engine.py 74.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import json
17
import logging
18
import numbers
19 20
import os
import random
21

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.static.utils as auto_utils
26
from paddle import static, utils
27
from paddle.distributed import fleet
28 29 30
from paddle.fluid.executor import _to_name_str
from paddle.framework import IrGraph
from paddle.framework import _current_expected_place as _get_device
31
from paddle.framework import core, in_dynamic_mode
32
from paddle.metric import Metric
33
from paddle.static import InputSpec, Operator, Variable, global_scope
34

35 36 37
from ...utils.log_utils import get_logger
from ..interface import CollectionNames, fetch, get_collection
from ..strategy import Strategy
Z
zhaoyingli 已提交
38
from .callbacks import config_callbacks
39
from .cluster import Cluster, get_default_cluster
40 41 42
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
43 44
from .dist_loader import (
    DistributedDataLoader,
45
    DistributedDataLoaderFromGenerator,
46
)
47 48 49 50 51 52
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
53

54 55

class Engine:
56
    """
57 58
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
59 60 61 62 63 64 65
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
66 67
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
68 69 70 71 72 73 74 75 76 77 78 79 80 81
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            >>> import paddle
            >>> import paddle.vision.transforms as T
            >>> from paddle.distributed.fleet import auto
            >>> from paddle.vision.datasets import MNIST

            >>> transform = T.Compose([
            ...     T.Transpose(),
            ...     T.Normalize([127.5], [127.5])
            >>> ])
            >>> train_dataset = MNIST(mode='train', transform=transform)
            >>> valid_dataset = MNIST(mode='test', transform=transform)

            >>> model = paddle.vision.models.LeNet()
            >>> loss = paddle.nn.CrossEntropyLoss()
            >>> optimizer = paddle.optimizer.Adam(
            ...     learning_rate=0.001, parameters=model.parameters())
            >>> metrics = paddle.metric.Accuracy(topk=(1, 2))

            >>> engine = auto.Engine(model, loss, optimizer, metrics)
            >>> # fit
            >>> engine.fit(train_dataset,
            ...            epochs=2,
            ...            batch_size=64)
            >>> # evaluate
            >>> engine.evaluate(valid_dataset,
            ...                 batch_size=64)
            >>> # predict
            >>> engine.predict(valid_dataset,
            ...                batch_size=64)
            >>> # save
            >>> engine.save("./my_model")
            >>> # load
            >>> engine.load("./my_model")
115 116

    """
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):
        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
132 133 134 135
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
136 137 138
        self._parameter_list = (
            None if not model else [p.name for p in model.parameters()]
        )
139 140 141 142 143 144 145 146 147

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
148 149 150
        self._loss = loss

        if optimizer and not isinstance(
151
            optimizer,
152
            (paddle.optimizer.Optimizer),
153
        ):
154 155
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
156
            )
157
        self._optimizer = auto_utils.validate_opt(optimizer)
158 159

        metrics = metrics or []
160
        for metric in auto_utils.to_list(metrics):
161 162 163 164 165 166
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
167
        self._metrics = auto_utils.to_list(metrics)
168 169 170 171 172 173 174 175 176 177 178 179 180

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

181
        self._logger = get_logger(logging.INFO)
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

        self._json_config = None
        if cluster:
            self._cluster = cluster
        else:
            if os.getenv("PADDLE_AUTO_PARALLEL_CONFIG"):
                try:
                    path = os.getenv("PADDLE_AUTO_PARALLEL_CONFIG")
                    with open(path, "r") as f:
                        self._json_config = json.load(f)
                except Exception as e:
                    self._logger.info(
                        "Load json failed, please check json file, engine will run default config."
                    )
                    self._json_config = None
            self._cluster = get_default_cluster(self._json_config)

199
        if os.getenv("POD_NAME"):
200 201
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
202
            )
203
            fleet.init(is_collective=True)
204

205 206 207 208 209 210
        # for compute cost
        # TODO: remove _fwd_main_progs and _orig_optimizer
        self._fwd_dist_contexts = {}
        self._fwd_main_progs = {}
        self._orig_optimizer = copy.deepcopy(self._optimizer)

211
        self._executor = None
212 213 214
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
215

216 217
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
218
        self._orig_dist_context = get_default_distributed_context()
219
        self._dist_contexts = {}
220
        self._planners = {}
221 222
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
223 224
            "train": False,
            "eval": False,
225
            "predict": False,
226
        }
227 228 229 230
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
231
        self._losses = []
232

