engine.py 70.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import json
17
import logging
18
import numbers
19 20
import os
import random
21

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.static.utils as auto_utils
26
from paddle import static, utils
27
from paddle.distributed import fleet
28 29 30
from paddle.fluid.executor import _to_name_str
from paddle.framework import IrGraph
from paddle.framework import _current_expected_place as _get_device
31
from paddle.framework import core, in_dynamic_mode
32
from paddle.metric import Metric
33
from paddle.static import InputSpec, Operator, Variable, global_scope
34

35 36 37
from ...utils.log_utils import get_logger
from ..interface import CollectionNames, fetch, get_collection
from ..strategy import Strategy
Z
zhaoyingli 已提交
38
from .callbacks import config_callbacks
39
from .cluster import Cluster, get_default_cluster
40 41 42
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
43 44
from .dist_loader import (
    DistributedDataLoader,
45
    DistributedDataLoaderFromGenerator,
46
)
47 48 49 50 51 52
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
53

54 55

class Engine:
56
    """
57 58
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
59 60 61 62 63 64 65
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
66 67
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
84
            from paddle.distributed.fleet import auto
85 86 87 88 89 90 91 92 93 94
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
95
            loss = paddle.nn.CrossEntropyLoss()
96 97 98 99
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

100 101
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
102 103 104
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
105
            # evaluate
106 107 108 109 110 111 112
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
113
            # load
114 115 116
            engine.load("./my_model")

    """
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):
        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
132 133 134 135
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
136 137 138 139 140 141 142 143 144

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
145 146 147
        self._loss = loss

        if optimizer and not isinstance(
148
            optimizer,
149
            (paddle.optimizer.Optimizer, paddle.static.Optimizer),
150
        ):
151 152
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
153
                " or `paddle.static.Optimizer`."
154
            )
155
        self._optimizer = auto_utils.validate_opt(optimizer)
156 157

        metrics = metrics or []
158
        for metric in auto_utils.to_list(metrics):
159 160 161 162 163 164
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
165
        self._metrics = auto_utils.to_list(metrics)
166 167 168 169 170 171 172 173 174 175 176 177 178

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

179
        self._logger = get_logger(logging.INFO)
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

        self._json_config = None
        if cluster:
            self._cluster = cluster
        else:
            if os.getenv("PADDLE_AUTO_PARALLEL_CONFIG"):
                try:
                    path = os.getenv("PADDLE_AUTO_PARALLEL_CONFIG")
                    with open(path, "r") as f:
                        self._json_config = json.load(f)
                except Exception as e:
                    self._logger.info(
                        "Load json failed, please check json file, engine will run default config."
                    )
                    self._json_config = None
            self._cluster = get_default_cluster(self._json_config)

197
        if os.getenv("POD_NAME"):
198 199
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
200
            )
201
            fleet.init(is_collective=True)
202

203 204 205 206 207 208
        # for compute cost
        # TODO: remove _fwd_main_progs and _orig_optimizer
        self._fwd_dist_contexts = {}
        self._fwd_main_progs = {}
        self._orig_optimizer = copy.deepcopy(self._optimizer)

209
        self._executor = None
210 211 212
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
213

214 215
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
216
        self._orig_dist_context = get_default_distributed_context()
217
        self._dist_contexts = {}
218
        self._planners = {}
219 220
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
221 222
            "train": False,
            "eval": False,
223
            "predict": False,
224
        }
225 226 227 228
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
229
        self._losses = []
230

231
        self._mode = None
232 233
        self._skip_build = False
        self._outside_dataloader = False
234
        self._planned_mode = None
235 236
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
237 238 239 240 241
        self._acc_steps = 1
        if self._strategy.gradient_merge.enable:
            self._acc_steps = self._strategy.gradient_merge.k_steps
        elif self._strategy.pipeline.enable:
            self._acc_steps = self._strategy.pipeline.accumulate_steps
242

Z
zhaoyingli 已提交
243 244
        self.history = None

245 246
        paddle.framework.set_flags({'FLAGS_new_executor_sequential_run': 1})

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
265
            raise TypeError(
C
chenxujun 已提交
266
                "Data should be a Dataset or IterableDataset, but received {}.".format(
267 268 269
                    type(data).__name__
                )
            )
270 271
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
272 273

        num_shards = self._strategy.dataset.num_shards
274

275 276 277 278 279 280 281 282 283 284 285 286
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
W
wanghuancoder 已提交
287
            elif isinstance(item, (Variable, core.eager.Tensor)):
288
                spec = InputSpec.from_tensor(item, name)
289
                _adjust_item_spec(num_shards, spec)
290 291 292 293
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
294
            elif isinstance(item, numbers.Number):
295
                specs.append(InputSpec([batch_size], type(item), name))
296 297 298 299 300 301
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

318
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
319
        if in_dynamic_mode() or self._dygraph_mode:
320 321
            raise ValueError("Only support static graph mode.")

