learning_rate_scheduler.py 20.7 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23
import math
Q
qingqing01 已提交
24
import numbers
25

26
import paddle
27 28 29
from . import control_flow
from . import nn
from . import tensor
30
from ..framework import default_main_program, Parameter, unique_name, name_scope
Q
qingqing01 已提交
31
from ..framework import Variable
J
Jiabin Yang 已提交
32
from ..framework import _non_static_mode
M
minqiyang 已提交
33
from ..dygraph import learning_rate_scheduler as imperate_lr
34
from ..data_feeder import check_variable_and_dtype, check_type
Q
Qiao Longfei 已提交
35

36
__all__ = [
37 38 39 40 41 42 43 44
    'exponential_decay',
    'natural_exp_decay',
    'inverse_time_decay',
    'polynomial_decay',
    'piecewise_decay',
    'noam_decay',
    'cosine_decay',
    'linear_lr_warmup',
45
]
Q
Qiao Longfei 已提交
46 47


48
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
49
    # the first global step is zero in learning rate decay
50
    global_step = nn.autoincreased_step_counter(
51 52
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1
    )
53
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
54 55 56
    return global_step


57
def noam_decay(d_model, warmup_steps, learning_rate=1.0):
Y
yuyang18 已提交
58
    """
S
swtkiwi 已提交
59

Y
yuyang18 已提交
60 61
    Noam decay method. The numpy implementation of noam decay as follows.

X
xiaoting 已提交
62
    .. code-block:: python
63

64
      import paddle.fluid as fluid
X
xiaoting 已提交
65 66
      import numpy as np
      # set hyper parameters
67
      base_lr = 0.01
X
xiaoting 已提交
68 69 70 71
      d_model = 2
      current_steps = 20
      warmup_steps = 200
      # compute
72
      lr_value = base_lr * np.power(d_model, -0.5) * np.min([
X
xiaoting 已提交
73 74
                              np.power(current_steps, -0.5),
                              np.power(warmup_steps, -1.5) * current_steps])
Y
yuyang18 已提交
75 76 77

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
78 79 80

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
81

82 83
        warmup_steps(Variable): A super parameter.

84 85 86 87
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0

88 89
    Returns:
        The decayed learning rate.
X
xiaoting 已提交
90 91 92
    Examples:
        .. code-block:: python

93
          import paddle.fluid as fluid
X
xiaoting 已提交
94 95 96 97
          warmup_steps = 100
          learning_rate = 0.01
          lr = fluid.layers.learning_rate_scheduler.noam_decay(
                         1/(warmup_steps *(learning_rate ** 2)),
98 99
                         warmup_steps,
                         learning_rate)
100
    """
101
    with default_main_program()._lr_schedule_guard():
J
Jiabin Yang 已提交
102
        if _non_static_mode():
103 104 105
            decay = imperate_lr.NoamDecay(
                d_model, warmup_steps, learning_rate=learning_rate
            )
M
minqiyang 已提交
106 107 108
            return decay
        else:
            global_step = _decay_step_counter(1)
F
fengjiayi 已提交
109

M
minqiyang 已提交
110 111
            a = global_step**-0.5
            b = (warmup_steps**-1.5) * global_step
112
            lr_value = learning_rate * (d_model**-0.5) * paddle.minimum(a, b)
113

M
minqiyang 已提交
114
            return lr_value
115 116


Y
Yu Yang 已提交
117
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
118
    """
S
swtkiwi 已提交
119

120
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
121

122 123
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
124 125
    'decay_rate' every 'decay_steps' steps.

T
tianshuo78520a 已提交
126
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
127

F
fengjiayi 已提交
128 129 130 131
    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
132 133

    Args:
134
        learning_rate(Variable|float): The initial learning rate. It should be a Variable
K
Kaipeng Deng 已提交
135 136 137
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
138
        staircase(bool): If True, decay the learning rate at discrete intervals, which
K
Kaipeng Deng 已提交
139 140 141
                         means the learning rate will be decayed by `decay_rate` every
                         `decay_steps`. If False, learning rate will be decayed continuously
                         and following the formula above. Default: False
Q
Qiao Longfei 已提交
142 143

    Returns:
K
Kaipeng Deng 已提交
144
        Variable: The decayed learning rate. The data type is float32.
F
fengjiayi 已提交
145 146 147 148

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
149
          import paddle.fluid as fluid
150 151 152
          import paddle

          paddle.enable_static()
F
fengjiayi 已提交
153 154
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
155 156 157 158 159
              learning_rate=fluid.layers.exponential_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
F
fengjiayi 已提交
160