233
        self._mode = None
234 235
        self._skip_build = False
        self._outside_dataloader = False
236
        self._planned_mode = None
237 238
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
239 240 241 242 243
        self._acc_steps = 1
        if self._strategy.gradient_merge.enable:
            self._acc_steps = self._strategy.gradient_merge.k_steps
        elif self._strategy.pipeline.enable:
            self._acc_steps = self._strategy.pipeline.accumulate_steps
244

Z
zhaoyingli 已提交
245 246
        self.history = None

247
        paddle.framework.set_flags({'FLAGS_new_executor_sequential_run': 1})
248
        paddle.framework.set_flags({'FLAGS_new_executor_static_build': 1})
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
268
            raise TypeError(
C
chenxujun 已提交
269
                "Data should be a Dataset or IterableDataset, but received {}.".format(
270 271 272
                    type(data).__name__
                )
            )
273 274
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
275 276

        num_shards = self._strategy.dataset.num_shards
277

278 279 280 281 282 283 284 285 286 287 288 289
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
W
wanghuancoder 已提交
290
            elif isinstance(item, (Variable, core.eager.Tensor)):
291
                spec = InputSpec.from_tensor(item, name)
292
                _adjust_item_spec(num_shards, spec)
293 294 295 296
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
297
            elif isinstance(item, numbers.Number):
298
                specs.append(InputSpec([batch_size], type(item), name))
299 300 301 302 303 304
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

321
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
322
        if in_dynamic_mode() or self._dygraph_mode:
323 324
            raise ValueError("Only support static graph mode.")

325
        if inputs_spec:
326 327 328 329 330
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
331 332
            assert isinstance(
                inputs, list
333
            ), f"inputs should be list, but received {type(inputs)}"
334 335 336 337 338 339
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
340
        if labels_spec:
341 342 343 344 345
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
346 347
            assert isinstance(
                labels, list
348
            ), f"labels should be list, but received {type(labels)}"
349 350 351 352 353 354 355
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

356 357
        return inputs, labels

358
    def _prepare_reader(self, feed_list=[]):
359
        dist_context = self._dist_contexts[self._mode]
360
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
361 362 363 364
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
365 366 367
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
368 369 370 371 372 373 374 375 376 377 378 379 380
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
381 382
        # record the read ops' desc to insert to program of forward task_node
        read_ops_desc = []
383 384 385 386
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
387
            read_ops_desc.append(new_op_desc)
388 389 390
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

406 407 408 409 410
        # Insert read op to forward TaskNode for fleet executor if 1F1B pass is setted
        if (
            self.main_program._pipeline_opt
            and not auto_utils.use_new_executor()
        ):
411 412
            assert "tasks" in self.main_program._pipeline_opt["fleet_opt"]
            fleet_opt = self.main_program._pipeline_opt["fleet_opt"]
413 414 415 416 417 418
            fwd_task = None
            if self._strategy.pipeline.schedule_mode == "1F1B":
                fwd_task = fleet_opt["tasks"][1]
            elif self._strategy.pipeline.schedule_mode == "stream":
                fwd_task = fleet_opt["tasks"][0]
            assert fwd_task is not None
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
            fwd_prog = fwd_task.get_program()
            fwd_block = fwd_prog.global_block()

            for var in feed_list:
                if var.name not in fwd_block.vars:
                    fwd_block._clone_variable(var)

            for op_desc in read_ops_desc:
                new_op_desc = fwd_block.desc._prepend_op()
                new_op_desc.copy_from(op_desc)
                new_op = Operator(
                    fwd_block, new_op_desc, type=new_op_desc.type()
                )
                fwd_block.ops.insert(0, new_op)

            fwd_block._sync_with_cpp()
            fwd_task.set_program(fwd_prog)

437 438 439 440 441
    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
442 443
                    for name, value in data[0].items():
                        feeds[name] = value
444
                else:
445
                    raise ValueError(f"Unsupported data {data}")
446
            elif isinstance(data, dict):
447 448
                for name, value in data.items():
                    feeds[name] = value
449
            else:
450
                raise ValueError(f"Unsupported data {data}")
451
        if user_feeds is not None:
452 453 454 455 456
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
457 458
            for name, data in user_feeds.items():
                feeds[name] = data
459 460
        return feeds

461
    def _prepare_fetch(self, user_fetches, mode):
462
        if user_fetches is not None:
463 464 465 466 467
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
468
        fetch_names = []
469
        fetch_indices = []
470

471 472
        def _process_fetch_group(group_name, var_list):
            group_indices = []
473
            for var in var_list:
474 475 476 477 478 479 480 481
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
            fetch_indices.append(group_indices)

