learning_rate_scheduler.py 19.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25
import math
Q
qingqing01 已提交
26
import numbers
27

28 29 30 31
from . import control_flow
from . import nn
from . import ops
from . import tensor
32
from ..framework import default_main_program, Parameter, unique_name, name_scope
Q
qingqing01 已提交
33
from ..framework import Variable
34
from ..framework import in_dygraph_mode
M
minqiyang 已提交
35
from ..dygraph import learning_rate_scheduler as imperate_lr
Q
Qiao Longfei 已提交
36

37 38
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
39 40
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'cosine_decay',
    'linear_lr_warmup'
41
]
Q
Qiao Longfei 已提交
42 43


44
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
45
    # the first global step is zero in learning rate decay
46
    global_step = nn.autoincreased_step_counter(
47
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
48
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
49 50 51
    return global_step


52
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
53 54 55
    """
    Noam decay method. The numpy implementation of noam decay as follows.

X
xiaoting 已提交
56 57
    .. code-block:: python
      
58
      import paddle.fluid as fluid
X
xiaoting 已提交
59 60 61 62 63 64 65 66 67
      import numpy as np
      # set hyper parameters
      d_model = 2
      current_steps = 20
      warmup_steps = 200
      # compute
      lr_value = np.power(d_model, -0.5) * np.min([
                              np.power(current_steps, -0.5),
                              np.power(warmup_steps, -1.5) * current_steps])
Y
yuyang18 已提交
68 69 70

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
71 72 73

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
74

75 76 77 78
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
X
xiaoting 已提交
79 80 81
    Examples:
        .. code-block:: python

82
          import paddle.fluid as fluid
X
xiaoting 已提交
83 84 85 86 87
          warmup_steps = 100
          learning_rate = 0.01
          lr = fluid.layers.learning_rate_scheduler.noam_decay(
                         1/(warmup_steps *(learning_rate ** 2)),
                         warmup_steps)
88
    """
89
    with default_main_program()._lr_schedule_guard():
90
        if in_dygraph_mode():
M
minqiyang 已提交
91 92 93 94
            decay = imperate_lr.NoamDecay(d_model, warmup_steps)
            return decay
        else:
            global_step = _decay_step_counter(1)
F
fengjiayi 已提交
95

M
minqiyang 已提交
96 97 98
            a = global_step**-0.5
            b = (warmup_steps**-1.5) * global_step
            lr_value = (d_model**-0.5) * nn.elementwise_min(a, b)
99

M
minqiyang 已提交
100
            return lr_value
101 102


Y
Yu Yang 已提交
103
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
104
    """
105
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
106

107 108
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
109 110
    'decay_rate' every 'decay_steps' steps.

T
tianshuo78520a 已提交
111
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
112

F
fengjiayi 已提交
113 114 115 116
    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
117 118

    Args:
K
Kaipeng Deng 已提交
119 120 121 122 123 124 125 126
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
                         means the learning rate will be decayed by `decay_rate` every
                         `decay_steps`. If False, learning rate will be decayed continuously
                         and following the formula above. Default: False
Q
Qiao Longfei 已提交
127 128

    Returns:
K
Kaipeng Deng 已提交
129
        Variable: The decayed learning rate. The data type is float32.
F
fengjiayi 已提交
130 131 132 133

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
134
          import paddle.fluid as fluid
F
fengjiayi 已提交
135 136
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
137 138 139 140 141
	      learning_rate=fluid.layers.exponential_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
F
fengjiayi 已提交
142

Q
Qiao Longfei 已提交
143
    """
144
    with default_main_program()._lr_schedule_guard():
145
        if in_dygraph_mode():
146 147 148 149 150
            decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
151

152 153 154 155
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * (decay_rate**div_res)
156

157
            return decayed_lr
Q
Qiao Longfei 已提交
158 159


Y
Yu Yang 已提交
160
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
161 162
    """Applies natural exponential decay to the initial learning rate.

K
Kaipeng Deng 已提交
163 164 165 166
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
    natural exponential power 'decay_rate' every 'decay_steps' steps.

T
tianshuo78520a 已提交
167
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
168

Y
Yu Yang 已提交
169 170 171
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
172
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
Y
Yu Yang 已提交
173

Q
Qiao Longfei 已提交
174
    Args:
K
Kaipeng Deng 已提交
175 176 177 178 179
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
T
tianshuo78520a 已提交
180
                         means the learning rate will be decayed by natural exponential power
K
Kaipeng Deng 已提交
181 182
                         `decay_rate` every `decay_steps`. If False, learning rate will be
                         decayed continuously and following the formula above. Default: False
Q
Qiao Longfei 已提交
183 184

    Returns:
K
Kaipeng Deng 已提交
185
        The decayed learning rate. The data type is float32.
K
Kaipeng Deng 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
	      learning_rate=fluid.layers.natural_exp_decay(
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))