322
        if inputs_spec:
323 324 325 326 327
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
328 329
            assert isinstance(
                inputs, list
330
            ), f"inputs should be list, but received {type(inputs)}"
331 332 333 334 335 336
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
337
        if labels_spec:
338 339 340 341 342
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
343 344
            assert isinstance(
                labels, list
345
            ), f"labels should be list, but received {type(labels)}"
346 347 348 349 350 351 352
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

353 354
        return inputs, labels

355
    def _prepare_reader(self, feed_list=[]):
356
        dist_context = self._dist_contexts[self._mode]
357
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
358 359 360 361
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
362 363 364
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
365 366 367 368 369 370 371 372 373 374 375 376 377
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
378 379
        # record the read ops' desc to insert to program of forward task_node
        read_ops_desc = []
380 381 382 383
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
384
            read_ops_desc.append(new_op_desc)
385 386 387
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

403 404 405 406 407
        # Insert read op to forward TaskNode for fleet executor if 1F1B pass is setted
        if (
            self.main_program._pipeline_opt
            and not auto_utils.use_new_executor()
        ):
408 409
            assert "tasks" in self.main_program._pipeline_opt["fleet_opt"]
            fleet_opt = self.main_program._pipeline_opt["fleet_opt"]
410 411 412 413 414 415
            fwd_task = None
            if self._strategy.pipeline.schedule_mode == "1F1B":
                fwd_task = fleet_opt["tasks"][1]
            elif self._strategy.pipeline.schedule_mode == "stream":
                fwd_task = fleet_opt["tasks"][0]
            assert fwd_task is not None
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
            fwd_prog = fwd_task.get_program()
            fwd_block = fwd_prog.global_block()

            for var in feed_list:
                if var.name not in fwd_block.vars:
                    fwd_block._clone_variable(var)

            for op_desc in read_ops_desc:
                new_op_desc = fwd_block.desc._prepend_op()
                new_op_desc.copy_from(op_desc)
                new_op = Operator(
                    fwd_block, new_op_desc, type=new_op_desc.type()
                )
                fwd_block.ops.insert(0, new_op)

            fwd_block._sync_with_cpp()
            fwd_task.set_program(fwd_prog)

434 435 436 437 438
    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
439 440
                    for name, value in data[0].items():
                        feeds[name] = value
441
                else:
442
                    raise ValueError(f"Unsupported data {data}")
443
            elif isinstance(data, dict):
444 445
                for name, value in data.items():
                    feeds[name] = value
446
            else:
447
                raise ValueError(f"Unsupported data {data}")
448
        if user_feeds is not None:
449 450 451 452 453
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
454 455
            for name, data in user_feeds.items():
                feeds[name] = data
456 457
        return feeds

458
    def _prepare_fetch(self, user_fetches, mode):
459
        if user_fetches is not None:
460 461 462 463 464
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
465
        fetch_names = []
466
        fetch_indices = []
467

468 469
        def _process_fetch_group(group_name, var_list):
            group_indices = []
470
            for var in var_list:
471 472 473 474 475 476 477 478
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
            fetch_indices.append(group_indices)

479 480
        dist_context = self._dist_contexts[mode]
        fetch_vars = dist_context.serial_fetch_vars
481
        if mode != "predict":
482
            _process_fetch_group("loss", fetch_vars["loss"])
483
        if mode != "predict":
484
            metrics = fetch_vars["metrics"]
485 486 487
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
488
            _process_fetch_group("outputs", fetch_vars["outputs"])
489
        for usr_fetch in user_fetches or []:
490 491
            var_name = _to_name_str(usr_fetch)
            fetch(var_name)
492 493 494
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
495
        var_list = user_fetches_collection or []
496 497 498
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

