ops.py 21.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
P
peizhilin 已提交
16
import os
17
from .layer_function_generator import generate_layer_fn, generate_activation_fn, add_sample_code
C
chengduo 已提交
18
from .. import core
19 20
from ..framework import convert_np_dtype_to_dtype_, Variable
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21
from paddle.utils import deprecated
Y
Yang Yu 已提交
22

23
__activations_noattr__ = [
24 25
    'sigmoid',
    'logsigmoid',
26 27 28 29 30 31
    'tanh_shrink',
    'softplus',
    'softsign',
]

__unary_func__ = [
32 33
    'exp',
    'tanh',
34
    'atan',
35
    'sqrt',
Z
zhoukunsheng 已提交
36
    'rsqrt',
37 38 39
    'abs',
    'ceil',
    'floor',
C
add cos  
chengduoZH 已提交
40
    'cos',
41
    'acos',
C
add sin  
chengduoZH 已提交
42
    'sin',
43
    'sinh',
44
    'asin',
45
    'cosh',
46 47 48
    'round',
    'reciprocal',
    'square',
Y
Yu Yang 已提交
49 50
]

X
Xin Pan 已提交
51
__all__ = []
Y
Yang Yu 已提交
52

Y
Yu Yang 已提交
53
for _OP in set(__all__):
54
    globals()[_OP] = generate_layer_fn(_OP)
Y
yuyang18 已提交
55

S
sneaxiy 已提交
56 57 58 59 60
# It is a hot fix in some unittest using:
#   fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals()['_scale'] = generate_layer_fn('scale')

S
sneaxiy 已提交
61 62
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')

63
__all__ += __activations_noattr__
64
__all__ += __unary_func__
65 66

for _OP in set(__activations_noattr__):
67 68 69 70 71 72 73 74 75
    func = generate_activation_fn(_OP)
    func = deprecated(
        since="2.0.0", update_to="paddle.nn.functional.%s" % (_OP))(func)
    globals()[_OP] = func

for _OP in set(__unary_func__):
    func = generate_activation_fn(_OP)
    func = deprecated(since="2.0.0", update_to="paddle.%s" % (_OP))(func)
    globals()[_OP] = func
76

77 78 79 80 81 82 83
add_sample_code(globals()["sigmoid"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
84
        paddle.disable_static()
85 86

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
87
        x = paddle.to_variable(x_data)
88 89 90 91 92 93 94 95 96 97 98 99 100
        out = F.sigmoid(x)
        print(out.numpy())
        # [0.40131234 0.450166   0.52497919 0.57444252]

""")

add_sample_code(globals()["logsigmoid"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
101
        paddle.disable_static()
102 103

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
104
        x = paddle.to_variable(x_data)
105 106 107 108 109 110 111 112 113 114 115 116
        out = F.logsigmoid(x)
        print(out.numpy())
        # [-0.91301525 -0.79813887 -0.64439666 -0.55435524]

""")

add_sample_code(globals()["exp"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
117
        paddle.disable_static()
118 119

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
120
        x = paddle.to_variable(x_data)
121 122 123 124 125 126 127 128 129 130 131 132
        out = paddle.exp(x)
        print(out.numpy())
        # [0.67032005 0.81873075 1.10517092 1.34985881]

""")

add_sample_code(globals()["tanh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
133
        paddle.disable_static()
134 135

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
136
        x = paddle.to_variable(x_data)
137 138 139 140 141 142 143 144 145 146 147 148
        out = paddle.tanh(x)
        print(out.numpy())
        # [-0.37994896 -0.19737532  0.09966799  0.29131261]

""")

add_sample_code(globals()["atan"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
149
        paddle.disable_static()
150 151

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
152
        x = paddle.to_variable(x_data)
153 154 155 156 157 158 159 160 161 162 163 164 165
        out = paddle.atan(x)
        print(out.numpy())
        # [-0.38050638 -0.19739556  0.09966865  0.29145679]

""")

add_sample_code(globals()["tanh_shrink"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
166
        paddle.disable_static()
167 168

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
169
        x = paddle.to_variable(x_data)
170 171 172 173 174 175 176 177 178 179 180 181
        out = F.tanh_shrink(x)
        print(out.numpy())
        # [-0.02005104 -0.00262468  0.00033201  0.00868739]