Q
Qiao Longfei 已提交
199
    """
200
    with default_main_program()._lr_schedule_guard():
201
        if in_dygraph_mode():
202 203 204 205 206
            decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps,
                                                decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
207

208 209 210 211
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
            decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
212

213
            return decayed_lr
Q
Qiao Longfei 已提交
214 215


Y
Yu Yang 已提交
216
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
217 218
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
219

220 221
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
222
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
223

T
tianshuo78520a 已提交
224
    Decayed learning rate calculates as follows:
K
Kaipeng Deng 已提交
225

F
fengjiayi 已提交
226
    >>> if staircase == True:
Y
Yu Yang 已提交
227 228 229 230
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
231
    Args:
K
Kaipeng Deng 已提交
232 233 234 235 236 237 238 239
        learning_rate(Variable|float): The initial learning rate. It should be a Variable 
                                       or a float
        decay_steps(int): The learning rate decay steps. See the decay computation above.
        decay_rate(float): The learning rate decay rate. See the decay computation above.
        staircase(bool): If True, decay the learning rate at discrete intervals, which 
                         means the learning rate will be decayed by `decay_rate` times 
                         every `decay_steps`. If False, learning rate will be decayed 
                         continuously and following the formula above. Default: False
Q
Qiao Longfei 已提交
240 241

    Returns:
K
Kaipeng Deng 已提交
242
        Variable: The decayed learning rate. The data type is float32.
F
fengjiayi 已提交
243 244 245 246

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
247
          import paddle.fluid as fluid
F
fengjiayi 已提交
248 249
          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
K
Kaipeng Deng 已提交
250
	      learning_rate=fluid.layers.inverse_time_decay(
K
Kaipeng Deng 已提交
251 252 253 254
		    learning_rate=base_lr,
		    decay_steps=10000,
		    decay_rate=0.5,
		    staircase=True))
Q
Qiao Longfei 已提交
255
    """
256
    with default_main_program()._lr_schedule_guard():
257
        if in_dygraph_mode():
258 259 260 261 262
            decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps,
                                                 decay_rate, staircase)
            return decay
        else:
            global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
263

264 265 266
            div_res = global_step / decay_steps
            if staircase:
                div_res = ops.floor(div_res)
267

268
            decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
269

270
            return decayed_lr
271 272 273 274 275 276 277


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
278 279 280
    """
    Applies polynomial decay to the initial learning rate.

X
xiaoting 已提交
281
    .. code-block:: text
Q
qiaolongfei 已提交
282 283 284 285 286 287 288

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
289 290

    Args:
Q
qiaolongfei 已提交
291
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
292
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
293
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
294 295 296
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
297 298

    Returns:
Q
update  
qiaolongfei 已提交
299
        Variable: The decayed learning rate
X
xiaoting 已提交
300 301 302 303 304 305 306 307 308 309 310

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          lr = fluid.layers.polynomial_decay(
              start_lr, total_step, end_lr, power=1)

311
    """
312
    with default_main_program()._lr_schedule_guard():
313
        if in_dygraph_mode():
314 315 316
            decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps,
                                                end_learning_rate, power, cycle)
            return decay
317
        else:
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
            global_step = _decay_step_counter()

            if cycle:
                div_res = ops.ceil(global_step / decay_steps)
                zero_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=0.0)
                one_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=1.0)

                with control_flow.Switch() as switch:
                    with switch.case(global_step == zero_var):
                        tensor.assign(input=one_var, output=div_res)
                decay_steps = decay_steps * div_res
            else:
                decay_steps_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(decay_steps))
                global_step = nn.elementwise_min(
                    x=global_step, y=decay_steps_var)
336

337 338 339
            decayed_lr = (learning_rate - end_learning_rate) * \
                ((1 - global_step / decay_steps) ** power) + end_learning_rate
            return decayed_lr
340 341


Y
Yu Yang 已提交
342
def piecewise_decay(boundaries, values):
343 344
    """Applies piecewise decay to the initial learning rate.

X
xiaoting 已提交
345
    The algorithm can be described as the code below.
X
Xin Pan 已提交
346

X
xiaoting 已提交
347
    .. code-block:: text
X
Xin Pan 已提交
348

X
xiaoting 已提交
349 350 351 352 353 354 355 356
      boundaries = [10000, 20000]
      values = [1.0, 0.5, 0.1]
      if step < 10000:
          learning_rate = 1.0
      elif 10000 <= step < 20000:
          learning_rate = 0.5
      else:
          learning_rate = 0.1
X
Xin Pan 已提交
357 358 359 360 361 362 363 364
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
xiaoting 已提交
365 366 367 368 369 370 371 372 373 374 375
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          optimizer = fluid.optimizer.Momentum(
              momentum=0.9,
              learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
              regularization=fluid.regularizer.L2Decay(1e-4))

X
Xin Pan 已提交
376

377
    """
378 379 380 381
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")

382
        if in_dygraph_mode():
M
minqiyang 已提交
383
            decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
384 385 386
            return decay
        else:
            global_step = _decay_step_counter()
387

