trainer.h 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <fstream>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
25
#include "paddle/fluid/framework/data_set.h"
26 27 28 29 30 31 32
#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
33
#include "paddle/fluid/platform/port.h"
34 35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace framework {

class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
45
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
46
  virtual void Initialize(const TrainerDesc& trainer_desc,
47
                          Dataset* data_set) = 0;
48 49 50 51 52
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
53
  virtual Scope* GetWorkerScope(int thread_id) = 0;
H
hutuxian 已提交
54 55
  virtual void InitDumpEnv() = 0;
  virtual void DumpWork(int tid);
56 57

 protected:
H
hutuxian 已提交
58 59 60 61
  virtual std::string GetDumpPath(int tid) = 0;
  virtual void ParseDumpConfig(const TrainerDesc& trainer_desc);
  virtual void FinalizeDumpEnv();

62 63
  Scope* root_scope_;
  bool debug_;
64
  Dataset* dataset_ptr_;
H
hutuxian 已提交
65 66 67 68 69 70 71 72 73 74 75

  // For dump param or field
  bool need_dump_field_ = false;
  bool need_dump_param_ = false;
  std::string dump_fields_path_;
  std::string dump_converter_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  int dump_thread_num_;
  std::vector<std::thread> dump_thread_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
76 77 78 79 80 81 82 83 84
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
85
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
86 87
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
88
  virtual void InitOtherEnv(const ProgramDesc& main_program);
89 90
  virtual void Run();
  virtual void Finalize();
91
  virtual void InitDumpEnv();
92
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
93
  virtual std::string GetDumpPath(int tid);
94 95 96 97

 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
98
  std::vector<DataFeed*> readers_;
99
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
100
  std::vector<std::string> need_merge_var_names_;
101 102 103 104

  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;
105 106 107 108 109 110
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
111
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
112 113
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
114
  virtual void InitOtherEnv(const ProgramDesc& main_program);
115
  virtual void Run();
116
  virtual void Finalize();
117 118
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
119
  virtual void InitDumpEnv();
120
  virtual Scope* GetWorkerScope(int thread_id);
121 122 123 124 125

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

126
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
127 128 129 130 131 132 133
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
H
hutuxian 已提交
134
  void InitOtherEnv(const ProgramDesc& main_program) override;
H
hutuxian 已提交
135 136
  void Run() override;
  void Finalize() override;
137
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
138 139
  void InitDumpEnv() override;
  virtual std::string GetDumpPath(int tid);
H
hutuxian 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

 protected:
  int section_num_;
  int pipeline_num_;
  int scope_queue_size_;
  int sync_steps_;

  SectionWorkerParameter pipeline_config_;

  // The in/output var names for each section
  std::vector<std::unique_ptr<std::vector<std::string>>> in_var_names_;
  std::vector<std::unique_ptr<std::vector<std::string>>> out_var_names_;

  // Counter for the running thread
  std::vector<std::vector<int*>> worker_count_;
  std::vector<std::vector<std::unique_ptr<std::mutex>>> worker_count_mutex_;

  // worker: [section_id][pipeline_id][thread_id]
  std::vector<std::vector<
      std::vector<std::shared_ptr<paddle::framework::DeviceWorker>>>>
      workers_;
  std::vector<std::thread> section_threads_;

  // We use scope to maintain context info, and scopes
  // will be deliverd between different sections.
  std::vector<std::vector<std::unique_ptr<ScopeQueue>>> scope_queues_;
  std::vector<Scope*> pipeline_scopes_;

  // The parameters that should be syncronized between different cards using
  // nccl all-reduce
  std::shared_ptr<std::vector<std::string>> param_need_sync_;
H
hutuxian 已提交
171
  std::vector<std::string> persistable_vars_;
H
hutuxian 已提交
172 173 174
  std::vector<std::unique_ptr<SyncFunctor>> sync_functors_;
  std::shared_ptr<platform::NCCLContextMap> nccl_ctx_map_;

J
jiaqi 已提交
175
  std::vector<DataFeed*> readers_;
H
hutuxian 已提交
176 177

  void InitFirstScopeQueue(ScopeQueue* scope_queue, int pipeline_id,
H
hutuxian 已提交
178 179
                           const ProgramDesc& main_program,
                           const Scope& root_scope);
H
hutuxian 已提交
180 181 182 183
  void CopyParameters(const Scope& root_scope, int pipeline_id);
  void construct_sync_functor();
};
#endif
184 185
}  // namespace framework
}  // namespace paddle