Q
Qiao Longfei 已提交
161
    """
162
    with default_main_program()._lr_schedule_guard():
J
Jiabin Yang 已提交
163
        if _non_static_mode():
164 165 166
            decay = imperate_lr.ExponentialDecay(
                learning_rate, decay_steps, decay_rate, staircase
            )
167 168 169
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
170

171 172
            div_res = global_step / decay_steps
            if staircase:
173
                div_res = paddle.floor(div_res)
174
            decayed_lr = learning_rate * (decay_rate**div_res)
175

176
            return decayed_lr
Q
Qiao Longfei 已提交
177 178


Y
Yu Yang 已提交
179
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
S
swtkiwi 已提交
180 181
    """

182
    Applies natural exponential decay to the initial learning rate.
Q
Qiao Longfei 已提交
183

184 185 186
        When training a model, it is often recommended to lower the learning rate as the
        training progresses. By using this function, the learning rate will be decayed by
        natural exponential power 'decay_rate' every 'decay_steps' steps.
K
Kaipeng Deng 已提交
187

188
        Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
189

190 191 192 193
        >>> if not staircase:
        >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
        >>> else:
        >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
Y
Yu Yang 已提交
194

195 196 197 198 199 200 201 202 203
        Args:
            learning_rate(Variable|float): The initial learning rate. It should be a Variable
                                           or a float
            decay_steps(int): The learning rate decay steps. See the decay computation above.
            decay_rate(float): The learning rate decay rate. See the decay computation above.
            staircase(bool): If True, decay the learning rate at discrete intervals, which
                             means the learning rate will be decayed by natural exponential power
                             `decay_rate` every `decay_steps`. If False, learning rate will be
                             decayed continuously and following the formula above. Default: False
Q
Qiao Longfei 已提交
204

205 206
        Returns:
            The decayed learning rate. The data type is float32.
K
Kaipeng Deng 已提交
207

208 209
        Examples:
            .. code-block:: python
K
Kaipeng Deng 已提交
210

211 212
              import paddle.fluid as fluid
              import paddle
213

214 215 216 217 218 219 220 221
              paddle.enable_static()
              base_lr = 0.1
              sgd_optimizer = fluid.optimizer.SGD(
                  learning_rate=fluid.layers.natural_exp_decay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True))
K
Kaipeng Deng 已提交
222

Q
Qiao Longfei 已提交
223
    """
224
    with default_main_program()._lr_schedule_guard():
J
Jiabin Yang 已提交
225
        if _non_static_mode():
226 227 228
            decay = imperate_lr.NaturalExpDecay(
                learning_rate, decay_steps, decay_rate, staircase
            )
229 230 231
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
232

233 234
            div_res = global_step / decay_steps
            if staircase:
235 236
                div_res = paddle.floor(div_res)
            decayed_lr = learning_rate * paddle.exp(-1 * decay_rate * div_res)
237

238
            return decayed_lr
Q
Qiao Longfei 已提交
239 240


Y
Yu Yang 已提交
241
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
242
    """
S
swtkiwi 已提交
243

F
fengjiayi 已提交
244
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
245

246 247
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
248
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
249

T
tianshuo78520a 已提交
250
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
251

F
fengjiayi 已提交
252
    >>> if staircase == True:
Y
Yu Yang 已提交
253 254 255 256
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
257
    Args:
258
        learning_rate(Variable|float): The initial learning rate. It should be a Variable
K
Kaipeng Deng 已提交
259 260 261
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
262 263 264
        staircase(bool): If True, decay the learning rate at discrete intervals, which
                         means the learning rate will be decayed by `decay_rate` times
                         every `decay_steps`. If False, learning rate will be decayed
K
Kaipeng Deng 已提交
265
                         continuously and following the formula above. Default: False
Q
Qiao Longfei 已提交
266 267

    Returns:
K
Kaipeng Deng 已提交
268
        Variable: The decayed learning rate. The data type is float32.
F
fengjiayi 已提交
269 270 271 272

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
273
          import paddle.fluid as fluid
274 275
          import paddle
          paddle.enable_static()
F
fengjiayi 已提交
276 277
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
278 279 280 281 282
              learning_rate=fluid.layers.inverse_time_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
Q
Qiao Longfei 已提交
283
    """
284
    with default_main_program()._lr_schedule_guard():
J
Jiabin Yang 已提交
285
        if _non_static_mode():
286 287 288
            decay = imperate_lr.InverseTimeDecay(
                learning_rate, decay_steps, decay_rate, staircase
            )
289 290 291
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
292

293 294
            div_res = global_step / decay_steps
            if staircase:
295
                div_res = paddle.floor(div_res)
296

297
            decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
298

299
            return decayed_lr
300 301


302 303 304
def polynomial_decay(
    learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False
):
Q
qiaolongfei 已提交
305 306 307
    """
    Applies polynomial decay to the initial learning rate.