""")

add_sample_code(globals()["sqrt"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
182
        paddle.disable_static()
183 184

        x_data = np.array([0.1, 0.2, 0.3, 0.4])
185
        x = paddle.to_variable(x_data)
186 187 188 189 190 191 192 193 194 195 196 197
        out = paddle.sqrt(x)
        print(out.numpy())
        # [0.31622777 0.4472136  0.54772256 0.63245553]

""")

add_sample_code(globals()["rsqrt"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
198
        paddle.disable_static()
199 200

        x_data = np.array([0.1, 0.2, 0.3, 0.4])
201
        x = paddle.to_variable(x_data)
202 203 204 205 206 207 208 209 210 211 212 213
        out = paddle.rsqrt(x)
        print(out.numpy())
        # [3.16227766 2.23606798 1.82574186 1.58113883]

""")

add_sample_code(globals()["abs"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
214
        paddle.disable_static()
215 216

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
217
        x = paddle.to_variable(x_data)
218 219 220 221 222 223 224 225 226 227 228 229
        out = paddle.abs(x)
        print(out.numpy())
        # [0.4 0.2 0.1 0.3]

""")

add_sample_code(globals()["ceil"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
230
        paddle.disable_static()
231 232

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
233
        x = paddle.to_variable(x_data)
234 235 236 237 238 239 240 241 242 243 244 245
        out = paddle.ceil(x)
        print(out.numpy())
        # [-0. -0.  1.  1.]

""")

add_sample_code(globals()["floor"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
246
        paddle.disable_static()
247 248

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
249
        x = paddle.to_variable(x_data)
250 251 252 253 254 255 256 257 258 259 260 261
        out = paddle.floor(x)
        print(out.numpy())
        # [-1. -1.  0.  0.]

""")

add_sample_code(globals()["cos"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
262
        paddle.disable_static()
263 264

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
265
        x = paddle.to_variable(x_data)
266 267 268 269 270 271 272 273 274 275 276 277
        out = paddle.cos(x)
        print(out.numpy())
        # [0.92106099 0.98006658 0.99500417 0.95533649]

""")

add_sample_code(globals()["acos"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
278
        paddle.disable_static()
279 280

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
281
        x = paddle.to_variable(x_data)
282 283 284 285 286 287 288 289 290 291 292 293
        out = paddle.acos(x)
        print(out.numpy())
        # [1.98231317 1.77215425 1.47062891 1.26610367]

""")

add_sample_code(globals()["sin"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
294
        paddle.disable_static()
295 296

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
297
        x = paddle.to_variable(x_data)
298 299 300 301 302 303 304 305 306 307 308 309
        out = paddle.sin(x)
        print(out.numpy())
        # [-0.38941834 -0.19866933  0.09983342  0.29552021]

""")

add_sample_code(globals()["asin"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
310
        paddle.disable_static()
311 312

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
313
        x = paddle.to_variable(x_data)
314 315 316 317 318 319 320 321 322 323 324 325
        out = paddle.asin(x)
        print(out.numpy())
        # [-0.41151685 -0.20135792  0.10016742  0.30469265]

""")

add_sample_code(globals()["cosh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
326
        paddle.disable_static()
327 328

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
329
        x = paddle.to_variable(x_data)
330 331 332 333 334 335 336 337 338 339 340 341
        out = paddle.cosh(x)
        print(out.numpy())
        # [1.08107237 1.02006676 1.00500417 1.04533851]

""")

add_sample_code(globals()["sinh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
342
        paddle.disable_static()
343 344

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
345
        x = paddle.to_variable(x_data)
346 347 348 349 350 351 352 353 354 355 356 357
        out = paddle.sinh(x)
        print(out.numpy())
        # [-0.41075233 -0.201336    0.10016675  0.30452029]

""")

add_sample_code(globals()["round"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
358
        paddle.disable_static()
359 360

        x_data = np.array([-0.5, -0.2, 0.6, 1.5])
361
        x = paddle.to_variable(x_data)
362 363 364 365 366 367 368 369 370 371 372 373
        out = paddle.round(x)
        print(out.numpy())
        # [-1. -0.  1.  2.]

