ops.py 21.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
P
peizhilin 已提交
16
import os
17
from .layer_function_generator import generate_layer_fn, generate_activation_fn, add_sample_code
C
chengduo 已提交
18
from .. import core
19 20
from ..framework import convert_np_dtype_to_dtype_, Variable
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
Y
Yang Yu 已提交
21

22
__activations_noattr__ = [
23 24 25 26
    'sigmoid',
    'logsigmoid',
    'exp',
    'tanh',
27
    'atan',
28 29
    'tanh_shrink',
    'sqrt',
Z
zhoukunsheng 已提交
30
    'rsqrt',
31 32 33
    'abs',
    'ceil',
    'floor',
C
add cos  
chengduoZH 已提交
34
    'cos',
35 36
    'acos',
    'asin',
C
add sin  
chengduoZH 已提交
37
    'sin',
38 39
    'sinh',
    'cosh',
40 41 42 43 44
    'round',
    'reciprocal',
    'square',
    'softplus',
    'softsign',
Y
Yu Yang 已提交
45 46
]

X
Xin Pan 已提交
47
__all__ = []
Y
Yang Yu 已提交
48

Y
Yu Yang 已提交
49
for _OP in set(__all__):
50
    globals()[_OP] = generate_layer_fn(_OP)
Y
yuyang18 已提交
51

S
sneaxiy 已提交
52 53 54 55 56
# It is a hot fix in some unittest using:
#   fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals()['_scale'] = generate_layer_fn('scale')

S
sneaxiy 已提交
57 58
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')

59 60 61
__all__ += __activations_noattr__

for _OP in set(__activations_noattr__):
62
    globals()[_OP] = generate_activation_fn(_OP)
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
add_sample_code(globals()["sigmoid"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = F.sigmoid(x)
        print(out.numpy())
        # [0.40131234 0.450166   0.52497919 0.57444252]

""")

add_sample_code(globals()["logsigmoid"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = F.logsigmoid(x)
        print(out.numpy())
        # [-0.91301525 -0.79813887 -0.64439666 -0.55435524]

""")

add_sample_code(globals()["exp"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.exp(x)
        print(out.numpy())
        # [0.67032005 0.81873075 1.10517092 1.34985881]

""")

add_sample_code(globals()["tanh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.tanh(x)
        print(out.numpy())
        # [-0.37994896 -0.19737532  0.09966799  0.29131261]

""")

add_sample_code(globals()["atan"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.atan(x)
        print(out.numpy())
        # [-0.38050638 -0.19739556  0.09966865  0.29145679]

""")

add_sample_code(globals()["tanh_shrink"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = F.tanh_shrink(x)
        print(out.numpy())
        # [-0.02005104 -0.00262468  0.00033201  0.00868739]

""")

add_sample_code(globals()["sqrt"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([0.1, 0.2, 0.3, 0.4])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.sqrt(x)
        print(out.numpy())
        # [0.31622777 0.4472136  0.54772256 0.63245553]

""")

add_sample_code(globals()["rsqrt"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([0.1, 0.2, 0.3, 0.4])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.rsqrt(x)
        print(out.numpy())
        # [3.16227766 2.23606798 1.82574186 1.58113883]

""")

add_sample_code(globals()["abs"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.abs(x)
        print(out.numpy())
        # [0.4 0.2 0.1 0.3]

""")

add_sample_code(globals()["ceil"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.ceil(x)
        print(out.numpy())
        # [-0. -0.  1.  1.]

""")

add_sample_code(globals()["floor"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.floor(x)
        print(out.numpy())
        # [-1. -1.  0.  0.]

""")

add_sample_code(globals()["cos"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.cos(x)
        print(out.numpy())
        # [0.92106099 0.98006658 0.99500417 0.95533649]

""")

add_sample_code(globals()["acos"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.acos(x)
        print(out.numpy())
        # [1.98231317 1.77215425 1.47062891 1.26610367]

""")

add_sample_code(globals()["sin"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.sin(x)
        print(out.numpy())
        # [-0.38941834 -0.19866933  0.09983342  0.29552021]

""")

add_sample_code(globals()["asin"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.asin(x)
        print(out.numpy())
        # [-0.41151685 -0.20135792  0.10016742  0.30469265]

""")

add_sample_code(globals()["cosh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.cosh(x)
        print(out.numpy())
        # [1.08107237 1.02006676 1.00500417 1.04533851]

""")

add_sample_code(globals()["sinh"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.sinh(x)
        print(out.numpy())
        # [-0.41075233 -0.201336    0.10016675  0.30452029]

""")

add_sample_code(globals()["round"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.5, -0.2, 0.6, 1.5])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.round(x)
        print(out.numpy())
        # [-1. -0.  1.  2.]

