trainer.h 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
wanghuancoder 已提交
17
#include <ctime>
18
#include <fstream>
W
wanghuancoder 已提交
19
#include <map>
20 21 22 23 24 25 26
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
27
#include "paddle/fluid/framework/data_set.h"
28
#include "paddle/fluid/framework/device_worker.h"
Y
yaoxuefeng 已提交
29
#include "paddle/fluid/framework/fleet/heter_context.h"
T
Thunderbrook 已提交
30 31
#include "paddle/fluid/framework/fleet/heter_wrapper.h"
#include "paddle/fluid/framework/heter_service.h"
32 33 34 35 36 37
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
38
#include "paddle/fluid/platform/port.h"
39 40 41 42

namespace paddle {
namespace framework {

W
wanghuancoder 已提交
43 44 45 46 47 48
class Dataset;
class LoDTensor;
class ProgramDesc;
class PullDenseWorker;
class Scope;
class VarDesc;
49
class DeviceWorker;
W
wanghuancoder 已提交
50 51 52
template <class T>
class ChannelObject;

53 54 55 56 57 58 59
class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
60
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
61
  virtual void Initialize(const TrainerDesc& trainer_desc,
62
                          Dataset* data_set) = 0;
63 64 65 66 67
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
68
  virtual Scope* GetWorkerScope(int thread_id) = 0;
H
hutuxian 已提交
69 70
  virtual void InitDumpEnv() = 0;
  virtual void DumpWork(int tid);
71 72

 protected:
H
hutuxian 已提交
73 74 75 76
  virtual std::string GetDumpPath(int tid) = 0;
  virtual void ParseDumpConfig(const TrainerDesc& trainer_desc);
  virtual void FinalizeDumpEnv();

77 78
  Scope* root_scope_;
  bool debug_;
79
  Dataset* dataset_ptr_;
T
Thunderbrook 已提交
80
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
81 82 83

  // For dump param or field
  bool need_dump_field_ = false;
Y
yaoxuefeng 已提交
84
  std::string user_define_dump_filename_;
H
hutuxian 已提交
85 86 87 88 89 90 91 92
  bool need_dump_param_ = false;
  std::string dump_fields_path_;
  std::string dump_converter_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  int dump_thread_num_;
  std::vector<std::thread> dump_thread_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
93 94 95 96 97 98 99 100 101
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
102
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
103 104
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
105
  virtual void InitOtherEnv(const ProgramDesc& main_program);
106 107
  virtual void Run();
  virtual void Finalize();
108
  virtual void InitDumpEnv();
109
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
110
  virtual std::string GetDumpPath(int tid);
111

T
Thunderbrook 已提交
112 113 114 115 116 117 118
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
#ifdef PADDLE_WITH_HETERPS

  void MergeDenseParam();
#endif

119 120 121
 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
122
  std::vector<DataFeed*> readers_;
123
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
124
  std::vector<std::string> need_merge_var_names_;
T
Thunderbrook 已提交
125 126 127
#ifdef PADDLE_WITH_HETERPS
  std::vector<platform::Place> places_;
#endif
128 129 130
  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;
131 132 133 134 135 136
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
137
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
138 139
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
140
  virtual void InitOtherEnv(const ProgramDesc& main_program);
141
  virtual void Run();
142
  virtual void Finalize();
143 144
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
145
  virtual void InitDumpEnv();
146
  virtual Scope* GetWorkerScope(int thread_id);
T
Thunderbrook 已提交
147
  virtual void RegisterHeterCallback();
148 149 150 151 152

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

153 154
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_HIP || \
     defined PADDLE_WITH_XPU) &&                            \
T
Thunderbrook 已提交
155
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
156 157 158 159 160 161 162 163 164 165 166 167
class HeterServiceContext {
 public:
  HeterServiceContext() {}
  virtual ~HeterServiceContext() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  void Reset() { push_dense_status_.clear(); }
  int place_num_;
  Scope* scope_{nullptr};
168 169 170

