trainer.h 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
wanghuancoder 已提交
17
#include <ctime>
18
#include <fstream>
W
wanghuancoder 已提交
19
#include <map>
20 21 22 23 24 25 26
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
27
#include "paddle/fluid/framework/data_set.h"
28
#include "paddle/fluid/framework/device_worker.h"
T
Thunderbrook 已提交
29 30
#include "paddle/fluid/framework/fleet/heter_wrapper.h"
#include "paddle/fluid/framework/heter_service.h"
31 32 33 34 35 36
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
37
#include "paddle/fluid/platform/port.h"
38 39 40 41

namespace paddle {
namespace framework {

W
wanghuancoder 已提交
42 43 44 45 46 47 48 49 50
class Dataset;
class LoDTensor;
class ProgramDesc;
class PullDenseWorker;
class Scope;
class VarDesc;
template <class T>
class ChannelObject;

51 52 53 54 55 56 57
class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
58
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
59
  virtual void Initialize(const TrainerDesc& trainer_desc,
60
                          Dataset* data_set) = 0;
61 62 63 64 65
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
66
  virtual Scope* GetWorkerScope(int thread_id) = 0;
H
hutuxian 已提交
67 68
  virtual void InitDumpEnv() = 0;
  virtual void DumpWork(int tid);
69 70

 protected:
H
hutuxian 已提交
71 72 73 74
  virtual std::string GetDumpPath(int tid) = 0;
  virtual void ParseDumpConfig(const TrainerDesc& trainer_desc);
  virtual void FinalizeDumpEnv();

75 76
  Scope* root_scope_;
  bool debug_;
77
  Dataset* dataset_ptr_;
T
Thunderbrook 已提交
78
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
79 80 81 82 83 84 85 86 87 88 89

  // For dump param or field
  bool need_dump_field_ = false;
  bool need_dump_param_ = false;
  std::string dump_fields_path_;
  std::string dump_converter_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  int dump_thread_num_;
  std::vector<std::thread> dump_thread_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
90 91 92 93 94 95 96 97 98
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
99
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
100 101
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
102
  virtual void InitOtherEnv(const ProgramDesc& main_program);
103 104
  virtual void Run();
  virtual void Finalize();
105
  virtual void InitDumpEnv();
106
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
107
  virtual std::string GetDumpPath(int tid);
108 109 110 111

 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
112
  std::vector<DataFeed*> readers_;
113
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
114
  std::vector<std::string> need_merge_var_names_;
115 116 117 118

  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;
119 120 121 122 123 124
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
125
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
126 127
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
128
  virtual void InitOtherEnv(const ProgramDesc& main_program);
129
  virtual void Run();
130
  virtual void Finalize();
131 132
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
133
  virtual void InitDumpEnv();
134
  virtual Scope* GetWorkerScope(int thread_id);
T
Thunderbrook 已提交
135
  virtual void RegisterHeterCallback();
136 137 138 139 140

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

T
Thunderbrook 已提交
141 142
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_XPU) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
143 144 145 146 147 148 149 150 151 152 153 154
class HeterServiceContext {
 public:
  HeterServiceContext() {}
  virtual ~HeterServiceContext() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  void Reset() { push_dense_status_.clear(); }
  int place_num_;
  Scope* scope_{nullptr};
T
Thunderbrook 已提交
155
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
156
  cudaEvent_t event_;
T
Thunderbrook 已提交
157
#endif
T
Thunderbrook 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  std::vector<OperatorBase*> ops_;
  std::vector<::std::future<int32_t>> push_dense_status_;
};

class HeterXpuTrainer : public TrainerBase {
 public:
  HeterXpuTrainer() {}
  virtual ~HeterXpuTrainer() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void DumpWork(int tid);
  virtual void RegisterServiceHandler();
  virtual int RunTask(const HeterRequest* request, HeterResponse* response);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
T
Thunderbrook 已提交
184 185
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
T
Thunderbrook 已提交
186
  template <typename T>
T
Thunderbrook 已提交
187
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
188 189 190
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
                   cudaStream_t stream);
T
Thunderbrook 已提交
191 192 193 194 195
#endif
#ifdef PADDLE_WITH_XPU
  void HeterMemCpy(LoDTensor* thread_tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place);
#endif
T
Thunderbrook 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
  int EndPass(const HeterRequest* request, HeterResponse* response);
  int StopService(const HeterRequest* request, HeterResponse* response);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  bool running_;
  paddle::platform::Place place_;
  std::mutex mutex_;
  ProgramDesc program_;
  std::condition_variable cond_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<OperatorBase*> ops_;
  std::vector<std::string> op_names_;
  std::vector<Scope*> place_scopes_;
  BtObjectPool<HeterServiceContext> object_pool_;
  std::vector<platform::Place> places_;
T
Thunderbrook 已提交
222 223
#ifdef PADDLE_WITH_CUDA
  std::vector<cudaStream_t> copy_streams_;
T
Thunderbrook 已提交
224
  std::vector<cudaEvent_t> events_;
T
Thunderbrook 已提交
225
#endif
T
Thunderbrook 已提交
226
};
T
Thunderbrook 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

class HeterBoxTrainer : public TrainerBase {
 public:
  HeterBoxTrainer() {}
  virtual ~HeterBoxTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void RegisterHeterCallback();
  virtual void DumpWork(int tid);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual std::string GetDumpPath(int tid) { return ""; }
  virtual void InitDumpEnv() {}
  template <typename T>
#ifdef PADDLE_WITH_CUDA
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
                   cudaStream_t stream);
#endif
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  paddle::platform::Place place_;
  ProgramDesc program_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
  std::vector<platform::Place> places_;
  // ps-gpu
  std::vector<std::thread> pull_threads_;
  std::vector<std::thread> threads_;
  int use_ps_gpu_;
  int thread_num_;
#ifdef PADDLE_WITH_CUDA
  std::vector<cudaStream_t> copy_streams_;
  std::vector<cudaEvent_t> events_;
#endif
};
T
Thunderbrook 已提交
277 278
#endif

279
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
280 281 282 283 284 285 286
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
H
hutuxian 已提交
287
  void InitOtherEnv(const ProgramDesc& main_program) override;
H
hutuxian 已提交
288 289
  void Run() override;
  void Finalize() override;
290
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
291 292
  void InitDumpEnv() override;
  virtual std::string GetDumpPath(int tid);
293
  void GetSkipVars(const ProgramDesc& main_program);
H
hutuxian 已提交
294 295

 protected:
L
lilong12 已提交
296
  int num_microbatches_;
297 298
  platform::Place place_;
  std::vector<std::string> skip_vars_;
L
lilong12 已提交
299
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
300

301 302 303 304 305
  std::future<void> section_thread_;
  std::shared_ptr<paddle::framework::DeviceWorker> worker_;
  Scope* minibatch_scope_;
  // microbatch_scopes_: [microbatch_id]
  std::vector<Scope*> microbatch_scopes_;
L
lilong12 已提交
306

307 308
  void CopyParameters(int microbatch_id, const ProgramDesc& program,
                      const platform::Place& place);
H
hutuxian 已提交
309 310
};
#endif
L
lilong12 已提交
311

312 313
}  // namespace framework
}  // namespace paddle