helper.h 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

L
luotao1 已提交
17
#include <glog/logging.h>
18

Y
Yan Chunwei 已提交
19 20 21 22
#include <fstream>
#if !defined(_WIN32)
#include <sys/time.h>
#endif
23
#include <algorithm>
L
luotao1 已提交
24
#include <chrono>  // NOLINT
L
liuwei1031 已提交
25
#include <functional>
P
peizhilin 已提交
26
#include <iterator>
27
#include <numeric>
28 29 30
#include <sstream>
#include <string>
#include <vector>
W
wanghuancoder 已提交
31

32
#include "paddle/fluid/framework/data_type.h"
33
#include "paddle/fluid/inference/api/paddle_inference_api.h"
34
#include "paddle/fluid/memory/stats.h"
35
#include "paddle/fluid/platform/enforce.h"
36
#include "paddle/fluid/platform/place.h"
37
#include "paddle/fluid/string/printf.h"
38
#include "paddle/phi/backends/dynload/port.h"
39

40 41 42
extern std::string paddle::framework::DataTypeToString(
    const framework::proto::VarType::Type type);

43 44 45
namespace paddle {
namespace inference {

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
template <typename T>
constexpr PaddleDType PaddleTensorGetDType();

template <>
constexpr PaddleDType PaddleTensorGetDType<int32_t>() {
  return PaddleDType::INT32;
}

template <>
constexpr PaddleDType PaddleTensorGetDType<int64_t>() {
  return PaddleDType::INT64;
}

template <>
constexpr PaddleDType PaddleTensorGetDType<float>() {
  return PaddleDType::FLOAT32;
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
inline PaddleDType ConvertToPaddleDType(
    paddle::framework::proto::VarType::Type type) {
  if (type == paddle::framework::proto::VarType::FP32) {
    return PaddleDType::FLOAT32;
  } else if (type == paddle::framework::proto::VarType::INT64) {
    return PaddleDType::INT64;
  } else if (type == paddle::framework::proto::VarType::INT32) {
    return PaddleDType::INT32;
  } else if (type == paddle::framework::proto::VarType::UINT8) {
    return PaddleDType::UINT8;
  } else {
    PADDLE_THROW(paddle::platform::errors::Unimplemented(
        "The paddle dtype convert function only supports FLOAT32, INT64, INT32 "
        "and UINT8 now. But "
        "we get %d here.",
        static_cast<int>(type)));
    return PaddleDType::FLOAT32;
  }
}

84 85 86 87 88 89 90 91 92
inline bool IsFloatVar(framework::proto::VarType::Type t) {
  if (t == framework::proto::VarType::FP16 ||
      t == framework::proto::VarType::FP32 ||
      t == framework::proto::VarType::FP64 ||
      t == framework::proto::VarType::BF16)
    return true;
  return false;
}

93 94
using paddle::framework::DataTypeToString;

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
// Timer for timer
class Timer {
 public:
  std::chrono::high_resolution_clock::time_point start;
  std::chrono::high_resolution_clock::time_point startu;

  void tic() { start = std::chrono::high_resolution_clock::now(); }
  double toc() {
    startu = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> time_span =
        std::chrono::duration_cast<std::chrono::duration<double>>(startu -
                                                                  start);
    double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
    return used_time_ms;
  }
};

N
nhzlx 已提交
112 113 114 115 116
static int GetUniqueId() {
  static int id = 0;
  return id++;
}

117 118 119 120
static void split(const std::string &str,
                  char sep,
                  std::vector<std::string> *pieces,
                  bool ignore_null = true) {
121 122
  pieces->clear();
  if (str.empty()) {
123 124 125
    if (!ignore_null) {
      pieces->push_back(str);
    }
126 127 128 129 130 131 132 133 134 135 136 137 138
    return;
  }
  size_t pos = 0;
  size_t next = str.find(sep, pos);
  while (next != std::string::npos) {
    pieces->push_back(str.substr(pos, next - pos));
    pos = next + 1;
    next = str.find(sep, pos);
  }
  if (!str.substr(pos).empty()) {
    pieces->push_back(str.substr(pos));
  }
}
L
liuwei1031 已提交
139 140 141 142 143 144 145 146 147 148 149

