helper.h 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

L
luotao1 已提交
17
#include <glog/logging.h>
18

Y
Yan Chunwei 已提交
19 20 21 22
#include <fstream>
#if !defined(_WIN32)
#include <sys/time.h>
#endif
23
#include <algorithm>
L
luotao1 已提交
24
#include <chrono>  // NOLINT
L
liuwei1031 已提交
25
#include <functional>
P
peizhilin 已提交
26
#include <iterator>
27
#include <numeric>
28 29 30
#include <sstream>
#include <string>
#include <vector>
W
wanghuancoder 已提交
31

32
#include "paddle/fluid/framework/data_type.h"
33
#include "paddle/fluid/inference/api/paddle_inference_api.h"
34
#include "paddle/fluid/platform/enforce.h"
35
#include "paddle/fluid/string/printf.h"
36
#include "paddle/phi/backends/dynload/port.h"
37

38 39 40
extern std::string paddle::framework::DataTypeToString(
    const framework::proto::VarType::Type type);

41 42 43
namespace paddle {
namespace inference {

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
template <typename T>
constexpr PaddleDType PaddleTensorGetDType();

template <>
constexpr PaddleDType PaddleTensorGetDType<int32_t>() {
  return PaddleDType::INT32;
}

template <>
constexpr PaddleDType PaddleTensorGetDType<int64_t>() {
  return PaddleDType::INT64;
}

template <>
constexpr PaddleDType PaddleTensorGetDType<float>() {
  return PaddleDType::FLOAT32;
}

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
inline PaddleDType ConvertToPaddleDType(
    paddle::framework::proto::VarType::Type type) {
  if (type == paddle::framework::proto::VarType::FP32) {
    return PaddleDType::FLOAT32;
  } else if (type == paddle::framework::proto::VarType::INT64) {
    return PaddleDType::INT64;
  } else if (type == paddle::framework::proto::VarType::INT32) {
    return PaddleDType::INT32;
  } else if (type == paddle::framework::proto::VarType::UINT8) {
    return PaddleDType::UINT8;
  } else {
    PADDLE_THROW(paddle::platform::errors::Unimplemented(
        "The paddle dtype convert function only supports FLOAT32, INT64, INT32 "
        "and UINT8 now. But "
        "we get %d here.",
        static_cast<int>(type)));
    return PaddleDType::FLOAT32;
  }
}

82 83
using paddle::framework::DataTypeToString;

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
// Timer for timer
class Timer {
 public:
  std::chrono::high_resolution_clock::time_point start;
  std::chrono::high_resolution_clock::time_point startu;

  void tic() { start = std::chrono::high_resolution_clock::now(); }
  double toc() {
    startu = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> time_span =
        std::chrono::duration_cast<std::chrono::duration<double>>(startu -
                                                                  start);
    double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
    return used_time_ms;
  }
};

N
nhzlx 已提交
101 102 103 104 105
static int GetUniqueId() {
  static int id = 0;
  return id++;
}

106
static void split(const std::string &str, char sep,
107
                  std::vector<std::string> *pieces, bool ignore_null = true) {
108 109
  pieces->clear();
  if (str.empty()) {
110 111 112
    if (!ignore_null) {
      pieces->push_back(str);
    }
113 114 115 116 117 118 119 120 121 122 123 124 125
    return;
  }
  size_t pos = 0;
  size_t next = str.find(sep, pos);
  while (next != std::string::npos) {
    pieces->push_back(str.substr(pos, next - pos));
    pos = next + 1;
    next = str.find(sep, pos);
  }
  if (!str.substr(pos).empty()) {
    pieces->push_back(str.substr(pos));
  }
}
L
liuwei1031 已提交
126 127 128 129 130 131 132 133 134 135 136

template <typename T>
static T convert(const std::string &item,
                 std::function<T(const std::string &item)> func) {
  T res;
  try {
    res = func(item);
  } catch (std::invalid_argument &e) {
    std::string message =
        "invalid_argument exception when try to convert : " + item;
    LOG(ERROR) << message;
137 138
    PADDLE_THROW(platform::errors::InvalidArgument(
        "invalid_argument exception when try to convert %s.", item));
L
liuwei1031 已提交
139 140 141 142
  } catch (std::out_of_range &e) {
    std::string message =
        "out_of_range exception when try to convert : " + item;
    LOG(ERROR) << message;
143 144
    PADDLE_THROW(platform::errors::InvalidArgument(
        "out_of_range exception when try to convert %s.", item));
L
liuwei1031 已提交
145 146 147
  } catch (...) {
    std::string message = "unexpected exception when try to convert " + item;
    LOG(ERROR) << message;
148 149
    PADDLE_THROW(platform::errors::InvalidArgument(
        "unexpected exception when try to convert %s.", item));
L
liuwei1031 已提交
150 151 152 153
  }
  return res;
}