499 500 501 502 503 504 505 506 507 508
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
509
        logs = {}
510
        if epoch is not None:
Z
zhaoyingli 已提交
511
            logs["epoch"] = epoch
512
        if step is not None:
Z
zhaoyingli 已提交
513
            logs["step"] = step + 1
514
        if lr is not None:
Z
zhaoyingli 已提交
515
            logs["lr"] = lr
516 517
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
518
            # logging loss
519
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
520
            assert len(loss_indices) <= 1
521
            for idx in loss_indices:
522
                logs["loss"] = outs[idx]
523
            group_idx += 1
Z
zhaoyingli 已提交
524
            # logging metrics
525 526
            dist_context = self._dist_contexts[mode]
            metric_vars = dist_context.serial_fetch_vars["metrics"]
527 528 529 530 531 532 533 534 535
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
536
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
537
                            logs[metric.name()[i]] = res
538
                    group_idx += 1
Z
zhaoyingli 已提交
539 540 541 542 543 544 545
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
546 547
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
548 549
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
550 551 552 553
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
554 555
        logs["fetches"] = logs_fetch
        return logs
556

557
    def _prepare_program(self, mode, init_parameters=True):
558 559 560 561 562 563
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
564 565 566 567 568
        # Init comm
        self._init_comm()
        if init_parameters:
            # startup program
            self._initialize(mode)
569 570
        self._has_prepared[mode] = True

571
    def _build(self, mode):
572
        if in_dynamic_mode() or self._dygraph_mode:
573
            paddle.disable_static()
574 575 576
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

577
            self.program_helper = ProgramHelper(
578 579 580 581 582
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
583
            )
584
            # build forward main program
585 586
            with utils.unique_name.guard():
                self.program_helper.build_program(mode)
587

588 589 590
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
591

592 593
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
594
            outputs = self.program_helper.output_vars
595
            self._losses = self.program_helper.loss_vars
596
            metrics = self.program_helper.metric_vars
597

598
            paddle.enable_static()
599
        else:
600 601 602
            # build program in static mode
            dist_context = self._dist_contexts.get(mode, None)
            if dist_context is not None:
603 604
                return

605
            outputs = []
606
            metrics = []
607
            self._losses = []
608 609
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
610
            if not self._skip_build:
611 612 613
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
614 615 616 617 618 619 620
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

621
                    outputs = auto_utils.to_list(self._model(*self._inputs))
622

623
                    if mode != "predict" and self._loss:
624 625 626 627 628
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
629
                        self._losses = auto_utils.to_list(
630 631
                            self._loss(*(outputs + self._labels))
                        )
632

633
                    if mode != "predict" and (outputs or self._labels):
634 635
                        for metric in self._metrics:
                            metrics.append(
636
                                auto_utils.to_list(
637 638
                                    metric.compute(*(outputs + self._labels))
                                )
639
                            )
Z
zhaoyingli 已提交
640
            elif mode == "train":
641 642 643
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
644
                self._losses = auto_utils.to_list(self._loss)
645 646 647 648 649 650 651

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
652 653 654 655 656 657
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
658

659
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
660 661

        fetch_vars = {
662
            "outputs": paddle.utils.flatten(outputs),
663
            "loss": self._losses,
664
            "metrics": metrics,
665 666
        }

667 668 669
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

670 671 672
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
673
        self._dist_contexts[mode] = DistributedContext(
674 675 676
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
677 678 679 680 681
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
682
            self._json_config,
683 684 685 686 687 688
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
689 690 691 692
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
693
            self._json_config,
694
        )
695
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
696
        self._fwd_main_progs[mode] = serial_main_prog.clone()
697

698 699 700
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
701

702 703 704 705 706 707 708 709
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
710 711

        from .tuner.optimization_tuner import OptimizationTuner
712 713 714 715 716 717 718 719 720

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
721 722 723

        self._optimization_tuner.tune()

724
        if self._tuning.run_after_tuning:
725 726
            # update the strategy
            self._dist_contexts[
727 728
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
729

730 731 732 733 734 735
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

736 737
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
738

739 740 741 742
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
743
        # TODO: check this feed_list
744 745 746 747 748
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

749 750
        self._dp_world_sizes = []
        self._dp_ranks = []
751
        for feed_var in feed_list:
752
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
753
                self._cur_rank, feed_var, self._dist_contexts[mode]
754
            )
755 756
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
757