template <typename T>
static T convert(const std::string &item,
                 std::function<T(const std::string &item)> func) {
  T res;
  try {
    res = func(item);
  } catch (std::invalid_argument &e) {
    std::string message =
        "invalid_argument exception when try to convert : " + item;
    LOG(ERROR) << message;
150 151
    PADDLE_THROW(platform::errors::InvalidArgument(
        "invalid_argument exception when try to convert %s.", item));
L
liuwei1031 已提交
152 153 154 155
  } catch (std::out_of_range &e) {
    std::string message =
        "out_of_range exception when try to convert : " + item;
    LOG(ERROR) << message;
156 157
    PADDLE_THROW(platform::errors::InvalidArgument(
        "out_of_range exception when try to convert %s.", item));
L
liuwei1031 已提交
158 159 160
  } catch (...) {
    std::string message = "unexpected exception when try to convert " + item;
    LOG(ERROR) << message;
161 162
    PADDLE_THROW(platform::errors::InvalidArgument(
        "unexpected exception when try to convert %s.", item));
L
liuwei1031 已提交
163 164 165 166
  }
  return res;
}

167 168
static void split_to_float(const std::string &str,
                           char sep,
169
                           std::vector<float> *fs) {
170 171
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
172 173 174
  std::transform(pieces.begin(),
                 pieces.end(),
                 std::back_inserter(*fs),
L
liuwei1031 已提交
175 176 177 178 179
                 [](const std::string &v) {
                   return convert<float>(v, [](const std::string &item) {
                     return std::stof(item);
                   });
                 });
180
}
181 182
static void split_to_int64(const std::string &str,
                           char sep,
L
luotao1 已提交
183 184 185
                           std::vector<int64_t> *is) {
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
186 187 188
  std::transform(pieces.begin(),
                 pieces.end(),
                 std::back_inserter(*is),
L
liuwei1031 已提交
189 190 191 192 193
                 [](const std::string &v) {
                   return convert<int64_t>(v, [](const std::string &item) {
                     return std::stoll(item);
                   });
                 });
L
luotao1 已提交
194
}
195 196
static void split_to_int(const std::string &str,
                         char sep,
T
Tao Luo 已提交
197 198 199
                         std::vector<int> *is) {
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
200 201 202
  std::transform(pieces.begin(),
                 pieces.end(),
                 std::back_inserter(*is),
L
liuwei1031 已提交
203 204 205 206 207
                 [](const std::string &v) {
                   return convert<int>(v, [](const std::string &item) {
                     return std::stoi(item);
                   });
                 });
L
luotao1 已提交
208
}
209 210 211 212 213 214 215 216 217 218
template <typename T>
std::string to_string(const std::vector<T> &vec) {
  std::stringstream ss;
  for (const auto &c : vec) {
    ss << c << " ";
  }
  return ss.str();
}
template <>
std::string to_string<std::vector<float>>(
219 220
    const std::vector<std::vector<float>> &vec);

221 222
template <>
std::string to_string<std::vector<std::vector<float>>>(
223 224
    const std::vector<std::vector<std::vector<float>>> &vec);

225 226 227 228 229
template <typename T>
int VecReduceToInt(const std::vector<T> &v) {
  return std::accumulate(v.begin(), v.end(), 1, [](T a, T b) { return a * b; });
}

230 231 232 233 234 235 236 237
template <typename T>
void CheckAssignedData(const std::vector<std::vector<T>> &data,
                       const int num_elems) {
  int num = 0;
  for (auto it = data.begin(); it != data.end(); ++it) {
    num += (*it).size();
  }
  PADDLE_ENFORCE_EQ(
238 239
      num,
      num_elems,
240 241 242 243 244
      platform::errors::OutOfRange(
          "The number of elements out of bounds. "
          "Expected number of elements = %d. But received %d. Suggested Fix: "
          "If the tensor is expected to assign %d elements, check the number "
          "of elements of your 'infer_data'.",
245 246 247
          num_elems,
          num,
          num_elems));
248 249
}