482 483
        dist_context = self._dist_contexts[mode]
        fetch_vars = dist_context.serial_fetch_vars
484
        if mode != "predict":
485
            _process_fetch_group("loss", fetch_vars["loss"])
486
        if mode != "predict":
487
            metrics = fetch_vars["metrics"]
488 489 490
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
491
            _process_fetch_group("outputs", fetch_vars["outputs"])
492
        for usr_fetch in user_fetches or []:
493 494
            var_name = _to_name_str(usr_fetch)
            fetch(var_name)
495 496 497
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
498
        var_list = user_fetches_collection or []
499 500 501
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

502 503 504 505 506 507 508 509 510 511
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
512
        logs = {}
513
        if epoch is not None:
Z
zhaoyingli 已提交
514
            logs["epoch"] = epoch
515
        if step is not None:
Z
zhaoyingli 已提交
516
            logs["step"] = step + 1
517
        if lr is not None:
Z
zhaoyingli 已提交
518
            logs["lr"] = lr
519 520
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
521
            # logging loss
522
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
523
            assert len(loss_indices) <= 1
524
            for idx in loss_indices:
525
                logs["loss"] = outs[idx]
526
            group_idx += 1
Z
zhaoyingli 已提交
527
            # logging metrics
528 529
            dist_context = self._dist_contexts[mode]
            metric_vars = dist_context.serial_fetch_vars["metrics"]
530 531 532 533 534 535 536 537 538
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
539
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
540
                            logs[metric.name()[i]] = res
541
                    group_idx += 1
Z
zhaoyingli 已提交
542 543 544 545 546 547 548
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
549 550
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
551 552
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
553 554 555 556
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
557 558
        logs["fetches"] = logs_fetch
        return logs
559

560
    def _prepare_program(self, mode, init_parameters=True):
561 562 563 564 565 566
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
567 568 569 570 571
        # Init comm
        self._init_comm()
        if init_parameters:
            # startup program
            self._initialize(mode)
572 573
        self._has_prepared[mode] = True

574
    def _build(self, mode):
575
        if in_dynamic_mode() or self._dygraph_mode:
576
            paddle.disable_static()
577 578 579
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

580
            self.program_helper = ProgramHelper(
581 582 583 584 585
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
586
            )
587
            # build forward main program
588 589
            with utils.unique_name.guard():
                self.program_helper.build_program(mode)
590

591 592 593
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
594

595 596
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
597
            outputs = self.program_helper.output_vars
598
            self._losses = self.program_helper.loss_vars
599
            metrics = self.program_helper.metric_vars
600

601
            paddle.enable_static()
602
        else:
603 604 605
            # build program in static mode
            dist_context = self._dist_contexts.get(mode, None)
            if dist_context is not None:
606 607
                return

608
            outputs = []
609
            metrics = []
610
            self._losses = []
611 612
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
613
            if not self._skip_build:
614 615 616
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
617 618 619 620 621 622 623
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

624
                    outputs = auto_utils.to_list(self._model(*self._inputs))
625

626
                    if mode != "predict" and self._loss:
627 628 629 630 631
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
632
                        self._losses = auto_utils.to_list(
633 634
                            self._loss(*(outputs + self._labels))
                        )
635

636
                    if mode != "predict" and (outputs or self._labels):
637 638
                        for metric in self._metrics:
                            metrics.append(
639
                                auto_utils.to_list(
640 641
                                    metric.compute(*(outputs + self._labels))
                                )
642
                            )
Z
zhaoyingli 已提交
643
            elif mode == "train":
644 645 646
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
647
                self._losses = auto_utils.to_list(self._loss)
648 649 650 651 652 653 654

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
655 656 657 658 659 660
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
661

662
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
663 664

        fetch_vars = {
665
            "outputs": paddle.utils.flatten(outputs),
666
            "loss": self._losses,
667
            "metrics": metrics,
668 669
        }

670 671 672
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

673 674 675
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
676
        self._dist_contexts[mode] = DistributedContext(
677 678 679
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
680 681 682 683 684
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
685
            self._json_config,
686 687 688 689 690 691
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
692 693 694 695
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
696
            self._json_config,
697
        )
698
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
699
        self._fwd_main_progs[mode] = serial_main_prog.clone()
700

701 702 703
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
704

705 706 707 708 709 710 711 712
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
713 714

        from .tuner.optimization_tuner import OptimizationTuner
715 716 717 718 719 720 721 722 723

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
724 725 726

        self._optimization_tuner.tune()

727
        if self._tuning.run_after_tuning:
728 729
            # update the strategy
            self._dist_contexts[
730 731
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
732

733 734 735 736 737 738
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

739 740
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
741

742 743 744 745
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
746
        # TODO: check this feed_list
747 748 749 750 751
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

