utils.py 48.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import atexit
16
import builtins
17
import copy
18
import functools
19
import importlib.util
20
import inspect
21
import os
22
import shutil
23
import sys
24
import tempfile
25
import textwrap
26
import types
27 28 29 30
import warnings
from importlib.machinery import SourceFileLoader

import astor
31
import numpy as np
32

33
import paddle
34
from paddle.fluid import core, unique_name
35
from paddle.fluid.data_feeder import convert_dtype
36
from paddle.fluid.layer_helper import LayerHelper
37
from paddle.utils import gast
38

39 40 41 42 43 44 45 46 47 48 49 50 51
from .ast_utils import ast_to_source_code
from .static_analysis import StaticAnalysisVisitor
from .utils_helper import DYGRAPH_MODULE_PREFIX  # noqa: F401
from .utils_helper import DYGRAPH_TO_STATIC_MODULE_PREFIX  # noqa: F401
from .utils_helper import PADDLE_MODULE_PREFIX  # noqa: F401
from .utils_helper import NodeVarType  # noqa: F401
from .utils_helper import _is_api_in_module_helper  # noqa: F401
from .utils_helper import index_in_list  # noqa: F401
from .utils_helper import is_api_in_module  # noqa: F401
from .utils_helper import is_dygraph_api  # noqa: F401
from .utils_helper import is_numpy_api  # noqa: F401;
from .utils_helper import is_paddle_api  # noqa: F401

52 53
__all__ = []

54 55
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
56 57
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
58
ALREADY_D2S = '__already_d2s'
59
ARGS_NAME = '__args'
60 61
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
DEL_TEMP_DIR = True  # A flag to avoid atexit.register more than once
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

RE_PYNAME = '[a-zA-Z0-9_]+'
RE_PYMODULE = r'[a-zA-Z0-9_]+\.'

# Assign not support float64, use float32 value as magic number.
RETURN_NO_VALUE_VAR_NAME = "__no_value_return_var"
RETURN_NO_VALUE_MAGIC_NUM = 1.77113e27

TRUE_FUNC_PREFIX = 'true_fn'
FALSE_FUNC_PREFIX = 'false_fn'

WHILE_CONDITION_PREFIX = 'while_condition'
WHILE_BODY_PREFIX = 'while_body'
FOR_CONDITION_PREFIX = 'for_loop_condition'
FOR_BODY_PREFIX = 'for_loop_body'

88 89 90

class BaseNodeVisitor(gast.NodeVisitor):
    """
91
    Implement customized NodeVisitor inherited from gast.NodeVisitor.
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


110 111 112 113 114 115 116 117 118 119 120
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}


121 122 123 124 125 126 127
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

128
     Note:
129 130 131 132 133 134 135 136 137 138
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
139
           size. For example, it is useful to set changeable batch size as "None"
140 141 142 143 144 145 146 147 148 149 150 151
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
152
    for i in range(len(shape)):
153 154 155
        if shape[i] is None:
            shape[i] = -1

156 157 158 159 160 161 162 163 164 165
    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        stop_gradient=True,
        lod_level=lod_level,
        is_data=True,
        need_check_feed=False,
    )
166

167

168
def create_undefined_variable():
169 170 171
    var = data_layer_not_check(
        unique_name.generate("undefined_var"), [1], "float64"
    )
172
    var.stop_gradient = False
173 174 175 176
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
177
    paddle.assign(RETURN_NO_VALUE_MAGIC_NUM, var)
178
    helper.main_program.current_block_idx = saved_block_ids
179
    return var
180 181


182 183 184 185 186 187
class UndefinedVar:
    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
188 189
            "local variable '{}' should be created before using it."
        )
190 191


192 193 194 195 196
class Dygraph2StaticException(Exception):
    def __init__(self, message):
        super().__init__(message)


197 198 199 200 201 202 203
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


204 205 206 207
def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
208
    fullargspec = inspect.getfullargspec(function)
209 210 211 212 213 214 215 216 217
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
218
        default_kwarg_names = arg_names[-len(default_values) :]
219 220 221 222 223
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
224 225 226 227
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
228
    fullargspec = inspect.getfullargspec(function)
W
WeiXin 已提交
229 230 231 232
    varargs = fullargspec.varargs
    return varargs