758
    def _parallel(self, mode, all_ranks=False):
759 760
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
C
chenxujun 已提交
761
        # because we may use it to complete the annotation of the backward and update.
762
        parallelizer = Parallelizer(
Y
yuehuayingxueluo 已提交
763 764 765
            mode,
            self._planners[mode].completer,
            self._dist_contexts[mode],
766
        )
767 768 769 770
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
771 772

    def _init_dist_context(self, mode):
773
        # Init dist_context['mode'] with the first planned dist_context
774 775 776 777 778 779 780 781 782 783
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
784 785 786 787 788 789 790 791
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
792 793
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

794
    def _init_comm(self):
795 796 797 798
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
799

800
            if self._strategy.auto_mode == "full_random":
801
                auto_utils.initialize_pg_in_full_mode(
802
                    all_process_groups, self._cur_rank
803
                )
804 805 806
            else:
                for process_group in all_process_groups:
                    process_group.instantiate()
807

808
    def _initialize(self, mode):
809
        self._place = _get_device()
810
        if isinstance(self._place, paddle.framework.CUDAPlace):
811 812 813
            self._place = paddle.framework.CUDAPlace(
                paddle.distributed.ParallelEnv().dev_id
            )
814

815 816 817 818 819
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

820
        dist_context = self._dist_contexts[mode]
821
        if self._dygraph_mode:
822
            dist_main_program = dist_context.dist_main_programs[self._cur_rank]
823 824 825
            self.program_helper.init(
                dist_main_program, self._place, dist_context
            )
826

827
        if self._executor is None:
828
            self._executor = paddle.static.Executor(self._place)
829
            uninitialized = []
830 831 832
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
833 834 835 836 837 838 839 840
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
841

842
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
843 844 845
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
846 847

        if self._strategy.reinit:
Z
zhaoyingli 已提交
848
            self._logger.info("NOTE: parameters will be re-initialized.")
849 850 851
            dist_startup_prog = dist_context.dist_startup_programs[
                self._cur_rank
            ]
852 853
            self._executor.run(dist_startup_prog)

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
872 873 874 875 876 877 878 879
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
880
                more than two items, train_sample_split specifies how to split these items into
881
                input and label. The items before it are input and the left are label. Default: None.
882
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
883 884 885
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
886
                is executed in one epoch before stating the next one. If None, it is equal to
887 888
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
889
                evaluation at the end of epoch. No evaluation will be done if set to None.
890
                Default: None. (Unsupported for now)
891
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
892 893
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
894 895
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
896 897 898
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
899 900
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
901 902 903 904
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
905
                0. Default None.
906 907 908 909 910 911 912 913 914 915 916 917
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
918
                from paddle.distributed.fleet import auto
919 920 921 922 923 924 925 926 927
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
928
                loss = paddle.nn.CrossEntropyLoss()
929 930 931 932
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

933
                engine = auto.Engine(model, loss, optimizer, metrics)
934 935 936 937
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
938 939
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
940 941
            train_data, train_sample_split, batch_size
        )
942
        micro_batch_size = self._validate_batch_size(batch_size)
943 944
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
945
        else:
946
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
947

948 949 950 951
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
952
            batch_size=micro_batch_size,
953 954
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
955 956
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
957

958
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
959 960 961 962

        cbks = config_callbacks(
            callbacks,
            engine=self,
963
            batch_size=micro_batch_size,
Z
zhaoyingli 已提交
964 965 966 967 968 969 970
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
971
            acc_step=self._acc_steps,
Z
zhaoyingli 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
985 986
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
987 988
                except core.EOFException:
                    break
989
                lr = auto_utils.get_lr(self.optimizer)
990 991 992 993 994 995 996 997 998
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
999 1000 1001
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
1012
                val_logs = {
1013
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1036 1037 1038 1039
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
1040 1041
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
1042
                to be a (input, label) pair by default and has two items. If each sample has
1043
                more than two items, valid_sample_split specifies how to split these items into
1044
                input and label. The items before it are input and the left are label. Default: None.
1045
            batch_size (int, optional): The batch size of valid_data. The user's data will
1046
                be used directly without batching if set to None. Default: 1.
1047 1048
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
1049 1050 1051 1052 1053
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1054
                during evaluating. Default: None. (Unused for now)
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1065
                from paddle.distributed.fleet import auto
1066 1067 1068 1069 1070 1071 1072 1073 1074
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1075
                loss = paddle.nn.CrossEntropyLoss()
1076 1077
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1078
                engine = auto.Engine(model, loss, metrics=metrics)
1079 1080 1081
                engine.evaluate(valid_dataset, batch_size=64)