752 753
        self._dp_world_sizes = []
        self._dp_ranks = []
754
        for feed_var in feed_list:
755
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
756
                self._cur_rank, feed_var, self._dist_contexts[mode]
757
            )
758 759
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
760

761
    def _parallel(self, mode, all_ranks=False):
762
        # Parallelize program based on the planner's results
L
Leo Chen 已提交
763
        # For now, the completer has to be passed to the Parallelizer,
C
chenxujun 已提交
764
        # because we may use it to complete the annotation of the backward and update.
765
        parallelizer = Parallelizer(
Y
yuehuayingxueluo 已提交
766 767 768
            mode,
            self._planners[mode].completer,
            self._dist_contexts[mode],
769
        )
770
        if not all_ranks:
771
            parallelizer.parallel(self._cur_rank, self._parameter_list)
772
        else:
773
            parallelizer.parallel_all(self._parameter_list)
774 775

    def _init_dist_context(self, mode):
776
        # Init dist_context['mode'] with the first planned dist_context
777 778 779 780 781 782 783 784 785 786
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
787 788 789 790 791 792 793 794
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
795 796
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

797
    def _init_comm(self):
798 799 800 801
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
802

803
            if self._strategy.auto_mode == "full_random":
804
                auto_utils.initialize_pg_in_full_mode(
805
                    all_process_groups, self._cur_rank
806
                )
807 808 809
            else:
                for process_group in all_process_groups:
                    process_group.instantiate()
810

811
    def _initialize(self, mode):
812
        self._place = _get_device()
813
        if isinstance(self._place, paddle.framework.CUDAPlace):
814 815 816
            self._place = paddle.framework.CUDAPlace(
                paddle.distributed.ParallelEnv().dev_id
            )
817

818 819 820 821 822
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

823
        dist_context = self._dist_contexts[mode]
824
        if self._dygraph_mode:
825
            dist_main_program = dist_context.dist_main_programs[self._cur_rank]
826 827 828
            self.program_helper.init(
                dist_main_program, self._place, dist_context
            )
829

830
        if self._executor is None:
831
            self._executor = paddle.static.Executor(self._place)
832
            uninitialized = []
833 834 835
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
836 837 838 839 840 841 842 843
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
844

845
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
846 847 848
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
849 850

        if self._strategy.reinit:
Z
zhaoyingli 已提交
851
            self._logger.info("NOTE: parameters will be re-initialized.")
852 853 854
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
855 856
            self._executor.run(dist_startup_prog)

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
874
        nvprof_range=[-1, -1],
875
    ):
876 877 878 879 880 881 882 883
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
884
                more than two items, train_sample_split specifies how to split these items into
885
                input and label. The items before it are input and the left are label. Default: None.
886
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
887 888 889
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
890
                is executed in one epoch before stating the next one. If None, it is equal to
891 892
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
893
                evaluation at the end of epoch. No evaluation will be done if set to None.
894
                Default: None. (Unsupported for now)
895
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
896 897
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
898 899
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
900 901 902
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
903 904
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
905 906 907 908
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
909
                0. Default None.
910 911
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)
912
            nvprof_range(list, optional): A list of integers indicating nvprof ranges in form of [start_step, end_step]. Note that if start_step >= end_step, the nvprof will not apply.
913 914 915 916 917 918 919 920

        Returns:
            None

        Examples:

            .. code-block:: python

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
                >>> import paddle
                >>> import paddle.vision.transforms as T
                >>> from paddle.distributed.fleet import auto
                >>> from paddle.vision.datasets import MNIST

                >>> transform = T.Compose([
                ...     T.Transpose(),
                ...     T.Normalize([127.5], [127.5])
                >>> ])
                >>> train_dataset = MNIST(mode='train', transform=transform)

                >>> model = paddle.vision.models.LeNet()
                >>> loss = paddle.nn.CrossEntropyLoss()
                >>> optimizer = paddle.optimizer.Adam(
                ...     learning_rate=0.001, parameters=model.parameters())
                >>> metrics = paddle.metric.Accuracy(topk=(1, 2))

                >>> engine = auto.Engine(model, loss, optimizer, metrics)
                >>> engine.fit(train_dataset,
                ...             epochs=2,
                ...             batch_size=64)
942
        """
943 944
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
945 946
            train_data, train_sample_split, batch_size
        )
947

