helper.h 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

L
luotao1 已提交
17
#include <glog/logging.h>
P
peizhilin 已提交
18
#if !defined(_WIN32)
19
#include <sys/time.h>
P
peizhilin 已提交
20 21
#else
#endif
22 23

#include <iterator>
24
#include <algorithm>
L
luotao1 已提交
25
#include <chrono>  // NOLINT
26
#include <numeric>
27 28 29
#include <sstream>
#include <string>
#include <vector>
30
#include "paddle/fluid/inference/api/paddle_inference_api.h"
31
#include "paddle/fluid/string/printf.h"
32 33 34 35

namespace paddle {
namespace inference {

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
// Timer for timer
class Timer {
 public:
  std::chrono::high_resolution_clock::time_point start;
  std::chrono::high_resolution_clock::time_point startu;

  void tic() { start = std::chrono::high_resolution_clock::now(); }
  double toc() {
    startu = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> time_span =
        std::chrono::duration_cast<std::chrono::duration<double>>(startu -
                                                                  start);
    double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
    return used_time_ms;
  }
};

53 54
static void split(const std::string &str, char sep,
                  std::vector<std::string> *pieces) {
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  pieces->clear();
  if (str.empty()) {
    return;
  }
  size_t pos = 0;
  size_t next = str.find(sep, pos);
  while (next != std::string::npos) {
    pieces->push_back(str.substr(pos, next - pos));
    pos = next + 1;
    next = str.find(sep, pos);
  }
  if (!str.substr(pos).empty()) {
    pieces->push_back(str.substr(pos));
  }
}
70 71
static void split_to_float(const std::string &str, char sep,
                           std::vector<float> *fs) {
72 73 74 75 76
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
  std::transform(pieces.begin(), pieces.end(), std::back_inserter(*fs),
                 [](const std::string &v) { return std::stof(v); });
}
L
luotao1 已提交
77 78 79 80 81 82 83
static void split_to_int64(const std::string &str, char sep,
                           std::vector<int64_t> *is) {
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
  std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is),
                 [](const std::string &v) { return std::stoi(v); });
}
84 85 86 87 88 89 90 91 92 93
template <typename T>
std::string to_string(const std::vector<T> &vec) {
  std::stringstream ss;
  for (const auto &c : vec) {
    ss << c << " ";
  }
  return ss.str();
}
template <>
std::string to_string<std::vector<float>>(
94 95
    const std::vector<std::vector<float>> &vec);

96 97
template <>
std::string to_string<std::vector<std::vector<float>>>(
98 99
    const std::vector<std::vector<std::vector<float>>> &vec);

100 101 102 103 104
template <typename T>
int VecReduceToInt(const std::vector<T> &v) {
  return std::accumulate(v.begin(), v.end(), 1, [](T a, T b) { return a * b; });
}

L
luotao1 已提交
105 106 107
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data) {
108
  // Assign buffer
109 110
  int num_elems = VecReduceToInt(tensor->shape);
  tensor->data.Resize(sizeof(T) * num_elems);
111 112
  int c = 0;
  for (const auto &f : data) {
L
luotao1 已提交
113 114 115
    for (T v : f) {
      static_cast<T *>(tensor->data.data())[c++] = v;
    }
116 117 118
  }
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132
template <typename T>
static int ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
                                    const std::vector<std::vector<T>> &data) {
  int size{0};
  auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
  int c = 0;
  for (const auto &f : data) {
    for (T v : f) {
      ptr[c++] = v;
    }
  }
  return size;
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
static bool CompareTensor(const PaddleTensor &a, const PaddleTensor &b) {
  if (a.dtype != b.dtype) {
    LOG(ERROR) << "dtype not match";
    return false;
  }

  if (a.lod.size() != b.lod.size()) {
    LOG(ERROR) << "lod not match";
    return false;
  }
  for (size_t i = 0; i < a.lod.size(); i++) {
    if (a.lod[i].size() != b.lod[i].size()) {
      LOG(ERROR) << "lod not match";
      return false;
    }
    for (size_t j = 0; j < a.lod[i].size(); j++) {
      if (a.lod[i][j] != b.lod[i][j]) {
        LOG(ERROR) << "lod not match";
        return false;
      }
    }
  }

  if (a.shape.size() != b.shape.size()) {
    LOG(INFO) << "shape not match";
    return false;
  }
  for (size_t i = 0; i < a.shape.size(); i++) {
    if (a.shape[i] != b.shape[i]) {
      LOG(ERROR) << "shape not match";
      return false;
    }
  }

  auto *adata = static_cast<float *>(a.data.data());
  auto *bdata = static_cast<float *>(b.data.data());
  for (int i = 0; i < VecReduceToInt(a.shape); i++) {
    if (adata[i] != bdata[i]) {
      LOG(ERROR) << "data not match";
      return false;
    }
  }
  return true;
}

178
static std::string DescribeTensor(const PaddleTensor &tensor) {
L
luotao1 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  std::stringstream os;
  os << "Tensor [" << tensor.name << "]\n";
  os << " - type: ";
  switch (tensor.dtype) {
    case PaddleDType::FLOAT32:
      os << "float32";
      break;
    case PaddleDType::INT64:
      os << "int64";
      break;
    default:
      os << "unset";
  }
  os << '\n';

  os << " - shape: " << to_string(tensor.shape) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  os << " - data: ";

202
  int dim = VecReduceToInt(tensor.shape);
L
luotao1 已提交
203 204 205 206 207 208 209
  for (int i = 0; i < dim; i++) {
    os << static_cast<float *>(tensor.data.data())[i] << " ";
  }
  os << '\n';
  return os.str();
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static std::string DescribeZeroCopyTensor(const ZeroCopyTensor &tensor) {
  std::stringstream os;
  os << "Tensor [" << tensor.name() << "]\n";

  os << " - shape: " << to_string(tensor.shape()) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod()) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  os << " - data: ";
  PaddlePlace place;
  int size;
  const auto *data = tensor.data<float>(&place, &size);
  for (int i = 0; i < size; i++) {
    os << data[i] << " ";
  }
  return os.str();
}

230 231
static void PrintTime(int batch_size, int repeat, int num_threads, int tid,
                      double latency, int epoch = 1) {
232
  LOG(INFO) << "====== batch_size: " << batch_size << ", repeat: " << repeat
L
luotao1 已提交
233
            << ", threads: " << num_threads << ", thread id: " << tid
S
Sylwester Fraczek 已提交
234 235
            << ", latency: " << latency << "ms, fps: " << 1 / (latency / 1000.f)
            << " ======";
L
luotao1 已提交
236 237 238 239 240 241
  if (epoch > 1) {
    int samples = batch_size * epoch;
    LOG(INFO) << "====== sample number: " << samples
              << ", average latency of each sample: " << latency / samples
              << "ms ======";
  }
L
luotao1 已提交
242 243
}

244 245
}  // namespace inference
}  // namespace paddle