""")

add_sample_code(globals()["reciprocal"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
374
        paddle.disable_static()
375 376

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
377
        x = paddle.to_variable(x_data)
378 379 380 381 382 383 384 385 386 387 388 389
        out = paddle.reciprocal(x)
        print(out.numpy())
        # [-2.5        -5.         10.          3.33333333]

""")

add_sample_code(globals()["square"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
390
        paddle.disable_static()
391 392

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
393
        x = paddle.to_variable(x_data)
394 395 396 397 398 399 400 401 402 403 404 405 406
        out = paddle.square(x)
        print(out.numpy())
        # [0.16 0.04 0.01 0.09]

""")

add_sample_code(globals()["softplus"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
407
        paddle.disable_static()
408 409

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
410
        x = paddle.to_variable(x_data)
411 412 413 414 415 416 417 418 419 420 421 422 423
        out = F.softplus(x)
        print(out.numpy())
        # [0.51301525 0.59813887 0.74439666 0.85435524]

""")

add_sample_code(globals()["softsign"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
424
        paddle.disable_static()
425 426

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
427
        x = paddle.to_variable(x_data)
428 429 430 431 432 433
        out = F.softsign(x)
        print(out.numpy())
        # [-0.28571429 -0.16666667  0.09090909  0.23076923]

""")

434 435 436 437 438 439
__all__ += ['softshrink']

_softshrink_ = generate_layer_fn('softshrink')


def softshrink(x, alpha=None):
440 441 442
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')

443 444 445 446 447 448 449 450 451 452 453 454
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            if name == 'alpha':
                kwargs['lambda'] = val
            else:
                kwargs[name] = val
    return _softshrink_(**kwargs)


softshrink.__doc__ = """
455 456 457
	:alias_main: paddle.nn.functional.softshrink
	:alias: paddle.nn.functional.softshrink,paddle.nn.functional.activation.softshrink
	:old_api: paddle.fluid.layers.softshrink
S
swtkiwi 已提交
458

459 460 461
:strong:`Softshrink Activation Operator`

..  math::
462 463 464 465 466
    out = \\begin{cases}
            x - \\alpha, \\text{if } x > \\alpha \\\\
            x + \\alpha, \\text{if } x < -\\alpha \\\\
            0,  \\text{otherwise}
          \\end{cases}
467 468 469


Args:
470 471
    x: Input of Softshrink operator, an N-D Tensor, with data type float32, float64 or float16.
    alpha (float): non-negative offset
472 473
    
Returns:
474
    Output of Softshrink operator with the same type of input.
475 476 477 478 479

Examples:
    .. code-block:: python
    
        import paddle.fluid as fluid
480
        data = fluid.data(name="input", shape=[None, 784])
481 482 483
        result = fluid.layers.softshrink(x=data, alpha=0.3)
"""

Y
yuyang18 已提交
484 485 486 487 488
__all__ += ['hard_shrink']

_hard_shrink_ = generate_layer_fn('hard_shrink')


489
@deprecated(since="2.0.0", update_to="paddle.nn.functional.hardshrink")
Y
yuyang18 已提交
490
def hard_shrink(x, threshold=None):
491 492 493
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hard_shrink')

494
    locals_var = locals().copy()
Y
yuyang18 已提交
495
    kwargs = dict()
496
    for name, val in locals_var.items():
Y
yuyang18 已提交
497 498 499 500 501
        if val is not None:
            kwargs[name] = val
    return _hard_shrink_(**kwargs)


Y
yuyang18 已提交
502
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
Y
yuyang18 已提交
503 504
Examples:

505
    >>> import paddle.fluid as fluid
Y
yuyang18 已提交
506 507 508
    >>> data = fluid.layers.data(name="input", shape=[784])
    >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
Y
yuyang18 已提交
509

W
wopeizl 已提交
510 511 512 513 514
__all__ += ['cumsum']

_cum_sum_ = generate_layer_fn('cumsum')


515 516 517 518
@deprecated(
    since="2.0.0",
    update_to="paddle.cumsum",
    reason="New APIs for Paddle 2.0 are coming.")
W
wopeizl 已提交
519
def cumsum(x, axis=None, exclusive=None, reverse=None):
520
    check_type(x, 'x', (Variable), 'cumsum')
521
    locals_var = locals().copy()
W
wopeizl 已提交
522
    kwargs = dict()
523
    for name, val in locals_var.items():
W
wopeizl 已提交
524 525 526 527 528
        if val is not None:
            kwargs[name] = val
    return _cum_sum_(**kwargs)


L
liu zhengxi 已提交
529
cumsum.__doc__ = """
530 531 532
	:alias_main: paddle.cumsum
	:alias: paddle.cumsum,paddle.tensor.cumsum,paddle.tensor.math.cumsum
	:old_api: paddle.fluid.layers.cumsum
S
swtkiwi 已提交
533

L
liu zhengxi 已提交
534
The cumulative sum of the elements along a given axis. By default, the first element of the result is the same of the first element of the input. If exlusive is true, the first element of the result is 0.
W
wopeizl 已提交
535

L
liu zhengxi 已提交
536 537
Args:
    x (Variable): Input of cumsum operator, the Tensor/LoDTensor needed to be cumsumed. 
T
tianshuo78520a 已提交
538
    axis (int, optional): The dimension to accumulate along. -1 means the last dimension. Default is -1.
L
liu zhengxi 已提交
539 540 541 542 543 544 545 546 547 548 549 550
    exclusive (bool, optional): Whether to perform exclusive cumsum. Default is False.
    reverse (bool, optional): If true, the cumsum is performed in the reversed direction. Default is False.