948 949
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
950
        else:
951
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
        if auto_utils.use_new_executor():
            local_batch_size = self._validate_batch_size(batch_size)
            train_dataloader = self._prepare_dataloader(
                train_data,
                return_list=False,
                batch_size=local_batch_size,
                epochs=epochs,
                collate_fn=collate_fn,
            )
            steps_per_epoch = (
                len(train_dataloader)
                if steps_per_epoch is None
                else steps_per_epoch
            )
        else:
            micro_batch_size = self._validate_batch_size(batch_size)
            train_dataloader = self._prepare_dataloader_from_generator(
                dataset=train_data,
                capacity=70,
                iterable=False,
                batch_size=micro_batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
            )
            steps_per_epoch = train_dataloader._steps
            local_batch_size = micro_batch_size
            if self._strategy.pipeline.enable:
                local_batch_size = micro_batch_size * self._acc_steps
Z
zhaoyingli 已提交
982

983
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
984 985 986 987

        cbks = config_callbacks(
            callbacks,
            engine=self,
988
            batch_size=local_batch_size,
Z
zhaoyingli 已提交
989
            epochs=epochs,
990
            steps=steps_per_epoch,
Z
zhaoyingli 已提交
991 992 993 994 995
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
996 997 998
            acc_step=1
            if self._strategy.pipeline.enable
            else self._acc_steps,  # lr update once every local batch
Z
zhaoyingli 已提交
999 1000 1001 1002 1003 1004
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            for step, data in enumerate(train_dataloader):
                if auto_utils.use_new_executor():
                    feeds = self._validate_feed(data)
                else:
                    feeds = [{}]

                try:
                    for micro_feed in feeds:
                        with paddle.profiler.utils._nvprof_range(
                            iter_id=step,
                            start=nvprof_range[0],
                            end=nvprof_range[1],
                        ):
                            cbks.on_batch_begin('train', step, logs)
                            outs = self._executor.run(
                                self.main_program,
                                feed=micro_feed,
                                fetch_list=fetch_names,
                                use_program_cache=self._strategy.use_cache,
                                return_numpy=self._strategy.return_numpy,
                            )
                            lr = auto_utils.get_lr(self.optimizer)
                            logs = self._prepare_logger(
                                outs,
                                epoch,
                                step,
                                lr,
                                fetch_names,
                                fetch_indices,
                                self._mode,
                            )
                            cbks.on_batch_end('train', step, logs)
                except core.EOFException:
                    break

                if steps_per_epoch and step >= steps_per_epoch:
                    if not auto_utils.use_new_executor():
                        train_dataloader._reset()
                    break
Z
zhaoyingli 已提交
1045 1046

            if valid_data and (epoch + 1) % valid_freq == 0:
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
1057
                val_logs = {
1058
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1081 1082 1083 1084
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
1085 1086
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
1087
                to be a (input, label) pair by default and has two items. If each sample has
1088
                more than two items, valid_sample_split specifies how to split these items into
1089
                input and label. The items before it are input and the left are label. Default: None.
1090
            batch_size (int, optional): The batch size of valid_data. The user's data will
1091
                be used directly without batching if set to None. Default: 1.
1092 1093
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
1094 1095 1096 1097 1098
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1099
                during evaluating. Default: None. (Unused for now)
1100 1101 1102 1103 1104 1105 1106 1107

        Returns:
            None

        Examples:

            .. code-block:: python

1108 1109 1110 1111
                >>> import paddle
                >>> import paddle.vision.transforms as T
                >>> from paddle.distributed.fleet import auto
                >>> from paddle.vision.datasets import MNIST
1112

1113 1114 1115 1116 1117
                >>> transform = T.Compose([
                ...     T.Transpose(),
                ...     T.Normalize([127.5], [127.5])
                >>> ])
                >>> valid_dataset = MNIST(mode='test', transform=transform)
1118

1119 1120 1121
                >>> model = paddle.vision.models.LeNet()
                >>> loss = paddle.nn.CrossEntropyLoss()
                >>> metrics = paddle.metric.Accuracy(topk=(1, 2))
1122

1123 1124
                >>> engine = auto.Engine(model, loss, metrics=metrics)
                >>> engine.evaluate(valid_dataset, batch_size=64)
1125 1126

        """
1127 1128
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1129 1130
            valid_data, valid_sample_split, batch_size
        )
1131
        micro_batch_size = self._validate_batch_size(batch_size)
1132 1133
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1134
        else:
1135
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1136

1137 1138 1139 1140
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
1141
            batch_size=micro_batch_size,
1142
            steps_per_epoch=steps,
1143 1144
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1145