X
xiaoting 已提交
308
    .. code-block:: text
Q
qiaolongfei 已提交
309 310 311 312 313 314 315

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
316 317

    Args:
Q
qiaolongfei 已提交
318
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
319
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
320
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
321 322 323
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
324 325

    Returns:
Q
update  
qiaolongfei 已提交
326
        Variable: The decayed learning rate
X
xiaoting 已提交
327 328 329 330 331 332 333 334 335 336 337

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          lr = fluid.layers.polynomial_decay(
              start_lr, total_step, end_lr, power=1)

338
    """
339
    with default_main_program()._lr_schedule_guard():
J
Jiabin Yang 已提交
340
        if _non_static_mode():
341 342 343
            decay = imperate_lr.PolynomialDecay(
                learning_rate, decay_steps, end_learning_rate, power, cycle
            )
344
            return decay
345
        else:
346 347 348
            global_step = _decay_step_counter()

            if cycle:
349
                div_res = paddle.ceil(global_step / decay_steps)
350 351 352 353 354 355
                zero_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=0.0
                )
                one_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=1.0
                )
356 357 358 359 360 361

                with control_flow.Switch() as switch:
                    with switch.case(global_step == zero_var):
                        tensor.assign(input=one_var, output=div_res)
                decay_steps = decay_steps * div_res
            else:
362 363 364
                decay_steps_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(decay_steps)
                )
365
                global_step = paddle.minimum(x=global_step, y=decay_steps_var)
366 367 368 369

            decayed_lr = (learning_rate - end_learning_rate) * (
                (1 - global_step / decay_steps) ** power
            ) + end_learning_rate
370
            return decayed_lr
371 372


Y
Yu Yang 已提交
373
def piecewise_decay(boundaries, values):
S
swtkiwi 已提交
374 375
    """

376
    Applies piecewise decay to the initial learning rate.
X
Xin Pan 已提交
377

378
        The algorithm can be described as the code below.
X
Xin Pan 已提交
379

380
        .. code-block:: text
X
Xin Pan 已提交
381

X
xiaoting 已提交
382 383
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
          if step < 10000:
              learning_rate = 1.0
          elif 10000 <= step < 20000:
              learning_rate = 0.5
          else:
              learning_rate = 0.1
        Args:
            boundaries: A list of steps numbers.
            values: A list of learning rate values that will be picked during
                different step boundaries.

        Returns:
            The decayed learning rate.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              import paddle
              paddle.enable_static()
              boundaries = [10000, 20000]
              values = [1.0, 0.5, 0.1]
              optimizer = fluid.optimizer.Momentum(
                  momentum=0.9,
                  learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
                  regularization=fluid.regularizer.L2Decay(1e-4))
X
xiaoting 已提交
410

X
Xin Pan 已提交
411

412
    """
413 414 415 416
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

J
Jiabin Yang 已提交
417
        if _non_static_mode():
M
minqiyang 已提交
418
            decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
419 420 421
            return decay
        else:
            global_step = _decay_step_counter()
422

423 424 425 426 427 428 429
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate",
            )
430

431 432
            with control_flow.Switch() as switch:
                for i in range(len(boundaries)):
433 434 435 436 437 438
                    boundary_val = tensor.fill_constant(
                        shape=[1],
                        dtype='float32',
                        value=float(boundaries[i]),
                        force_cpu=True,
                    )
439
                    with switch.case(global_step < boundary_val):
440 441 442 443 444 445
                        tensor.fill_constant(
                            shape=[1],
                            dtype="float32",
                            value=float(values[i]),
                            out=lr,
                        )
446
                with switch.default():
447 448 449 450 451 452
                    tensor.fill_constant(
                        shape=[1],
                        dtype="float32",
                        value=float(values[len(values) - 1]),
                        out=lr,
                    )
453

454
            return lr
W
Wu Yi 已提交
455 456


S
shippingwang 已提交
457
def cosine_decay(learning_rate, step_each_epoch, epochs):
458
    r"""
S
swtkiwi 已提交
459

S
shippingwang 已提交
460 461
    Applies cosine decay to the learning rate.

