ops.py 13.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
P
peizhilin 已提交
16
import os
17
from .layer_function_generator import generate_layer_fn, generate_activation_fn
C
chengduo 已提交
18
from .. import core
19 20
from ..framework import convert_np_dtype_to_dtype_, Variable
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
Y
Yang Yu 已提交
21

22
__activations_noattr__ = [
23 24 25 26
    'sigmoid',
    'logsigmoid',
    'exp',
    'tanh',
27
    'atan',
28 29
    'tanh_shrink',
    'sqrt',
Z
zhoukunsheng 已提交
30
    'rsqrt',
31 32 33
    'abs',
    'ceil',
    'floor',
C
add cos  
chengduoZH 已提交
34
    'cos',
35 36
    'acos',
    'asin',
C
add sin  
chengduoZH 已提交
37
    'sin',
38 39 40 41 42
    'round',
    'reciprocal',
    'square',
    'softplus',
    'softsign',
Y
Yu Yang 已提交
43 44
]

X
Xin Pan 已提交
45
__all__ = []
Y
Yang Yu 已提交
46

Y
Yu Yang 已提交
47
for _OP in set(__all__):
48
    globals()[_OP] = generate_layer_fn(_OP)
Y
yuyang18 已提交
49

S
sneaxiy 已提交
50 51 52 53 54
# It is a hot fix in some unittest using:
#   fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals()['_scale'] = generate_layer_fn('scale')

S
sneaxiy 已提交
55 56
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')

57 58 59
__all__ += __activations_noattr__

for _OP in set(__activations_noattr__):
60
    globals()[_OP] = generate_activation_fn(_OP)
61

62 63 64 65 66 67
__all__ += ['softshrink']

_softshrink_ = generate_layer_fn('softshrink')


def softshrink(x, alpha=None):
68 69 70
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')

71 72 73 74 75 76 77 78 79 80 81 82
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            if name == 'alpha':
                kwargs['lambda'] = val
            else:
                kwargs[name] = val
    return _softshrink_(**kwargs)


softshrink.__doc__ = """
S
swtkiwi 已提交
83 84 85 86
	:alias_main: paddle.nn.functional.softshrink
	:alias: paddle.nn.functional.softshrink,paddle.nn.functional.activation.softshrink
	:old_api: paddle.fluid.layers.softshrink

87 88 89
:strong:`Softshrink Activation Operator`

..  math::
90 91 92 93 94
    out = \\begin{cases}
            x - \\alpha, \\text{if } x > \\alpha \\\\
            x + \\alpha, \\text{if } x < -\\alpha \\\\
            0,  \\text{otherwise}
          \\end{cases}
95 96 97


Args:
98 99
    x: Input of Softshrink operator, an N-D Tensor, with data type float32, float64 or float16.
    alpha (float): non-negative offset
100 101
    
Returns:
102
    Output of Softshrink operator with the same type of input.
103 104 105 106 107

Examples:
    .. code-block:: python
    
        import paddle.fluid as fluid
108
        data = fluid.data(name="input", shape=[None, 784])
109 110 111
        result = fluid.layers.softshrink(x=data, alpha=0.3)
"""

Y
yuyang18 已提交
112 113 114 115 116 117
__all__ += ['hard_shrink']

_hard_shrink_ = generate_layer_fn('hard_shrink')


def hard_shrink(x, threshold=None):
118 119 120
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hard_shrink')

121
    locals_var = locals().copy()
Y
yuyang18 已提交
122
    kwargs = dict()
123
    for name, val in locals_var.items():
Y
yuyang18 已提交
124 125 126 127 128
        if val is not None:
            kwargs[name] = val
    return _hard_shrink_(**kwargs)


Y
yuyang18 已提交
129
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
S
swtkiwi 已提交
130 131 132 133
	:alias_main: paddle.nn.functional.hard_shrink
	:alias: paddle.nn.functional.hard_shrink,paddle.nn.functional.activation.hard_shrink
	:old_api: paddle.fluid.layers.hard_shrink

Y
yuyang18 已提交
134 135
Examples:

136
    >>> import paddle.fluid as fluid
Y
yuyang18 已提交
137 138 139
    >>> data = fluid.layers.data(name="input", shape=[784])
    >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
Y
yuyang18 已提交
140

W
wopeizl 已提交
141 142 143 144 145 146
__all__ += ['cumsum']

_cum_sum_ = generate_layer_fn('cumsum')


def cumsum(x, axis=None, exclusive=None, reverse=None):
147
    check_type(x, 'x', (Variable), 'cumsum')
148
    locals_var = locals().copy()
W
wopeizl 已提交
149
    kwargs = dict()
150
    for name, val in locals_var.items():
W
wopeizl 已提交
151 152 153 154 155
        if val is not None:
            kwargs[name] = val
    return _cum_sum_(**kwargs)