1146
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1147

Z
zhaoyingli 已提交
1148 1149 1150
        cbks = config_callbacks(
            callbacks,
            engine=self,
1151
            batch_size=micro_batch_size,
Z
zhaoyingli 已提交
1152 1153 1154 1155 1156 1157
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1158 1159 1160
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1161
        logs = {}
1162
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1163
            cbks.on_batch_begin('eval', step, logs)
1164
            try:
1165 1166
                outs = self._executor.run(
                    self.main_program,
1167
                    fetch_list=fetch_names,
1168
                    use_program_cache=self._strategy.use_cache,
1169 1170
                    return_numpy=self._strategy.return_numpy,
                )
1171
            except core.EOFException:
1172
                break
1173 1174 1175
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1176 1177
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1178
        self._reset_metrics()
Z
zhaoyingli 已提交
1179
        return logs
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1191 1192 1193 1194 1195 1196 1197
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1198
                more than two items, test_sample_split specifies how to split these items into
1199 1200 1201
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1202 1203
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

1218 1219 1220 1221
                >>> import paddle
                >>> import paddle.vision.transforms as T
                >>> from paddle.distributed.fleet import auto
                >>> from paddle.vision.datasets import MNIST
1222

1223 1224 1225 1226 1227
                >>> transform = T.Compose([
                ...     T.Transpose(),
                ...     T.Normalize([127.5], [127.5])
                >>> ])
                >>> valid_dataset = MNIST(mode='test', transform=transform)
1228

1229
                >>> model = paddle.vision.models.LeNet()
1230

1231 1232
                >>> engine = auto.Engine(model)
                >>> engine.predict(valid_dataset, batch_size=64)
1233
        """
1234 1235
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1236 1237
            test_data, test_sample_split, batch_size
        )
1238
        micro_batch_size = self._validate_batch_size(batch_size)
1239 1240
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1241
        else:
1242
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1243

1244 1245 1246 1247
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
1248
            batch_size=micro_batch_size,
1249
            steps_per_epoch=steps,
1250 1251
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1252

1253
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1254

Z
zhaoyingli 已提交
1255 1256 1257 1258 1259
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1260
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1261
            cbks.on_batch_begin('predict', step, logs)
1262
            try:
1263 1264
                outs = self._executor.run(
                    self.main_program,
1265
                    fetch_list=fetch_names,
1266
                    use_program_cache=self._strategy.use_cache,
1267 1268
                    return_numpy=self._strategy.return_numpy,
                )
1269
            except core.EOFException:
1270
                break
1271 1272 1273
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1274 1275 1276 1277 1278
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
1295
        places=None,
1296
    ):
1297 1298 1299
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1300 1301
            dataset, sample_split, batch_size
        )
1302
        micro_batch_size = self._validate_batch_size(batch_size)
1303 1304
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1305
        else:
1306
            self._switch_mode(self._mode)
1307

1308 1309 1310
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
1311
            batch_size=micro_batch_size,
1312 1313 1314 1315 1316 1317 1318 1319 1320
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1321
            steps_per_epoch=steps_per_epoch,
1322
            places=places,
1323
        )
1324 1325
        return dataloader

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1341 1342 1343
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1344 1345
            dataset, sample_split, batch_size
        )
1346
        micro_batch_size = self._validate_batch_size(batch_size)
1347 1348 1349 1350
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1351

1352 1353 1354 1355 1356 1357 1358 1359
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
1360
            batch_size=micro_batch_size,
1361 1362
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1363 1364
            collate_fn=collate_fn,
        )
1365 1366
        return dataloader

1367 1368 1369 1370 1371 1372 1373 1374 1375
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
1376
        init_parameters=True,
1377
    ):
1378 1379
        if mode is not None:
            self.to_mode(mode)
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1396 1397
        if inputs or labels:
            self._skip_build = True
1398 1399
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1400
            )
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1412 1413 1414
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1415

1416 1417 1418
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
1419
            self._prepare_program(self._mode, init_parameters)
1420 1421 1422
        else:
            self._switch_mode(self._mode)

1423
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1424 1425 1426 1427
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1428 1429 1430 1431
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1432
            self._prepare_reader()
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1443
        return logs
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
1460
        places=None,
1461
    ):
1462 1463 1464
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1465
        dist_main_block = dist_main_prog.global_block()
1466

1467 1468 1469 1470
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1471 1472
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1473 1474 1475 1476
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1477 1478 1479 1480
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1481 1482

        # insert read op at the end of program
1483
        with static.program_guard(dist_main_prog, dist_startup_prog):
1484
            dataloader = DistributedDataLoader(
1485
                dataset,
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1501
                data_parallel_world_size=self._dp_world_sizes,
1502 1503
                data_parallel_rank=self._dp_ranks,
            )
1504