S
shippingwang 已提交
462
    when training a model, it is often recommended to lower the learning rate as the
S
shippingwang 已提交
463 464
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
S
shippingwang 已提交
465

466 467
    .. math::

X
xsrobin 已提交
468 469
        decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)

S
shippingwang 已提交
470 471 472 473 474
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

475
    Returns:
X
xsrobin 已提交
476
        Variable: The decayed learning rate.
S
shippingwang 已提交
477

478
    Examples:
X
xsrobin 已提交
479
        .. code-block:: python
S
shippingwang 已提交
480

X
xsrobin 已提交
481 482 483 484
            import paddle.fluid as fluid
            base_lr = 0.1
            lr = fluid.layers.cosine_decay(
            learning_rate = base_lr, step_each_epoch=10000, epochs=120)
S
shippingwang 已提交
485
    """
486 487 488
    check_type(
        learning_rate, 'learning_rate', (float, tensor.Variable), 'cosine_decay'
    )
489

S
shippingwang 已提交
490
    with default_main_program()._lr_schedule_guard():
J
Jiabin Yang 已提交
491
        if _non_static_mode():
492 493 494
            decay = imperate_lr.CosineDecay(
                learning_rate, step_each_epoch, epochs
            )
M
minqiyang 已提交
495 496 497
            return decay
        else:
            global_step = _decay_step_counter()
S
shippingwang 已提交
498

499
            cur_epoch = paddle.floor(global_step / step_each_epoch)
500 501 502
            decayed_lr = (
                learning_rate
                * 0.5
503
                * (paddle.cos(cur_epoch * math.pi / epochs) + 1)
504
            )
M
minqiyang 已提交
505
            return decayed_lr
S
shippingwang 已提交
506 507


508 509
def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
    """
S
swtkiwi 已提交
510

511 512
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
513

514
    When global_step < warmup_steps, learning rate is updated as:
515

516
    .. code-block:: text
517

518 519
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
520

521
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
522

523
    When global_step >= warmup_steps, learning rate is updated as:
524

525
    .. code-block:: text
526

527
            lr = learning_rate
528

529
    where lr is the learning_rate after warm-up.
530

531
    Args:
532 533 534 535
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
536

537
    Returns:
538
        Variable: Warm-up learning rate with the same data type as learning_rate.
539 540


541
    Examples:
542

543
    .. code-block:: python
544

545
        import paddle.fluid as fluid
546

547 548 549 550 551 552 553 554 555
        boundaries = [100, 200]
        lr_steps = [0.1, 0.01, 0.001]
        learning_rate = fluid.layers.piecewise_decay(boundaries, lr_steps) #case1, 1D-Tensor
        #learning_rate = 0.1  #case2, single-value
        warmup_steps = 50
        start_lr = 1. / 3.
        end_lr = 0.1
        decayed_lr = fluid.layers.linear_lr_warmup(learning_rate,
            warmup_steps, start_lr, end_lr)
556

557 558 559 560 561 562 563
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        out, = exe.run(fetch_list=[decayed_lr.name])
        print(out)
        # case1: [0.33333334]
        # case2: [0.33333334]
564
    """
Q
qingqing01 已提交
565 566 567 568 569
    dtype = 'float32'
    if isinstance(learning_rate, Variable):
        dtype = learning_rate.dtype

    linear_step = float(end_lr) - float(start_lr)
570
    with default_main_program()._lr_schedule_guard():
H
hong 已提交
571

J
Jiabin Yang 已提交
572
        if _non_static_mode():
573 574 575
            lr = imperate_lr.LinearLrWarmup(
                learning_rate, warmup_steps, start_lr, end_lr
            )
H
hong 已提交
576 577
            return lr
        else:
578 579 580 581 582 583 584
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype=dtype,
                persistable=True,
                name="learning_rate_warmup",
            )
H
hong 已提交
585 586 587 588 589

            global_step = _decay_step_counter()

            with control_flow.Switch() as switch:
                with switch.case(global_step < warmup_steps):
590 591 592
                    decayed_lr = start_lr + linear_step * (
                        global_step / float(warmup_steps)
                    )
H
hong 已提交
593 594 595 596
                    tensor.assign(decayed_lr, lr)
                with switch.default():
                    if not isinstance(learning_rate, Variable):
                        learning_rate = tensor.fill_constant(
597 598
                            shape=[1], dtype=dtype, value=float(learning_rate)
                        )
H
hong 已提交
599 600
                    tensor.assign(learning_rate, lr)
            return lr