ops.py 13.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
P
peizhilin 已提交
16
import os
17
from .layer_function_generator import generate_layer_fn, generate_activation_fn
C
chengduo 已提交
18
from .. import core
19 20
from ..framework import convert_np_dtype_to_dtype_, Variable
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
Y
Yang Yu 已提交
21

22
__activations_noattr__ = [
23 24 25 26
    'sigmoid',
    'logsigmoid',
    'exp',
    'tanh',
27
    'atan',
28 29
    'tanh_shrink',
    'sqrt',
Z
zhoukunsheng 已提交
30
    'rsqrt',
31 32 33
    'abs',
    'ceil',
    'floor',
C
add cos  
chengduoZH 已提交
34
    'cos',
35 36
    'acos',
    'asin',
C
add sin  
chengduoZH 已提交
37
    'sin',
38 39
    'sinh',
    'cosh',
40 41 42 43 44
    'round',
    'reciprocal',
    'square',
    'softplus',
    'softsign',
Y
Yu Yang 已提交
45 46
]

X
Xin Pan 已提交
47
__all__ = []
Y
Yang Yu 已提交
48

Y
Yu Yang 已提交
49
for _OP in set(__all__):
50
    globals()[_OP] = generate_layer_fn(_OP)
Y
yuyang18 已提交
51

S
sneaxiy 已提交
52 53 54 55 56
# It is a hot fix in some unittest using:
#   fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals()['_scale'] = generate_layer_fn('scale')

S
sneaxiy 已提交
57 58
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')

59 60 61
__all__ += __activations_noattr__

for _OP in set(__activations_noattr__):
62
    globals()[_OP] = generate_activation_fn(_OP)
63

64 65 66 67 68 69
__all__ += ['softshrink']

_softshrink_ = generate_layer_fn('softshrink')


def softshrink(x, alpha=None):
70 71 72
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')

73 74 75 76 77 78 79 80 81 82 83 84
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            if name == 'alpha':
                kwargs['lambda'] = val
            else:
                kwargs[name] = val
    return _softshrink_(**kwargs)


softshrink.__doc__ = """
85 86 87
	:alias_main: paddle.nn.functional.softshrink
	:alias: paddle.nn.functional.softshrink,paddle.nn.functional.activation.softshrink
	:old_api: paddle.fluid.layers.softshrink
S
swtkiwi 已提交
88

89 90 91
:strong:`Softshrink Activation Operator`

..  math::
92 93 94 95 96
    out = \\begin{cases}
            x - \\alpha, \\text{if } x > \\alpha \\\\
            x + \\alpha, \\text{if } x < -\\alpha \\\\
            0,  \\text{otherwise}
          \\end{cases}
97 98 99


Args:
100 101
    x: Input of Softshrink operator, an N-D Tensor, with data type float32, float64 or float16.
    alpha (float): non-negative offset
102 103
    
Returns:
104
    Output of Softshrink operator with the same type of input.
105 106 107 108 109

Examples:
    .. code-block:: python
    
        import paddle.fluid as fluid
110
        data = fluid.data(name="input", shape=[None, 784])
111 112 113
        result = fluid.layers.softshrink(x=data, alpha=0.3)
"""

Y
yuyang18 已提交
114 115 116 117 118 119
__all__ += ['hard_shrink']

_hard_shrink_ = generate_layer_fn('hard_shrink')


def hard_shrink(x, threshold=None):
120 121 122
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hard_shrink')

123
    locals_var = locals().copy()
Y
yuyang18 已提交
124
    kwargs = dict()
125
    for name, val in locals_var.items():
Y
yuyang18 已提交
126 127 128 129 130
        if val is not None:
            kwargs[name] = val
    return _hard_shrink_(**kwargs)


Y
yuyang18 已提交
131
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
132 133 134
	:alias_main: paddle.nn.functional.hard_shrink
	:alias: paddle.nn.functional.hard_shrink,paddle.nn.functional.activation.hard_shrink
	:old_api: paddle.fluid.layers.hard_shrink
S
swtkiwi 已提交
135

Y
yuyang18 已提交
136 137
Examples:

138
    >>> import paddle.fluid as fluid
Y
yuyang18 已提交
139 140 141
    >>> data = fluid.layers.data(name="input", shape=[784])
    >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
Y
yuyang18 已提交
142

W
wopeizl 已提交
143 144 145 146 147 148
__all__ += ['cumsum']

_cum_sum_ = generate_layer_fn('cumsum')


def cumsum(x, axis=None, exclusive=None, reverse=None):
149
    check_type(x, 'x', (Variable), 'cumsum')
150
    locals_var = locals().copy()
W
wopeizl 已提交
151
    kwargs = dict()
152
    for name, val in locals_var.items():
W
wopeizl 已提交
153 154 155 156 157
        if val is not None:
            kwargs[name] = val
    return _cum_sum_(**kwargs)


