInfo(platform::Place place,
                                     const std::string &hint) {
#ifdef PADDLE_WITH_CUDA
  // size_t free, total;
  // cudaSetDevice(place.GetDeviceId());
  // cudaMemGetInfo(&free, &total);
  // VLOG(1) << "[" << ToMegaBytes(total - free) << "MB/" << ToMegaBytes(total)
  // << "MB]";

  VLOG(1) << hint << " : [gpu current allocated memory: "
          << ToMegaBytes(paddle::memory::DeviceMemoryStatCurrentValue(
                 "Allocated", place.GetDeviceId()))
          << "MB], [gpu current reserved memory: "
          << ToMegaBytes(paddle::memory::DeviceMemoryStatCurrentValue(
                 "Reserved", place.GetDeviceId()))
          << "MB], [gpu peak allocated memory: "
          << ToMegaBytes(paddle::memory::DeviceMemoryStatPeakValue(
                 "Allocated", place.GetDeviceId()))
          << "MB], [gpu peak reserved memory: "
          << ToMegaBytes(paddle::memory::DeviceMemoryStatPeakValue(
                 "Reserved", place.GetDeviceId()))
          << "MB]";
#endif
  VLOG(1)
      << hint << " : [cpu current allocated memory: "
      << ToMegaBytes(paddle::memory::HostMemoryStatCurrentValue("Allocated", 0))
      << "MB], [cpu current reserved memory: "
      << ToMegaBytes(paddle::memory::HostMemoryStatCurrentValue("Reserved", 0))
      << "MB], [cpu peak allocated memory: "
      << ToMegaBytes(paddle::memory::HostMemoryStatPeakValue("Allocated", 0))
      << "MB], [cpu peak reserved memory: "
      << ToMegaBytes(paddle::memory::HostMemoryStatPeakValue("Reserved", 0))
      << "MB]";
}

477 478 479 480 481 482 483 484 485 486 487 488 489
static std::string Precision2String(AnalysisConfig::Precision precison) {
  if (precison == AnalysisConfig::Precision::kFloat32)
    return "fp32";
  else if (precison == AnalysisConfig::Precision::kHalf)
    return "fp16";
  else if (precison == AnalysisConfig::Precision::kInt8)
    return "int8";
  else if (precison == AnalysisConfig::Precision::kBf16)
    return "bf16";
  else
    return "none";
}

490 491
}  // namespace inference
}  // namespace paddle