154 155
static void split_to_float(const std::string &str, char sep,
                           std::vector<float> *fs) {
156 157 158
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
  std::transform(pieces.begin(), pieces.end(), std::back_inserter(*fs),
L
liuwei1031 已提交
159 160 161 162 163
                 [](const std::string &v) {
                   return convert<float>(v, [](const std::string &item) {
                     return std::stof(item);
                   });
                 });
164
}
L
luotao1 已提交
165 166 167 168 169
static void split_to_int64(const std::string &str, char sep,
                           std::vector<int64_t> *is) {
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
  std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is),
L
liuwei1031 已提交
170 171 172 173 174
                 [](const std::string &v) {
                   return convert<int64_t>(v, [](const std::string &item) {
                     return std::stoll(item);
                   });
                 });
L
luotao1 已提交
175
}
T
Tao Luo 已提交
176 177 178 179
static void split_to_int(const std::string &str, char sep,
                         std::vector<int> *is) {
  std::vector<std::string> pieces;
  split(str, sep, &pieces);
L
luotao1 已提交
180
  std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is),
L
liuwei1031 已提交
181 182 183 184 185
                 [](const std::string &v) {
                   return convert<int>(v, [](const std::string &item) {
                     return std::stoi(item);
                   });
                 });
L
luotao1 已提交
186
}
187 188 189 190 191 192 193 194 195 196
template <typename T>
std::string to_string(const std::vector<T> &vec) {
  std::stringstream ss;
  for (const auto &c : vec) {
    ss << c << " ";
  }
  return ss.str();
}
template <>
std::string to_string<std::vector<float>>(
197 198
    const std::vector<std::vector<float>> &vec);

199 200
template <>
std::string to_string<std::vector<std::vector<float>>>(
201 202
    const std::vector<std::vector<std::vector<float>>> &vec);

203 204 205 206 207
template <typename T>
int VecReduceToInt(const std::vector<T> &v) {
  return std::accumulate(v.begin(), v.end(), 1, [](T a, T b) { return a * b; });
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
template <typename T>
void CheckAssignedData(const std::vector<std::vector<T>> &data,
                       const int num_elems) {
  int num = 0;
  for (auto it = data.begin(); it != data.end(); ++it) {
    num += (*it).size();
  }
  PADDLE_ENFORCE_EQ(
      num, num_elems,
      platform::errors::OutOfRange(
          "The number of elements out of bounds. "
          "Expected number of elements = %d. But received %d. Suggested Fix: "
          "If the tensor is expected to assign %d elements, check the number "
          "of elements of your 'infer_data'.",
          num_elems, num, num_elems));
}

L
luotao1 已提交
225 226 227
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data) {
228
  // Assign buffer
229
  int num_elems = VecReduceToInt(tensor->shape);
230
  CheckAssignedData(data, num_elems);
231
  tensor->data.Resize(sizeof(T) * num_elems);
232 233
  int c = 0;
  for (const auto &f : data) {
L
luotao1 已提交
234 235 236
    for (T v : f) {
      static_cast<T *>(tensor->data.data())[c++] = v;
    }
237 238 239
  }
}

T
Tao Luo 已提交
240 241 242 243 244 245 246 247 248 249
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
                             const std::vector<std::vector<T>> &data,
                             const std::vector<size_t> &lod) {
  int size = lod[lod.size() - 1];
  tensor->shape.assign({size, 1});
  tensor->lod.assign({lod});
  TensorAssignData(tensor, data);
}

250
template <typename T>
L
luotao1 已提交
251 252
static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
                                     const std::vector<std::vector<T>> &data) {
253 254 255 256 257 258 259
  auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
  int c = 0;
  for (const auto &f : data) {
    for (T v : f) {
      ptr[c++] = v;
    }
  }
L
luotao1 已提交
260 261 262 263 264 265 266 267 268
}

template <typename T>
static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
                                     const PaddleBuf &data) {
  auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
  for (size_t i = 0; i < data.length() / sizeof(T); i++) {
    ptr[i] = *(reinterpret_cast<T *>(data.data()) + i);
  }
269 270
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static bool CompareTensor(const PaddleTensor &a, const PaddleTensor &b) {
  if (a.dtype != b.dtype) {
    LOG(ERROR) << "dtype not match";
    return false;
  }