""")

add_sample_code(globals()["reciprocal"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.reciprocal(x)
        print(out.numpy())
        # [-2.5        -5.         10.          3.33333333]

""")

add_sample_code(globals()["square"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = paddle.square(x)
        print(out.numpy())
        # [0.16 0.04 0.01 0.09]

""")

add_sample_code(globals()["softplus"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = F.softplus(x)
        print(out.numpy())
        # [0.51301525 0.59813887 0.74439666 0.85435524]

""")

add_sample_code(globals()["softsign"], r"""
Examples:
    .. code-block:: python

        import numpy as np
        import paddle
        import paddle.nn.functional as F
        paddle.enable_imperative()

        x_data = np.array([-0.4, -0.2, 0.1, 0.3])
        x = paddle.imperative.to_variable(x_data)
        out = F.softsign(x)
        print(out.numpy())
        # [-0.28571429 -0.16666667  0.09090909  0.23076923]

""")

421 422 423 424 425 426
__all__ += ['softshrink']

_softshrink_ = generate_layer_fn('softshrink')


def softshrink(x, alpha=None):
427 428 429
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')

430 431 432 433 434 435 436 437 438 439 440 441
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            if name == 'alpha':
                kwargs['lambda'] = val
            else:
                kwargs[name] = val
    return _softshrink_(**kwargs)


softshrink.__doc__ = """
442 443 444
	:alias_main: paddle.nn.functional.softshrink
	:alias: paddle.nn.functional.softshrink,paddle.nn.functional.activation.softshrink
	:old_api: paddle.fluid.layers.softshrink
S
swtkiwi 已提交
445

446 447 448
:strong:`Softshrink Activation Operator`

..  math::
449 450 451 452 453
    out = \\begin{cases}
            x - \\alpha, \\text{if } x > \\alpha \\\\
            x + \\alpha, \\text{if } x < -\\alpha \\\\
            0,  \\text{otherwise}
          \\end{cases}
454 455 456


Args:
457 458
    x: Input of Softshrink operator, an N-D Tensor, with data type float32, float64 or float16.
    alpha (float): non-negative offset
459 460
    
Returns:
461
    Output of Softshrink operator with the same type of input.
462 463 464 465 466

Examples:
    .. code-block:: python
    
        import paddle.fluid as fluid
467
        data = fluid.data(name="input", shape=[None, 784])
468 469 470
        result = fluid.layers.softshrink(x=data, alpha=0.3)
"""

Y
yuyang18 已提交
471 472 473 474 475 476
__all__ += ['hard_shrink']

_hard_shrink_ = generate_layer_fn('hard_shrink')


def hard_shrink(x, threshold=None):
477 478 479
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hard_shrink')

480
    locals_var = locals().copy()
Y
yuyang18 已提交
481
    kwargs = dict()
482
    for name, val in locals_var.items():
Y
yuyang18 已提交
483 484 485 486 487
        if val is not None:
            kwargs[name] = val
    return _hard_shrink_(**kwargs)


Y
yuyang18 已提交
488
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
489 490 491
	:alias_main: paddle.nn.functional.hard_shrink
	:alias: paddle.nn.functional.hard_shrink,paddle.nn.functional.activation.hard_shrink
	:old_api: paddle.fluid.layers.hard_shrink
S
swtkiwi 已提交
492

Y
yuyang18 已提交
493 494
Examples:

495
    >>> import paddle.fluid as fluid
Y
yuyang18 已提交
496 497 498
    >>> data = fluid.layers.data(name="input", shape=[784])
    >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
Y
yuyang18 已提交
499

W
wopeizl 已提交
500 501 502 503 504 505
__all__ += ['cumsum']

_cum_sum_ = generate_layer_fn('cumsum')


def cumsum(x, axis=None, exclusive=None, reverse=None):
506
    check_type(x, 'x', (Variable), 'cumsum')
507
    locals_var = locals().copy()
W
wopeizl 已提交
508
    kwargs = dict()
509
    for name, val in locals_var.items():
W
wopeizl 已提交
510 511 512 513 514
        if val is not None:
            kwargs[name] = val
    return _cum_sum_(**kwargs)


L
liu zhengxi 已提交
515
cumsum.__doc__ = """
516 517 518
	:alias_main: paddle.cumsum
	:alias: paddle.cumsum,paddle.tensor.cumsum,paddle.tensor.math.cumsum
	:old_api: paddle.fluid.layers.cumsum
S
swtkiwi 已提交
519

L
liu zhengxi 已提交
520
The cumulative sum of the elements along a given axis. By default, the first element of the result is the same of the first element of the input. If exlusive is true, the first element of the result is 0.
W
wopeizl 已提交
521

L
liu zhengxi 已提交
522 523
Args:
    x (Variable): Input of cumsum operator, the Tensor/LoDTensor needed to be cumsumed. 
T
tianshuo78520a 已提交
524
    axis (int, optional): The dimension to accumulate along. -1 means the last dimension. Default is -1.
L
liu zhengxi 已提交
525 526 527 528 529 530 531 532 533 534 535 536
    exclusive (bool, optional): Whether to perform exclusive cumsum. Default is False.
    reverse (bool, optional): If true, the cumsum is performed in the reversed direction. Default is False.