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  gpuEvent_t event_;
T
Thunderbrook 已提交
171
#endif
T
Thunderbrook 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  std::vector<OperatorBase*> ops_;
  std::vector<::std::future<int32_t>> push_dense_status_;
};

class HeterXpuTrainer : public TrainerBase {
 public:
  HeterXpuTrainer() {}
  virtual ~HeterXpuTrainer() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void DumpWork(int tid);
  virtual void RegisterServiceHandler();
  virtual int RunTask(const HeterRequest* request, HeterResponse* response);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
T
Thunderbrook 已提交
198 199
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
T
Thunderbrook 已提交
200
  template <typename T>
201
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
202 203
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
204
                   gpuStream_t stream);
T
Thunderbrook 已提交
205 206 207 208 209
#endif
#ifdef PADDLE_WITH_XPU
  void HeterMemCpy(LoDTensor* thread_tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place);
#endif
T
Thunderbrook 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
  int EndPass(const HeterRequest* request, HeterResponse* response);
  int StopService(const HeterRequest* request, HeterResponse* response);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  bool running_;
  paddle::platform::Place place_;
  std::mutex mutex_;
  ProgramDesc program_;
  std::condition_variable cond_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<OperatorBase*> ops_;
  std::vector<std::string> op_names_;
  std::vector<Scope*> place_scopes_;
  BtObjectPool<HeterServiceContext> object_pool_;
  std::vector<platform::Place> places_;
236 237 238
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
  std::vector<gpuEvent_t> events_;
T
Thunderbrook 已提交
239
#endif
T
Thunderbrook 已提交
240
};
T
Thunderbrook 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

class HeterBoxTrainer : public TrainerBase {
 public:
  HeterBoxTrainer() {}
  virtual ~HeterBoxTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void RegisterHeterCallback();
  virtual void DumpWork(int tid);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
  template <typename T>
261
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
262 263
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
264
                   gpuStream_t stream);
T
Thunderbrook 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
#endif
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  paddle::platform::Place place_;
  ProgramDesc program_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
  std::vector<platform::Place> places_;
  // ps-gpu
  std::vector<std::thread> pull_threads_;
  std::vector<std::thread> threads_;
  int use_ps_gpu_;
  int thread_num_;
286 287 288
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
  std::vector<gpuEvent_t> events_;
T
Thunderbrook 已提交
289 290
#endif
};
T
Thunderbrook 已提交
291 292
#endif

293 294
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
class PSGPUTrainer : public TrainerBase {
 public:
  PSGPUTrainer() {}
  virtual ~PSGPUTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void RegisterHeterCallback();
  virtual void DumpWork(int tid);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}

  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);

 protected:
  Dataset* dataset_;
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  paddle::platform::Place place_;
  ProgramDesc program_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
  std::vector<platform::Place> places_;
  // ps-gpu
  std::vector<std::thread> threads_;
  int use_ps_gpu_;
  int thread_num_;
};
#endif

335 336
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(WITH_ASCEND_CL)
H
hutuxian 已提交
337 338 339 340 341 342 343
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
H
hutuxian 已提交
344
  void InitOtherEnv(const ProgramDesc& main_program) override;
H
hutuxian 已提交
345 346
  void Run() override;
  void Finalize() override;
347
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
348 349
  void InitDumpEnv() override;
  virtual std::string GetDumpPath(int tid);
350
  void GetSkipVars(const ProgramDesc& main_program);
H
hutuxian 已提交
351 352

 protected:
L
lilong12 已提交
353
  int num_microbatches_;
354 355
  platform::Place place_;
  std::vector<std::string> skip_vars_;
L
lilong12 已提交
356
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
357

358 359 360 361 362
  std::future<void> section_thread_;
  std::shared_ptr<paddle::framework::DeviceWorker> worker_;
  Scope* minibatch_scope_;
  // microbatch_scopes_: [microbatch_id]
  std::vector<Scope*> microbatch_scopes_;
L
lilong12 已提交
363

364 365
  void CopyParameters(int microbatch_id, const ProgramDesc& program,
                      const platform::Place& place);
H
hutuxian 已提交
366 367
};
#endif
L
lilong12 已提交
368

369 370
}  // namespace framework
}  // namespace paddle