L
luotao1 已提交
250 251 252
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data) {
253
  // Assign buffer
254
  int num_elems = VecReduceToInt(tensor->shape);
255
  CheckAssignedData(data, num_elems);
256
  tensor->data.Resize(sizeof(T) * num_elems);
257 258
  int c = 0;
  for (const auto &f : data) {
L
luotao1 已提交
259 260 261
    for (T v : f) {
      static_cast<T *>(tensor->data.data())[c++] = v;
    }
262 263 264
  }
}

T
Tao Luo 已提交
265 266 267 268 269 270 271 272 273 274
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data,
                             const std::vector<size_t> &lod) {
  int size = lod[lod.size() - 1];
  tensor->shape.assign({size, 1});
  tensor->lod.assign({lod});
  TensorAssignData(tensor, data);
}

275
template <typename T>
L
luotao1 已提交
276 277
static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
                                     const std::vector<std::vector<T>> &data) {
278 279 280 281 282 283 284
  auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
  int c = 0;
  for (const auto &f : data) {
    for (T v : f) {
      ptr[c++] = v;
    }
  }
L
luotao1 已提交
285 286 287 288 289 290 291 292 293
}

template <typename T>
static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
                                     const PaddleBuf &data) {
  auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
  for (size_t i = 0; i < data.length() / sizeof(T); i++) {
    ptr[i] = *(reinterpret_cast<T *>(data.data()) + i);
  }
294 295
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static bool CompareTensor(const PaddleTensor &a, const PaddleTensor &b) {
  if (a.dtype != b.dtype) {
    LOG(ERROR) << "dtype not match";
    return false;
  }

  if (a.lod.size() != b.lod.size()) {
    LOG(ERROR) << "lod not match";
    return false;
  }
  for (size_t i = 0; i < a.lod.size(); i++) {
    if (a.lod[i].size() != b.lod[i].size()) {
      LOG(ERROR) << "lod not match";
      return false;
    }
    for (size_t j = 0; j < a.lod[i].size(); j++) {
      if (a.lod[i][j] != b.lod[i][j]) {
        LOG(ERROR) << "lod not match";
        return false;
      }
    }
  }

  if (a.shape.size() != b.shape.size()) {
    LOG(INFO) << "shape not match";
    return false;
  }
  for (size_t i = 0; i < a.shape.size(); i++) {
    if (a.shape[i] != b.shape[i]) {
      LOG(ERROR) << "shape not match";
      return false;
    }
  }

  auto *adata = static_cast<float *>(a.data.data());
  auto *bdata = static_cast<float *>(b.data.data());
  for (int i = 0; i < VecReduceToInt(a.shape); i++) {
    if (adata[i] != bdata[i]) {
      LOG(ERROR) << "data not match";
      return false;
    }
  }
  return true;
}

Y
Yan Chunwei 已提交
341
static std::string DescribeTensor(const PaddleTensor &tensor,
342
                                  int max_num_of_data UNUSED = 15) {
L
luotao1 已提交
343 344 345 346 347 348 349 350 351 352
  std::stringstream os;
  os << "Tensor [" << tensor.name << "]\n";
  os << " - type: ";
  switch (tensor.dtype) {
    case PaddleDType::FLOAT32:
      os << "float32";
      break;
    case PaddleDType::INT64:
      os << "int64";
      break;
353 354 355
    case PaddleDType::INT32:
      os << "int32";
      break;
L
luotao1 已提交
356 357 358 359 360 361 362 363 364 365 366
    default:
      os << "unset";
  }
  os << '\n';

  os << " - shape: " << to_string(tensor.shape) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod) {
    os << to_string(l) << "; ";
  }
  os << "\n";
T
tensor-tang 已提交
367 368
  os << " - memory length: " << tensor.data.length();
  os << "\n";
L
luotao1 已提交
369

T
tensor-tang 已提交
370
  os << " - data: ";
371
  int dim = VecReduceToInt(tensor.shape);
T
tensor-tang 已提交
372
  float *pdata = static_cast<float *>(tensor.data.data());
L
luotao1 已提交
373
  for (int i = 0; i < dim; i++) {
T
tensor-tang 已提交
374
    os << pdata[i] << " ";
L
luotao1 已提交
375 376 377 378 379
  }
  os << '\n';
  return os.str();
}