        """
1082 1083
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1084 1085
            valid_data, valid_sample_split, batch_size
        )
1086
        micro_batch_size = self._validate_batch_size(batch_size)
1087 1088
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1089
        else:
1090
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1091

1092 1093 1094 1095
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
1096
            batch_size=micro_batch_size,
1097
            steps_per_epoch=steps,
1098 1099
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1100

1101
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1102

Z
zhaoyingli 已提交
1103 1104 1105
        cbks = config_callbacks(
            callbacks,
            engine=self,
1106
            batch_size=micro_batch_size,
Z
zhaoyingli 已提交
1107 1108 1109 1110 1111 1112
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1113 1114 1115
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1116
        logs = {}
1117
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1118
            cbks.on_batch_begin('eval', step, logs)
1119
            try:
1120 1121
                outs = self._executor.run(
                    self.main_program,
1122
                    fetch_list=fetch_names,
1123
                    use_program_cache=self._strategy.use_cache,
1124 1125
                    return_numpy=self._strategy.return_numpy,
                )
1126
            except core.EOFException:
1127
                break
1128 1129 1130
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1131 1132
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1133
        self._reset_metrics()
Z
zhaoyingli 已提交
1134
        return logs
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1146 1147 1148 1149 1150 1151 1152
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1153
                more than two items, test_sample_split specifies how to split these items into
1154 1155 1156
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1157 1158
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1175
                from paddle.distributed.fleet import auto
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1186
                engine = auto.Engine(model)
1187 1188
                engine.predict(valid_dataset, batch_size=64)
        """
1189 1190
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1191 1192
            test_data, test_sample_split, batch_size
        )
1193
        micro_batch_size = self._validate_batch_size(batch_size)
1194 1195
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1196
        else:
1197
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1198

1199 1200 1201 1202
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
1203
            batch_size=micro_batch_size,
1204
            steps_per_epoch=steps,
1205 1206
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1207

1208
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1209

Z
zhaoyingli 已提交
1210 1211 1212 1213 1214
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1215
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1216
            cbks.on_batch_begin('predict', step, logs)
1217
            try:
1218 1219
                outs = self._executor.run(
                    self.main_program,
1220
                    fetch_list=fetch_names,
1221
                    use_program_cache=self._strategy.use_cache,
1222 1223
                    return_numpy=self._strategy.return_numpy,
                )
1224
            except core.EOFException:
1225
                break
1226 1227 1228
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1229 1230 1231 1232 1233
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1251 1252 1253
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1254 1255
            dataset, sample_split, batch_size
        )
1256
        micro_batch_size = self._validate_batch_size(batch_size)
1257 1258
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1259
        else:
1260
            self._switch_mode(self._mode)
1261

1262 1263 1264
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
1265
            batch_size=micro_batch_size,
1266 1267 1268 1269 1270 1271 1272 1273 1274
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1275 1276
            steps_per_epoch=steps_per_epoch,
        )
1277 1278
        return dataloader

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1294 1295 1296
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1297 1298
            dataset, sample_split, batch_size
        )
1299
        micro_batch_size = self._validate_batch_size(batch_size)
1300 1301 1302 1303
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1304

1305 1306 1307 1308 1309 1310 1311 1312
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
1313
            batch_size=micro_batch_size,
1314 1315
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1316 1317
            collate_fn=collate_fn,
        )
1318 1319
        return dataloader

1320 1321 1322 1323 1324 1325 1326 1327 1328
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
1329
        init_parameters=True,
1330
    ):
1331 1332
        if mode is not None:
            self.to_mode(mode)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1349 1350
        if inputs or labels:
            self._skip_build = True
1351 1352
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1353
            )
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1365 1366 1367
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1368

1369 1370 1371
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
1372
            self._prepare_program(self._mode, init_parameters)
1373 1374 1375
        else:
            self._switch_mode(self._mode)