L
liu zhengxi 已提交
156
cumsum.__doc__ = """
S
swtkiwi 已提交
157 158 159 160
	:alias_main: paddle.cumsum
	:alias: paddle.cumsum,paddle.tensor.cumsum,paddle.tensor.math.cumsum
	:old_api: paddle.fluid.layers.cumsum

L
liu zhengxi 已提交
161
The cumulative sum of the elements along a given axis. By default, the first element of the result is the same of the first element of the input. If exlusive is true, the first element of the result is 0.
W
wopeizl 已提交
162

L
liu zhengxi 已提交
163 164
Args:
    x (Variable): Input of cumsum operator, the Tensor/LoDTensor needed to be cumsumed. 
T
tianshuo78520a 已提交
165
    axis (int, optional): The dimension to accumulate along. -1 means the last dimension. Default is -1.
L
liu zhengxi 已提交
166 167 168 169 170 171 172 173 174 175 176 177
    exclusive (bool, optional): Whether to perform exclusive cumsum. Default is False.
    reverse (bool, optional): If true, the cumsum is performed in the reversed direction. Default is False.

Returns:
    Variable(Tensor/LoDTensor): The result of cumsum operator, output of cumsum operator. 

Examples:
    .. code-block:: python
        
        import paddle.fluid as fluid
        data = fluid.layers.data(name="input", shape=[32, 784])
        result = fluid.layers.cumsum(data, axis=0)
W
wopeizl 已提交
178
"""
Y
yuyang18 已提交
179 180 181 182 183 184 185

__all__ += ['thresholded_relu']

_thresholded_relu_ = generate_layer_fn('thresholded_relu')


def thresholded_relu(x, threshold=None):
186 187 188
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')

189
    locals_var = locals().copy()
Y
yuyang18 已提交
190
    kwargs = dict()
191
    for name, val in locals_var.items():
Y
yuyang18 已提交
192 193 194
        if val is not None:
            kwargs[name] = val

C
chengduo 已提交
195
    return _thresholded_relu_(**kwargs)
Y
yuyang18 已提交
196 197


198
thresholded_relu.__doc__ = """
S
swtkiwi 已提交
199 200 201 202
	:alias_main: paddle.nn.functional.thresholded_relu
	:alias: paddle.nn.functional.thresholded_relu,paddle.nn.functional.activation.thresholded_relu
	:old_api: paddle.fluid.layers.thresholded_relu

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
:strong:`Thresholded ReLU Activation Operator`

Equation:
    ..  math::
        out = \\begin{cases}
            x, &if x > threshold \\\\
            0, &otherwise
            \\end{cases}

Args:
    x(Variable): The input of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64.
        
    threshold(float, optional): The threshold value. Note that if the arg `threshold` is not set, the threshold in the equation is 1.0.

Returns:

    Variable: The output of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Y
yuyang18 已提交
221
Examples:
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.thresholded_relu(x, threshold=0.1)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.thresholded_relu(x, threshold=0.1)
            y_np = y.numpy()
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
268
"""
F
Feiyu Chan 已提交
269 270 271 272 273 274

__all__ += ['gelu']

_gelu_ = generate_layer_fn('gelu')


275
def gelu(x, approximate=False):
F
Feiyu Chan 已提交
276 277 278 279 280 281 282 283 284
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _gelu_(**kwargs)


gelu.__doc__ = """
S
swtkiwi 已提交
285 286 287 288
	:alias_main: paddle.nn.functional.gelu
	:alias: paddle.nn.functional.gelu,paddle.nn.functional.activation.gelu
	:old_api: paddle.fluid.layers.gelu

F
Feiyu Chan 已提交
289 290 291 292
:strong:`GeLU Activation Operator`
For more details, see [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415).

Equation:
293 294 295 296 297
    if approximate is True
    ..  math::
        out = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else
F
Feiyu Chan 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    ..  math::
        out = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

Args:

    x(Variable): The input of GeLU op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of GeLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.gelu(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #         [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.gelu(x)
            y_np = y.numpy()
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #        [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)
"""
F
Feiyu Chan 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

__all__ += ['erf']

_erf_ = generate_layer_fn('erf')


def erf(x):
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _erf_(**kwargs)


erf.__doc__ = """
S
swtkiwi 已提交
373 374 375 376
	:alias_main: paddle.erf
	:alias: paddle.erf,paddle.tensor.erf,paddle.tensor.math.erf,paddle.nn.functional.erf,paddle.nn.functional.activation.erf
	:old_api: paddle.fluid.layers.erf

F
Feiyu Chan 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
:strong:`Erf Operator`
For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function).

Equation:
    ..  math::
        out = \\frac{2}{\\sqrt{\\pi}} \\int_{0}^{x}e^{- \\eta^{2}}d\\eta

Args:

    x(Variable): The input of Erf op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of Erf op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.erf(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.erf(x)
            y_np = y.numpy()
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)
"""