388 389 390 391 392 393
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
394

395 396 397 398 399 400 401 402 403 404 405 406
            with control_flow.Switch() as switch:
                for i in range(len(boundaries)):
                    boundary_val = tensor.fill_constant(
                        shape=[1],
                        dtype='float32',
                        value=float(boundaries[i]),
                        force_cpu=True)
                    value_var = tensor.fill_constant(
                        shape=[1], dtype='float32', value=float(values[i]))
                    with switch.case(global_step < boundary_val):
                        tensor.assign(value_var, lr)
                last_value_var = tensor.fill_constant(
407 408
                    shape=[1],
                    dtype='float32',
409 410 411
                    value=float(values[len(values) - 1]))
                with switch.default():
                    tensor.assign(last_value_var, lr)
412

413
            return lr
W
Wu Yi 已提交
414 415


S
shippingwang 已提交
416 417 418 419
def cosine_decay(learning_rate, step_each_epoch, epochs):
    """
    Applies cosine decay to the learning rate.

S
shippingwang 已提交
420
    when training a model, it is often recommended to lower the learning rate as the
S
shippingwang 已提交
421 422
    training progresses. By using this function, the learning rate will be decayed by
    following cosine decay strategy.
S
shippingwang 已提交
423

424 425
    .. math::

X
xsrobin 已提交
426 427
        decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)

S
shippingwang 已提交
428 429 430 431 432
    Args:
        learning_rate(Variable|float): The initial learning rate.
        step_each_epoch(int): the number of steps in an epoch.
        epochs(int): the number of epochs.

433
    Returns:
X
xsrobin 已提交
434
        Variable: The decayed learning rate.
S
shippingwang 已提交
435

436
    Examples:
X
xsrobin 已提交
437
        .. code-block:: python
S
shippingwang 已提交
438

X
xsrobin 已提交
439 440 441 442
            import paddle.fluid as fluid
            base_lr = 0.1
            lr = fluid.layers.cosine_decay(
            learning_rate = base_lr, step_each_epoch=10000, epochs=120)
S
shippingwang 已提交
443
    """
444

S
shippingwang 已提交
445
    with default_main_program()._lr_schedule_guard():
446
        if in_dygraph_mode():
M
minqiyang 已提交
447 448 449 450 451
            decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch,
                                            epochs)
            return decay
        else:
            global_step = _decay_step_counter()
S
shippingwang 已提交
452

M
minqiyang 已提交
453 454 455 456
            cur_epoch = ops.floor(global_step / step_each_epoch)
            decayed_lr = learning_rate * 0.5 * (
                ops.cos(cur_epoch * math.pi / epochs) + 1)
            return decayed_lr
S
shippingwang 已提交
457 458


459 460
def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
    """
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
    
    When global_step < warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
    
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
    
    When global_step >= warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            lr = learning_rate
    
    where lr is the learning_rate after warm-up.
    
481
    Args:
482 483 484 485 486
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
    
487
    Returns:
488 489 490
        Variable: Warm-up learning rate with the same data type as learning_rate.
    
    
491
    Examples:
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    
    .. code-block:: python
    
        import paddle.fluid as fluid
    
        boundaries = [100, 200]
        lr_steps = [0.1, 0.01, 0.001]
        learning_rate = fluid.layers.piecewise_decay(boundaries, lr_steps) #case1, 1D-Tensor
        #learning_rate = 0.1  #case2, single-value
        warmup_steps = 50
        start_lr = 1. / 3.
        end_lr = 0.1
        decayed_lr = fluid.layers.linear_lr_warmup(learning_rate,
            warmup_steps, start_lr, end_lr)
    
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        out, = exe.run(fetch_list=[decayed_lr.name])
        print(out)
        # case1: [0.33333334]
        # case2: [0.33333334]
514
    """
Q
qingqing01 已提交
515 516 517 518 519
    dtype = 'float32'
    if isinstance(learning_rate, Variable):
        dtype = learning_rate.dtype

    linear_step = float(end_lr) - float(start_lr)
520
    with default_main_program()._lr_schedule_guard():
H
hong 已提交
521

522
        if in_dygraph_mode():
H
hong 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
            lr = imperate_lr.LinearLrWarmup(learning_rate, warmup_steps,
                                            start_lr, end_lr)
            return lr
        else:
            lr = tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype=dtype,
                persistable=True,
                name="learning_rate_warmup")

            global_step = _decay_step_counter()

            with control_flow.Switch() as switch:
                with switch.case(global_step < warmup_steps):
                    decayed_lr = start_lr + linear_step * (global_step /
                                                           float(warmup_steps))
                    tensor.assign(decayed_lr, lr)
                with switch.default():
                    if not isinstance(learning_rate, Variable):
                        learning_rate = tensor.fill_constant(
                            shape=[1], dtype=dtype, value=float(learning_rate))
                    tensor.assign(learning_rate, lr)
            return lr