trainer.h 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <fstream>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

T
Thunderbrook 已提交
24
#include <ctime>
25
#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
26
#include "paddle/fluid/framework/data_set.h"
27
#include "paddle/fluid/framework/device_worker.h"
T
Thunderbrook 已提交
28 29
#include "paddle/fluid/framework/fleet/heter_wrapper.h"
#include "paddle/fluid/framework/heter_service.h"
30 31 32 33 34 35
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
36
#include "paddle/fluid/platform/port.h"
37 38 39 40 41 42 43 44 45 46 47

namespace paddle {
namespace framework {

class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
48
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
49
  virtual void Initialize(const TrainerDesc& trainer_desc,
50
                          Dataset* data_set) = 0;
51 52 53 54 55
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
56
  virtual Scope* GetWorkerScope(int thread_id) = 0;
H
hutuxian 已提交
57 58
  virtual void InitDumpEnv() = 0;
  virtual void DumpWork(int tid);
59 60

 protected:
H
hutuxian 已提交
61 62 63 64
  virtual std::string GetDumpPath(int tid) = 0;
  virtual void ParseDumpConfig(const TrainerDesc& trainer_desc);
  virtual void FinalizeDumpEnv();

65 66
  Scope* root_scope_;
  bool debug_;
67
  Dataset* dataset_ptr_;
T
Thunderbrook 已提交
68
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
69 70 71 72 73 74 75 76 77 78 79

  // For dump param or field
  bool need_dump_field_ = false;
  bool need_dump_param_ = false;
  std::string dump_fields_path_;
  std::string dump_converter_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  int dump_thread_num_;
  std::vector<std::thread> dump_thread_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
80 81 82 83 84 85 86 87 88
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
89
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
90 91
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
92
  virtual void InitOtherEnv(const ProgramDesc& main_program);
93 94
  virtual void Run();
  virtual void Finalize();
95
  virtual void InitDumpEnv();
96
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
97
  virtual std::string GetDumpPath(int tid);
98 99 100 101

 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
102
  std::vector<DataFeed*> readers_;
103
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
104
  std::vector<std::string> need_merge_var_names_;
105 106 107 108

  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;
109 110 111 112 113 114
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
115
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
116 117
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
118
  virtual void InitOtherEnv(const ProgramDesc& main_program);
119
  virtual void Run();
120
  virtual void Finalize();
121 122
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
123
  virtual void InitDumpEnv();
124
  virtual Scope* GetWorkerScope(int thread_id);
T
Thunderbrook 已提交
125
  virtual void RegisterHeterCallback();
126 127 128 129 130

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

T
Thunderbrook 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#if (defined PADDLE_WITH_CUDA) && (defined PADDLE_WITH_PSLIB)
class HeterServiceContext {
 public:
  HeterServiceContext() {}
  virtual ~HeterServiceContext() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  void Reset() { push_dense_status_.clear(); }
  int place_num_;
  Scope* scope_{nullptr};
  cudaEvent_t event_;
  std::vector<OperatorBase*> ops_;
  std::vector<::std::future<int32_t>> push_dense_status_;
};

class HeterXpuTrainer : public TrainerBase {
 public:
  HeterXpuTrainer() {}
  virtual ~HeterXpuTrainer() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void DumpWork(int tid);
  virtual void RegisterServiceHandler();
  virtual int RunTask(const HeterRequest* request, HeterResponse* response);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  template <typename T>
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
                   cudaStream_t stream);
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
  int EndPass(const HeterRequest* request, HeterResponse* response);
  int StopService(const HeterRequest* request, HeterResponse* response);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  bool running_;
  paddle::platform::Place place_;
  std::mutex mutex_;
  ProgramDesc program_;
  std::condition_variable cond_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<OperatorBase*> ops_;
  std::vector<std::string> op_names_;
  std::vector<Scope*> place_scopes_;
  BtObjectPool<HeterServiceContext> object_pool_;
  std::vector<cudaStream_t> copy_streams_;
  std::vector<platform::Place> places_;
  std::vector<cudaEvent_t> events_;
};
#endif

206
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
207 208 209 210 211 212 213
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
H
hutuxian 已提交
214
  void InitOtherEnv(const ProgramDesc& main_program) override;
H
hutuxian 已提交
215 216
  void Run() override;
  void Finalize() override;
217
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
218 219
  void InitDumpEnv() override;
  virtual std::string GetDumpPath(int tid);
L
lilong12 已提交
220
  void GetSkipVars(int section_id, const ProgramDesc& main_program);
H
hutuxian 已提交
221 222 223

 protected:
  int section_num_;
L
lilong12 已提交
224 225 226 227 228 229
  int num_microbatches_;
  int start_cpu_core_id_;
  std::vector<std::string> feed_var_names_;
  std::vector<platform::Place> places_;
  std::vector<std::vector<std::string>> skip_vars_;
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
230 231

  std::vector<std::thread> section_threads_;
L
lilong12 已提交
232 233 234 235 236 237 238 239 240 241 242
  // worker: [section_id]
  std::vector<std::shared_ptr<paddle::framework::DeviceWorker>> workers_;
  // minibatch_scopes_: [section_id]
  std::vector<Scope*> minibatch_scopes_;
  // microbatch_scopes_: [section_id][microbatch_id]
  std::vector<std::vector<Scope*>> microbatch_scopes_;

  void CopyParameters(int section_id, int microbatch_id,
                      const ProgramDesc& program, const platform::Place& place);
  bool isPersistableVarGrad(std::string name);
  bool isPersistable(VarDesc* var);
H
hutuxian 已提交
243 244
};
#endif
L
lilong12 已提交
245

246 247
}  // namespace framework
}  // namespace paddle