1376
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1377 1378 1379 1380
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1381 1382 1383 1384
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1385
            self._prepare_reader()
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1396
        return logs
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1414 1415 1416
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1417
        dist_main_block = dist_main_prog.global_block()
1418

1419 1420 1421 1422
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1423 1424
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1425 1426 1427 1428
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1429 1430 1431 1432
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1433 1434

        # insert read op at the end of program
1435
        places = paddle.static.cuda_places()
1436
        with static.program_guard(dist_main_prog, dist_startup_prog):
1437
            dataloader = DistributedDataLoader(
1438
                dataset,
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1454
                data_parallel_world_size=self._dp_world_sizes,
1455 1456
                data_parallel_rank=self._dp_ranks,
            )
1457

1458 1459
        return dataloader

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1474 1475 1476
        dist_context = self._dist_contexts[self._mode]
        dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
        dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank]
1477 1478 1479 1480 1481 1482
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1483 1484
        inputs_var = dist_context.serial_feed_vars["inputs"]
        labels_var = dist_context.serial_feed_vars["labels"]
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1512
                data_parallel_rank=self._dp_ranks,
1513 1514 1515
                acc_steps=1
                if not self._strategy.pipeline.enable
                else self._acc_steps,
1516
            )
1517
        self._prepare_reader(feed_list)
1518 1519 1520 1521 1522
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1523 1524
            tune_data, tune_sample_split, batch_size
        )
1525 1526
        self._optimization_tuning(self._mode, tune_data, batch_size)

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    def _validate_batch_size(self, batch_size):
        if batch_size is None:
            return None
        assert (
            batch_size % self._acc_steps == 0
        ), "Requires batch_size:[{}] to be divisible by acc_steps:[{}].".format(
            batch_size, self._acc_steps
        )
        return batch_size // self._acc_steps

1537
    def _validate_spec(self, specs):
1538
        specs = auto_utils.to_list(specs)
1539 1540
        if specs is not None:
            for i, spec in enumerate(specs):
1541 1542 1543 1544
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1545 1546
                if spec.name is None:
                    raise ValueError(
1547 1548 1549 1550
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1551
                if self._acc_steps > 1:
1552
                    shape = list(spec.shape)
1553
                    assert (
1554
                        shape[0] % self._acc_steps == 0
1555
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
1556
                        spec.shape[0], self._acc_steps
1557
                    )
1558
                    shape[0] //= self._acc_steps
1559
                    spec.shape = shape
1560 1561 1562
        return specs or []

    def _validate_vars(self, vars):
1563
        vars = auto_utils.to_list(vars)
1564 1565 1566 1567 1568
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1569

1570 1571 1572 1573
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1574 1575 1576 1577
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1578 1579 1580
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1581
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1582 1583
        return metrics_name

1584
    def _switch_mode(self, mode):
1585
        assert (
1586
            mode in self._dist_contexts
1587
        ), f"{mode} model is not ready, please call `prepare()` first."
1588
        self.to_mode(mode)
1589

1590
    def to_mode(self, mode):
1591 1592 1593 1594
        assert mode in [
            "train",
            "eval",
            "predict",
1595
        ], f"mode {mode} should be one of ['train', 'eval', 'predict']"
1596 1597
        self._mode = mode

1598 1599
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        dist_context = self._dist_contexts[mode]
1600
        program = dist_context.dist_main_programs[self._cur_rank]
1601
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1602 1603
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        for name, param in program.state_dict().items():
            param_array = np.array(param)
            if name not in state_dict:
                continue
            if param_array.dtype != state_dict[name].dtype:
                self._logger.info(
                    "cast {}'s dtype from '{}' to '{}'".format(
                        name,
                        str(state_dict[name].dtype),
                        str(param_array.dtype),
                    )
                )
                state_dict[name] = state_dict[name].astype(param_array.dtype)
1617 1618 1619
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1620 1621
        """
        Saves the model, parameters, optimizer state to path.
1622 1623 1624 1625 1626 1627 1628
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1629
                for inference only. If `training` is set to True, the optimizer state
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1642
                from paddle.distributed.fleet import auto
1643 1644 1645 1646 1647 1648 1649 1650 1651
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1652
                loss = paddle.nn.CrossEntropyLoss()
1653 1654 1655 1656
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1657
                engine = auto.Engine(model, loss, optimizer, metrics)
1658 1659 1660 1661
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1662