Returns:
    Variable(Tensor/LoDTensor): The result of cumsum operator, output of cumsum operator. 

Examples:
    .. code-block:: python
        
        import paddle.fluid as fluid
        data = fluid.layers.data(name="input", shape=[32, 784])
        result = fluid.layers.cumsum(data, axis=0)
W
wopeizl 已提交
537
"""
Y
yuyang18 已提交
538 539 540 541 542 543 544

__all__ += ['thresholded_relu']

_thresholded_relu_ = generate_layer_fn('thresholded_relu')


def thresholded_relu(x, threshold=None):
545 546 547
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')

548
    locals_var = locals().copy()
Y
yuyang18 已提交
549
    kwargs = dict()
550
    for name, val in locals_var.items():
Y
yuyang18 已提交
551 552 553
        if val is not None:
            kwargs[name] = val

C
chengduo 已提交
554
    return _thresholded_relu_(**kwargs)
Y
yuyang18 已提交
555 556


557
thresholded_relu.__doc__ = """
558 559 560
	:alias_main: paddle.nn.functional.thresholded_relu
	:alias: paddle.nn.functional.thresholded_relu,paddle.nn.functional.activation.thresholded_relu
	:old_api: paddle.fluid.layers.thresholded_relu
S
swtkiwi 已提交
561

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
:strong:`Thresholded ReLU Activation Operator`

Equation:
    ..  math::
        out = \\begin{cases}
            x, &if x > threshold \\\\
            0, &otherwise
            \\end{cases}

Args:
    x(Variable): The input of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64.
        
    threshold(float, optional): The threshold value. Note that if the arg `threshold` is not set, the threshold in the equation is 1.0.

Returns:

    Variable: The output of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Y
yuyang18 已提交
580
Examples:
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.thresholded_relu(x, threshold=0.1)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.thresholded_relu(x, threshold=0.1)
            y_np = y.numpy()
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
627
"""
F
Feiyu Chan 已提交
628 629 630 631 632 633

__all__ += ['gelu']

_gelu_ = generate_layer_fn('gelu')


634
def gelu(x, approximate=False):
F
Feiyu Chan 已提交
635 636 637 638 639 640 641 642 643
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _gelu_(**kwargs)


gelu.__doc__ = """
644 645 646
	:alias_main: paddle.nn.functional.gelu
	:alias: paddle.nn.functional.gelu,paddle.nn.functional.activation.gelu
	:old_api: paddle.fluid.layers.gelu
S
swtkiwi 已提交
647

F
Feiyu Chan 已提交
648 649 650 651
:strong:`GeLU Activation Operator`
For more details, see [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415).

Equation:
652 653 654 655 656
    if approximate is True
    ..  math::
        out = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else
F
Feiyu Chan 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    ..  math::
        out = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

Args:

    x(Variable): The input of GeLU op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of GeLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.gelu(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #         [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.gelu(x)
            y_np = y.numpy()
        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #        [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        y_np
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)
"""
F
Feiyu Chan 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731

__all__ += ['erf']

_erf_ = generate_layer_fn('erf')


def erf(x):
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _erf_(**kwargs)


erf.__doc__ = """
732 733 734
	:alias_main: paddle.erf
	:alias: paddle.erf,paddle.tensor.erf,paddle.tensor.math.erf,paddle.nn.functional.erf,paddle.nn.functional.activation.erf
	:old_api: paddle.fluid.layers.erf
S
swtkiwi 已提交
735

F
Feiyu Chan 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
:strong:`Erf Operator`
For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function).

Equation:
    ..  math::
        out = \\frac{2}{\\sqrt{\\pi}} \\int_{0}^{x}e^{- \\eta^{2}}d\\eta

Args:

    x(Variable): The input of Erf op, Tensor or LoDTensor, dtype: float32 or float64.

Returns:

    Variable: The output of Erf op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Examples:
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.erf(x)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)

    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.erf(x)
            y_np = y.numpy()
        data
        # array([[ 0.4643714 , -1.1509596 ,  1.2538221 ],
        #        [ 0.34369683,  0.27478245,  1.1805398 ]], dtype=float32)
        y_np
        # array([[ 0.48863927, -0.8964121 ,  0.9237998 ],
        #        [ 0.37307587,  0.30242872,  0.9049887 ]], dtype=float32)
"""