380 381 382 383 384 385 386 387 388 389 390 391 392
static std::string DescribeZeroCopyTensor(const ZeroCopyTensor &tensor) {
  std::stringstream os;
  os << "Tensor [" << tensor.name() << "]\n";

  os << " - shape: " << to_string(tensor.shape()) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod()) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  PaddlePlace place;
  int size;
  const auto *data = tensor.data<float>(&place, &size);
T
tensor-tang 已提交
393 394 395
  os << " - numel: " << size;
  os << "\n";
  os << " - data: ";
396 397 398 399 400 401
  for (int i = 0; i < size; i++) {
    os << data[i] << " ";
  }
  return os.str();
}

402 403 404 405 406 407
static void PrintTime(int batch_size,
                      int repeat,
                      int num_threads,
                      int tid,
                      double batch_latency,
                      int epoch = 1,
408 409
                      const framework::proto::VarType::Type data_type =
                          framework::proto::VarType::FP32) {
410
  PADDLE_ENFORCE_GT(
411 412
      batch_size,
      0,
413
      platform::errors::InvalidArgument("Non-positive batch size."));
414 415
  double sample_latency = batch_latency / batch_size;
  LOG(INFO) << "====== threads: " << num_threads << ", thread id: " << tid
S
Sylwester Fraczek 已提交
416
            << " ======";
417
  LOG(INFO) << "====== batch size: " << batch_size << ", iterations: " << epoch
418 419 420 421
            << ", repetitions: " << repeat << " ======";
  LOG(INFO) << "====== batch latency: " << batch_latency
            << "ms, number of samples: " << batch_size * epoch
            << ", sample latency: " << sample_latency
422 423
            << "ms, fps: " << 1000.f / sample_latency
            << ", data type: " << DataTypeToString(data_type) << " ======";
L
luotao1 已提交
424 425
}

Y
Yan Chunwei 已提交
426 427 428 429 430 431 432
static bool IsFileExists(const std::string &path) {
  std::ifstream file(path);
  bool exists = file.is_open();
  file.close();
  return exists;
}

433 434
void RegisterAllCustomOperator();

435 436
void InitGflagsFromEnv();

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
static inline double ToMegaBytes(size_t bytes) {
  return static_cast<double>(bytes) / (1 << 20);
}

static inline void DisplayMemoryInfo(platform::Place place,
                                     const std::string &hint) {
#ifdef PADDLE_WITH_CUDA
  // size_t free, total;
  // cudaSetDevice(place.GetDeviceId());
  // cudaMemGetInfo(&free, &total);
  // VLOG(1) << "[" << ToMegaBytes(total - free) << "MB/" << ToMegaBytes(total)
  // << "MB]";

  VLOG(1) << hint << " : [gpu current allocated memory: "
          << ToMegaBytes(paddle::memory::DeviceMemoryStatCurrentValue(
                 "Allocated", place.GetDeviceId()))
          << "MB], [gpu current reserved memory: "
          << ToMegaBytes(paddle::memory::DeviceMemoryStatCurrentValue(
                 "Reserved", place.GetDeviceId()))
          << "MB], [gpu peak allocated memory: "
          << ToMegaBytes(paddle::memory::DeviceMemoryStatPeakValue(
                 "Allocated", place.GetDeviceId()))
          << "MB], [gpu peak reserved memory: "
          << ToMegaBytes(paddle::memory::DeviceMemoryStatPeakValue(
                 "Reserved", place.GetDeviceId()))
          << "MB]";
#endif
  VLOG(1)
      << hint << " : [cpu current allocated memory: "
      << ToMegaBytes(paddle::memory::HostMemoryStatCurrentValue("Allocated", 0))
      << "MB], [cpu current reserved memory: "
      << ToMegaBytes(paddle::memory::HostMemoryStatCurrentValue("Reserved", 0))
      << "MB], [cpu peak allocated memory: "
      << ToMegaBytes(paddle::memory::HostMemoryStatPeakValue("Allocated", 0))
      << "MB], [cpu peak reserved memory: "
      << ToMegaBytes(paddle::memory::HostMemoryStatPeakValue("Reserved", 0))
      << "MB]";
}

476 477
}  // namespace inference
}  // namespace paddle