1663
        """
1664
        if training:
1665
            assert self._mode in self._dist_contexts
Z
zhaoyingli 已提交
1666
            dist_context = self._dist_contexts[self._mode]
1667 1668
            serial_program = dist_context.serial_main_program
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
1669 1670 1671 1672 1673 1674
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1675
        else:
1676 1677 1678 1679 1680
            assert "predict" in self._dist_contexts
            dist_context = self._dist_contexts["predict"]
            feed_vars = dist_context.serial_feed_vars['inputs']
            fetch_vars = dist_context.serial_fetch_vars['outputs']
            dist_main_prog = dist_context.dist_main_programs[self._cur_rank]
1681
            if self._strategy.qat.enable and self._strategy.qat.onnx_format:
1682
                from paddle.static.quantization import QuantWeightPass
1683 1684 1685

                self._logger.info("export quantized model.")
                self._logger.info(
1686
                    f"convert config {self._strategy.qat.to_dict()}"
1687 1688 1689 1690 1691 1692 1693 1694
                )
                test_graph = IrGraph(
                    core.Graph(dist_main_prog.desc), for_test=True
                )
                quant_weight_pass = QuantWeightPass(global_scope(), self._place)
                for sub_graph in test_graph.all_sub_graphs():
                    quant_weight_pass.apply(sub_graph)
                dist_main_prog = test_graph.to_program()
1695 1696 1697 1698 1699 1700 1701
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1702

1703 1704 1705 1706 1707 1708
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1709
                optimizer states.
1710 1711 1712
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1713
                mismatch shape). Default: True.
1714
            load_optimizer (bool, optional): If True, the stored optimizer
1715
                states is restored. Otherwise, the optimizer states is initialized
1716
                from scratch. Default: True.
1717 1718 1719 1720 1721 1722 1723 1724 1725

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1726
                from paddle.distributed.fleet import auto
1727 1728 1729 1730 1731 1732 1733 1734 1735
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1736
                loss = paddle.nn.CrossEntropyLoss()
1737 1738 1739 1740
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1741
                engine = auto.Engine(model, loss, optimizer, metrics)
1742 1743 1744 1745 1746
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1747

1748 1749 1750
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1751 1752
            path, load_optimizer
        )
1753
        return self._state_dict, self._dist_attr
1754

1755
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1766
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1767 1768 1769 1770 1771 1772 1773

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1774
            self._logger.info(
1775 1776 1777 1778 1779
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1780 1781 1782
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1783 1784
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1785
                    mode, list(self._has_prepared.keys())
1786 1787
                )
            )
1788 1789
        self.to_mode(mode)

1790 1791 1792
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1793 1794 1795
            self._build(mode)
            self._plan(mode)
        else:
1796
            if in_dynamic_mode() or self._dygraph_mode:
1797
                raise ValueError(
1798 1799 1800 1801 1802
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1803
                )
1804 1805 1806 1807 1808 1809 1810 1811
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1812 1813 1814 1815 1816 1817

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1818 1819
    @property
    def main_program(self):
1820 1821
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_main_programs[self._cur_rank]
1822 1823 1824

    @property
    def startup_program(self):
1825 1826
        dist_context = self._dist_contexts[self._mode]
        return dist_context.dist_startup_programs[self._cur_rank]
1827 1828 1829

    @property
    def dist_context(self):
1830
        return self._dist_contexts[self._mode]
1831 1832 1833

    @property
    def serial_main_program(self):
1834 1835
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_main_program
1836 1837 1838

    @property
    def serial_startup_program(self):
1839 1840 1841 1842 1843 1844 1845
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_startup_program

    @property
    def feed_vars(self):
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_feed_vars
1846 1847 1848

    @property
    def fetch_vars(self):
1849 1850 1851 1852 1853 1854 1855 1856 1857
        dist_context = self._dist_contexts[self._mode]
        return dist_context.serial_fetch_vars

    @property
    def optimizer(self):
        dist_context = self._dist_contexts[self._mode]
        if dist_context._serial_optimizer:
            return dist_context._serial_optimizer
        return self._optimizer
1858 1859 1860

    @property
    def inputs(self):
1861
        return self._inputs
1862 1863 1864

    @property
    def labels(self):
1865
        return self._labels