Returns:
    Variable(Tensor/LoDTensor): The result of cumsum operator, output of cumsum operator. 

Examples:
    .. code-block:: python
        
        import paddle.fluid as fluid
        data = fluid.layers.data(name="input", shape=[32, 784])
        result = fluid.layers.cumsum(data, axis=0)
W
wopeizl 已提交
551
"""
Y
yuyang18 已提交
552 553 554 555 556 557 558

__all__ += ['thresholded_relu']

_thresholded_relu_ = generate_layer_fn('thresholded_relu')


def thresholded_relu(x, threshold=None):
559 560 561
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')

562
    locals_var = locals().copy()
Y
yuyang18 已提交
563
    kwargs = dict()
564
    for name, val in locals_var.items():
Y
yuyang18 已提交
565 566 567
        if val is not None:
            kwargs[name] = val

C
chengduo 已提交
568
    return _thresholded_relu_(**kwargs)
Y
yuyang18 已提交
569 570


571
thresholded_relu.__doc__ = """
572 573 574
	:alias_main: paddle.nn.functional.thresholded_relu
	:alias: paddle.nn.functional.thresholded_relu,paddle.nn.functional.activation.thresholded_relu
	:old_api: paddle.fluid.layers.thresholded_relu
S
swtkiwi 已提交
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
:strong:`Thresholded ReLU Activation Operator`

Equation:
    ..  math::
        out = \\begin{cases}
            x, &if x > threshold \\\\
            0, &otherwise
            \\end{cases}

Args:
    x(Variable): The input of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64.
        
    threshold(float, optional): The threshold value. Note that if the arg `threshold` is not set, the threshold in the equation is 1.0.

Returns:

    Variable: The output of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Y
yuyang18 已提交
594
Examples:
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.thresholded_relu(x, threshold=0.1)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
621

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.thresholded_relu(x, threshold=0.1)
            y_np = y.numpy()
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
641
"""
F
Feiyu Chan 已提交
642 643 644 645 646 647

__all__ += ['gelu']

_gelu_ = generate_layer_fn('gelu')


648
def gelu(x, approximate=False):
F
Feiyu Chan 已提交
649 650 651 652 653 654 655 656 657
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _gelu_(**kwargs)


gelu.__doc__ = """
658 659 660
	:alias_main: paddle.nn.functional.gelu
	:alias: paddle.nn.functional.gelu,paddle.nn.functional.activation.gelu
	:old_api: paddle.fluid.layers.gelu
S
swtkiwi 已提交
661

F
Feiyu Chan 已提交
662 663 664 665
:strong:`GeLU Activation Operator`
For more details, see [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415).

Equation:
666 667 668 669 670
    if approximate is True
    ..  math::
        out = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else
F
Feiyu Chan 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    ..  math::
        out = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

Args:

    x(Variable): The input of GeLU op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of GeLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.gelu(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #         [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.gelu(x)
            y_np = y.numpy()
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #        [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)
"""
F
Feiyu Chan 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745

__all__ += ['erf']

_erf_ = generate_layer_fn('erf')


def erf(x):
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _erf_(**kwargs)


erf.__doc__ = """
746 747 748
	:alias_main: paddle.erf
	:alias: paddle.erf,paddle.tensor.erf,paddle.tensor.math.erf,paddle.nn.functional.erf,paddle.nn.functional.activation.erf
	:old_api: paddle.fluid.layers.erf
S
swtkiwi 已提交
749

F
Feiyu Chan 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
:strong:`Erf Operator`
For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function).

Equation:
    ..  math::
        out = \\frac{2}{\\sqrt{\\pi}} \\int_{0}^{x}e^{- \\eta^{2}}d\\eta

Args:

    x(Variable): The input of Erf op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of Erf op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.erf(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.erf(x)
            y_np = y.numpy()
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)
"""