  if (a.lod.size() != b.lod.size()) {
    LOG(ERROR) << "lod not match";
    return false;
  }
  for (size_t i = 0; i < a.lod.size(); i++) {
    if (a.lod[i].size() != b.lod[i].size()) {
      LOG(ERROR) << "lod not match";
      return false;
    }
    for (size_t j = 0; j < a.lod[i].size(); j++) {
      if (a.lod[i][j] != b.lod[i][j]) {
        LOG(ERROR) << "lod not match";
        return false;
      }
    }
  }

  if (a.shape.size() != b.shape.size()) {
    LOG(INFO) << "shape not match";
    return false;
  }
  for (size_t i = 0; i < a.shape.size(); i++) {
    if (a.shape[i] != b.shape[i]) {
      LOG(ERROR) << "shape not match";
      return false;
    }
  }

  auto *adata = static_cast<float *>(a.data.data());
  auto *bdata = static_cast<float *>(b.data.data());
  for (int i = 0; i < VecReduceToInt(a.shape); i++) {
    if (adata[i] != bdata[i]) {
      LOG(ERROR) << "data not match";
      return false;
    }
  }
  return true;
}

Y
Yan Chunwei 已提交
316 317
static std::string DescribeTensor(const PaddleTensor &tensor,
                                  int max_num_of_data = 15) {
L
luotao1 已提交
318 319 320 321 322 323 324 325 326 327
  std::stringstream os;
  os << "Tensor [" << tensor.name << "]\n";
  os << " - type: ";
  switch (tensor.dtype) {
    case PaddleDType::FLOAT32:
      os << "float32";
      break;
    case PaddleDType::INT64:
      os << "int64";
      break;
328 329 330
    case PaddleDType::INT32:
      os << "int32";
      break;
L
luotao1 已提交
331 332 333 334 335 336 337 338 339 340 341
    default:
      os << "unset";
  }
  os << '\n';

  os << " - shape: " << to_string(tensor.shape) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod) {
    os << to_string(l) << "; ";
  }
  os << "\n";
T
tensor-tang 已提交
342 343
  os << " - memory length: " << tensor.data.length();
  os << "\n";
L
luotao1 已提交
344

T
tensor-tang 已提交
345
  os << " - data: ";
346
  int dim = VecReduceToInt(tensor.shape);
T
tensor-tang 已提交
347
  float *pdata = static_cast<float *>(tensor.data.data());
L
luotao1 已提交
348
  for (int i = 0; i < dim; i++) {
T
tensor-tang 已提交
349
    os << pdata[i] << " ";
L
luotao1 已提交
350 351 352 353 354
  }
  os << '\n';
  return os.str();
}

355 356 357 358 359 360 361 362 363 364 365 366 367
static std::string DescribeZeroCopyTensor(const ZeroCopyTensor &tensor) {
  std::stringstream os;
  os << "Tensor [" << tensor.name() << "]\n";

  os << " - shape: " << to_string(tensor.shape()) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod()) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  PaddlePlace place;
  int size;
  const auto *data = tensor.data<float>(&place, &size);
T
tensor-tang 已提交
368 369 370
  os << " - numel: " << size;
  os << "\n";
  os << " - data: ";
371 372 373 374 375 376
  for (int i = 0; i < size; i++) {
    os << data[i] << " ";
  }
  return os.str();
}

377
static void PrintTime(int batch_size, int repeat, int num_threads, int tid,
378 379 380
                      double batch_latency, int epoch = 1,
                      const framework::proto::VarType::Type data_type =
                          framework::proto::VarType::FP32) {
381 382 383
  PADDLE_ENFORCE_GT(
      batch_size, 0,
      platform::errors::InvalidArgument("Non-positive batch size."));
384 385
  double sample_latency = batch_latency / batch_size;
  LOG(INFO) << "====== threads: " << num_threads << ", thread id: " << tid
S
Sylwester Fraczek 已提交
386
            << " ======";
387
  LOG(INFO) << "====== batch size: " << batch_size << ", iterations: " << epoch
388 389 390 391
            << ", repetitions: " << repeat << " ======";
  LOG(INFO) << "====== batch latency: " << batch_latency
            << "ms, number of samples: " << batch_size * epoch
            << ", sample latency: " << sample_latency
392 393
            << "ms, fps: " << 1000.f / sample_latency
            << ", data type: " << DataTypeToString(data_type) << " ======";
L
luotao1 已提交
394 395
}

Y
Yan Chunwei 已提交
396 397 398 399 400 401 402
static bool IsFileExists(const std::string &path) {
  std::ifstream file(path);
  bool exists = file.is_open();
  file.close();
  return exists;
}

403 404
void RegisterAllCustomOperator();

405 406
}  // namespace inference
}  // namespace paddle