L
liu zhengxi 已提交
158
cumsum.__doc__ = """
159 160 161
	:alias_main: paddle.cumsum
	:alias: paddle.cumsum,paddle.tensor.cumsum,paddle.tensor.math.cumsum
	:old_api: paddle.fluid.layers.cumsum
S
swtkiwi 已提交
162

L
liu zhengxi 已提交
163
The cumulative sum of the elements along a given axis. By default, the first element of the result is the same of the first element of the input. If exlusive is true, the first element of the result is 0.
W
wopeizl 已提交
164

L
liu zhengxi 已提交
165 166
Args:
    x (Variable): Input of cumsum operator, the Tensor/LoDTensor needed to be cumsumed. 
T
tianshuo78520a 已提交
167
    axis (int, optional): The dimension to accumulate along. -1 means the last dimension. Default is -1.
L
liu zhengxi 已提交
168 169 170 171 172 173 174 175 176 177 178 179
    exclusive (bool, optional): Whether to perform exclusive cumsum. Default is False.
    reverse (bool, optional): If true, the cumsum is performed in the reversed direction. Default is False.

Returns:
    Variable(Tensor/LoDTensor): The result of cumsum operator, output of cumsum operator. 

Examples:
    .. code-block:: python
        
        import paddle.fluid as fluid
        data = fluid.layers.data(name="input", shape=[32, 784])
        result = fluid.layers.cumsum(data, axis=0)
W
wopeizl 已提交
180
"""
Y
yuyang18 已提交
181 182 183 184 185 186 187

__all__ += ['thresholded_relu']

_thresholded_relu_ = generate_layer_fn('thresholded_relu')


def thresholded_relu(x, threshold=None):
188 189 190
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')

191
    locals_var = locals().copy()
Y
yuyang18 已提交
192
    kwargs = dict()
193
    for name, val in locals_var.items():
Y
yuyang18 已提交
194 195 196
        if val is not None:
            kwargs[name] = val

C
chengduo 已提交
197
    return _thresholded_relu_(**kwargs)
Y
yuyang18 已提交
198 199


200
thresholded_relu.__doc__ = """
201 202 203
	:alias_main: paddle.nn.functional.thresholded_relu
	:alias: paddle.nn.functional.thresholded_relu,paddle.nn.functional.activation.thresholded_relu
	:old_api: paddle.fluid.layers.thresholded_relu
S
swtkiwi 已提交
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
:strong:`Thresholded ReLU Activation Operator`

Equation:
    ..  math::
        out = \\begin{cases}
            x, &if x > threshold \\\\
            0, &otherwise
            \\end{cases}

Args:
    x(Variable): The input of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64.
        
    threshold(float, optional): The threshold value. Note that if the arg `threshold` is not set, the threshold in the equation is 1.0.

Returns:

    Variable: The output of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Y
yuyang18 已提交
223
Examples:
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.thresholded_relu(x, threshold=0.1)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.thresholded_relu(x, threshold=0.1)
            y_np = y.numpy()
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
270
"""
F
Feiyu Chan 已提交
271 272 273 274 275 276

__all__ += ['gelu']

_gelu_ = generate_layer_fn('gelu')


277
def gelu(x, approximate=False):
F
Feiyu Chan 已提交
278 279 280 281 282 283 284 285 286
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _gelu_(**kwargs)


gelu.__doc__ = """
287 288 289
	:alias_main: paddle.nn.functional.gelu
	:alias: paddle.nn.functional.gelu,paddle.nn.functional.activation.gelu
	:old_api: paddle.fluid.layers.gelu
S
swtkiwi 已提交
290

F
Feiyu Chan 已提交
291 292 293 294
:strong:`GeLU Activation Operator`
For more details, see [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415).

Equation:
295 296 297 298 299
    if approximate is True
    ..  math::
        out = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else
F
Feiyu Chan 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    ..  math::
        out = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

Args:

    x(Variable): The input of GeLU op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of GeLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.gelu(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #         [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.gelu(x)
            y_np = y.numpy()
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #        [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)
"""
F
Feiyu Chan 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

__all__ += ['erf']

_erf_ = generate_layer_fn('erf')


def erf(x):
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _erf_(**kwargs)


erf.__doc__ = """
375 376 377
	:alias_main: paddle.erf
	:alias: paddle.erf,paddle.tensor.erf,paddle.tensor.math.erf,paddle.nn.functional.erf,paddle.nn.functional.activation.erf
	:old_api: paddle.fluid.layers.erf
S
swtkiwi 已提交
378

F
Feiyu Chan 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
:strong:`Erf Operator`
For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function).

Equation:
    ..  math::
        out = \\frac{2}{\\sqrt{\\pi}} \\int_{0}^{x}e^{- \\eta^{2}}d\\eta

Args:

    x(Variable): The input of Erf op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of Erf op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.erf(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.erf(x)
            y_np = y.numpy()
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)
"""