1505 1506
        return dataloader

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1521 1522 1523
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1524 1525 1526 1527 1528 1529
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1530 1531
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1559
                data_parallel_rank=self._dp_ranks,
1560 1561 1562
                acc_steps=1
                if not self._strategy.pipeline.enable
                else self._acc_steps,
1563
            )
1564
        self._prepare_reader(feed_list)
1565 1566 1567 1568 1569
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1570 1571
            tune_data, tune_sample_split, batch_size
        )
1572 1573
        self._optimization_tuning(self._mode, tune_data, batch_size)

1574 1575 1576
    def _validate_batch_size(self, batch_size):
        if batch_size is None:
            return None
1577 1578
        if self._strategy.pipeline.enable and auto_utils.use_new_executor():
            return batch_size
1579 1580 1581 1582 1583 1584 1585
        assert (
            batch_size % self._acc_steps == 0
        ), "Requires batch_size:[{}] to be divisible by acc_steps:[{}].".format(
            batch_size, self._acc_steps
        )
        return batch_size // self._acc_steps

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
    def _validate_feed(self, feed):
        if feed is None:
            return [None]
        # pp with schedule or navie-pp
        if self._strategy.pipeline.enable or self._acc_steps == 1:
            return feed

        # split feed data with gradient_merge k_steps
        feed_names = []
        split_feeds = []
        for feed_name, cur_feed in feed[0].items():
            feed_names.append(feed_name)
            split_feeds.append(np.split(np.array(cur_feed), self._acc_steps, 0))
        micro_feeds = []
        for i in range(self._acc_steps):
            split_feed = [sf[i] for sf in split_feeds]
            micro_feeds.append(dict(zip(feed_names, split_feed)))
        return micro_feeds

1605
    def _validate_spec(self, specs):
1606
        specs = auto_utils.to_list(specs)
1607 1608
        if specs is not None:
            for i, spec in enumerate(specs):
1609 1610 1611 1612
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1613 1614
                if spec.name is None:
                    raise ValueError(
1615 1616 1617 1618
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1619
                if self._acc_steps > 1:
1620
                    shape = list(spec.shape)
1621
                    assert (
1622
                        shape[0] % self._acc_steps == 0
1623
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
1624
                        spec.shape[0], self._acc_steps
1625
                    )
1626
                    shape[0] //= self._acc_steps
1627
                    spec.shape = shape
1628 1629 1630
        return specs or []

    def _validate_vars(self, vars):
1631
        vars = auto_utils.to_list(vars)
1632 1633 1634 1635 1636
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1637

1638 1639 1640 1641
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1642 1643 1644 1645
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1646 1647 1648
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1649
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1650 1651
        return metrics_name

1652
    def _switch_mode(self, mode):
1653
        assert (
1654
            mode in self._dist_contexts
1655
        ), f"{mode} model is not ready, please call `prepare()` first."
1656
        self.to_mode(mode)
1657

1658
    def to_mode(self, mode):
1659 1660 1661 1662
        assert mode in [
            "train",
            "eval",
            "predict",
1663
        ], f"mode {mode} should be one of ['train', 'eval', 'predict']"
1664 1665
        self._mode = mode

1666 1667
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        dist_context = self._dist_contexts[mode]
1668
        program = dist_context.dist_main_programs[self._cur_rank]
1669
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1670 1671
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
        for name, param in program.state_dict().items():
            param_array = np.array(param)
            if name not in state_dict:
                continue
            if param_array.dtype != state_dict[name].dtype:
                self._logger.info(
                    "cast {}'s dtype from '{}' to '{}'".format(
                        name,
                        str(state_dict[name].dtype),
                        str(param_array.dtype),
                    )
                )
                state_dict[name] = state_dict[name].astype(param_array.dtype)
1685 1686 1687
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1688 1689
        """
        Saves the model, parameters, optimizer state to path.
1690 1691 1692 1693 1694 1695 1696
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1697
                for inference only. If `training` is set to True, the optimizer state
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

                >>> import paddle
                >>> import paddle.vision.transforms as T
                >>> from paddle.distributed.fleet import auto
                >>> from paddle.vision.datasets import MNIST

                >>> transform = T.Compose([
                ...     T.Transpose(),
                ...     T.Normalize([127.5], [127.5])
                >>> ])
                >>> train_dataset = MNIST(mode='train', transform=transform)

                >>> model = paddle.vision.models.LeNet()
                >>> loss = paddle.nn.CrossEntropyLoss()
                >>> optimizer = paddle.optimizer.Adam(
                ...     learning_rate=0.001, parameters=model.parameters())
                >>> metrics = paddle.metric.Accuracy(topk=(1, 2))

                >>> engine = auto.Engine(model, loss, optimizer, metrics)
                >>> engine.fit(train_dataset,
                ...             epochs=1,
                ...             batch_size=64)
                >>> engine.save("./my_model")
1731

1732
        """
1733
        if training:
1734
            assert self._mode in self._dist_contexts
Z
zhaoyingli 已提交
1735
            dist_context = self._dist_contexts[self._mode]
1736 1737
            serial_program = dist_context.serial_main_program
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
1738 1739 1740 1741 1742 1743
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1744
        else:
1745 1746 1747 1748 1749
            assert "predict" in self._dist_contexts
            dist_context = self._dist_contexts["predict"]
            feed_vars = dist_context.serial_feed_vars['inputs']
            fetch_vars = dist_context.serial_fetch_vars['outputs']
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
1750
            if self._strategy.qat.enable and self._strategy.qat.onnx_format:
1751
                from paddle.static.quantization import QuantWeightPass
1752 1753 1754

                self._logger.info("export quantized model.")
                self._logger.info(
1755
                    f"convert config {self._strategy.qat.to_dict()}"
1756 1757 1758 1759 1760 1761 1762 1763
                )
                test_graph = IrGraph(
                    core.Graph(dist_main_prog.desc), for_test=True
                )
                quant_weight_pass = QuantWeightPass(global_scope(), self._place)
                for sub_graph in test_graph.all_sub_graphs():
                    quant_weight_pass.apply(sub_graph)
                dist_main_prog = test_graph.to_program()
1764 1765 1766 1767 1768 1769 1770
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1771

1772 1773 1774 1775 1776 1777
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1778
                optimizer states.
1779 1780 1781
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1782
                mismatch shape). Default: True.
1783
            load_optimizer (bool, optional): If True, the stored optimizer
1784
                states is restored. Otherwise, the optimizer states is initialized
1785
                from scratch. Default: True.
1786 1787 1788 1789 1790 1791 1792

        Returns:
            None

        Examples:

            .. code-block:: python
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

                >>> import paddle
                >>> import paddle.vision.transforms as T
                >>> from paddle.distributed.fleet import auto
                >>> from paddle.vision.datasets import MNIST

                >>> transform = T.Compose([
                ...     T.Transpose(),
                ...     T.Normalize([127.5], [127.5])
                >>> ])
                >>> train_dataset = MNIST(mode='train', transform=transform)

                >>> model = paddle.vision.models.LeNet()
                >>> loss = paddle.nn.CrossEntropyLoss()
                >>> optimizer = paddle.optimizer.Adam(
                ...     learning_rate=0.001, parameters=model.parameters())
                >>> metrics = paddle.metric.Accuracy(topk=(1, 2))

                >>> engine = auto.Engine(model, loss, optimizer, metrics)
                >>> engine.fit(train_dataset,
                ...             epochs=1,
                ...             batch_size=64)
                >>> engine.save("./my_model")
                >>> engine.load("./my_model")
1817

1818 1819 1820
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1821 1822
            path, load_optimizer
        )
1823
        return self._state_dict, self._dist_attr
1824

1825
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1836
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1837 1838 1839 1840 1841 1842 1843

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1844
            self._logger.info(
1845 1846 1847 1848 1849
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1850 1851 1852
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1853 1854
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1855
                    mode, list(self._has_prepared.keys())
1856 1857
                )
            )
1858 1859
        self.to_mode(mode)

1860 1861 1862
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1863 1864 1865
            self._build(mode)
            self._plan(mode)
        else:
1866
            if in_dynamic_mode() or self._dygraph_mode:
1867
                raise ValueError(
1868 1869 1870 1871 1872
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1873
                )
1874 1875 1876 1877 1878 1879 1880 1881
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1882 1883 1884 1885 1886 1887

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1888 1889
    @property
    def main_program(self):
1890 1891
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_main_programs[self._cur_rank]
1892 1893 1894

    @property
    def startup_program(self):
1895 1896
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_startup_programs[self._cur_rank]
1897 1898 1899

    @property
    def dist_context(self):
1900
        return self._dist_contexts[self._mode]
1901 1902 1903

    @property
    def serial_main_program(self):
1904 1905
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_main_program
1906 1907 1908

    @property
    def serial_startup_program(self):
1909 1910 1911 1912 1913 1914 1915
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_startup_program

    @property
    def feed_vars(self):
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_feed_vars
1916 1917 1918

    @property
    def fetch_vars(self):
1919 1920 1921 1922 1923 1924 1925 1926 1927
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_fetch_vars

    @property
    def optimizer(self):
        dist_context = self._dist_contexts[self._mode]
        if dist_context._serial_optimizer:
            return dist_context._serial_optimizer
        return self._optimizer
1928 1929 1930

    @property
    def inputs(self):
1931
        return self._inputs
1932 1933 1934

    @property
    def labels(self):
1935
        return self._labels