233 234 235 236 237 238 239 240
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

241
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
242
    """
243
    if isinstance(x, (tuple, list, set)):
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

261

262 263 264
# NOTE(Aurelius84): Consider the following paddle inner API as common case to
# apply @to_static code transformation as usual. Because they contains
# user-defined layer, like paddle.distributed.auto_parallel.helper.ProxyLayer.
265
AS_NOT_INNER_FUNC_LIST = {"paddle.nn.layer.container.Sequential"}
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287


def as_not_paddle_func(path):
    """
    Append API or class as ignored case for is_paddle_func, and they
    will be retured False while calling is_paddle_func(func).
    """
    global INNER_FUNC_WHITE_LIST
    AS_NOT_INNER_FUNC_LIST.add(path)


def is_paddle_func(func, ignore_white_list=True):
    """
    Return True if function is defined in Paddle module.
    Skip to check APIs in white list if specifying ignore_white_list as True.
    """

    def in_white_list(module, func_name):
        if func_name is None:
            return False
        return (module.__name__ + '.' + func_name) in AS_NOT_INNER_FUNC_LIST

288 289 290 291
    try:
        if isinstance(func, functools.partial):
            func = func.func

292
        func_name = getattr(func, '__name__', None)
293 294
        if inspect.ismethod(func):
            func_name = func.__self__.__class__.__name__
295
            func = func.__func__
296 297
        elif hasattr(func, '__class__'):  # for nn.Sequential
            func_name = func.__class__.__name__
298 299

        m = inspect.getmodule(func)
300 301 302
        flag = m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
        if ignore_white_list:
            flag = flag and not in_white_list(m, func_name)
303

304
        return flag
305 306
    except Exception:
        return False
307 308


309 310
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
311
    func_src = astor.to_source(gast.gast_to_ast(node.func))
312
    import paddle.fluid as fluid  # noqa: F401
313

314
    full_args = eval(f"inspect.getfullargspec({func_src})")
315 316 317 318 319 320 321 322 323 324
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
325 326
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
327 328
            "to static graph at present.".format(dygraph_class)
        )
329 330 331 332 333 334 335 336 337 338


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
339 340 341 342
            gast.keyword(
                arg="num_flatten_dims", value=gast.Constant(value=-1, kind=None)
            )
        )
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

361 362 363 364 365 366 367 368 369 370 371
    node.func = gast.Attribute(
        attr=static_api,
        ctx=gast.Load(),
        value=gast.Attribute(
            attr='layers',
            ctx=gast.Load(),
            value=gast.Name(
                ctx=gast.Load(), id='fluid', annotation=None, type_comment=None
            ),
        ),
    )
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

392
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
393
    import paddle.fluid as fluid  # noqa: F401
394

395
    if method_name == "__init__" or eval(
396
        "issubclass({}, paddle.nn.Layer)".format(class_src)
397
    ):
398
        full_args = eval(f"inspect.getfullargspec({class_src}.{method_name})")
399 400 401 402 403 404 405 406 407 408 409
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
410 411 412


def create_api_shape_node(tensor_shape_node):
413 414 415
    assert isinstance(
        tensor_shape_node, (gast.Name, gast.Attribute, gast.Subscript)
    )
416 417 418

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
419
            func=gast.parse('paddle.shape').body[0].value,
420
            args=[tensor_shape_node],
421 422
            keywords=[],
        )
423
        return api_shape_node
424 425 426

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
427
            func=gast.parse('paddle.shape').body[0].value,
428
            args=[tensor_shape_node.value],
429 430
            keywords=[],
        )
431 432 433 434 435 436
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
437 438


439
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
440 441 442
    return gast.parse(
        '%s = paddle.full(%s, "%s", %s)' % (name, str(shape), str(value), dtype)
    )
443 444 445 446


def get_attribute_full_name(node):
    assert isinstance(
447 448
        node, gast.Attribute
    ), "Input non-Attribute node to get attribute full name"
449 450 451
    return astor.to_source(gast.gast_to_ast(node)).strip()


452
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
453
    """
454 455 456 457 458 459 460
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
461
    """
462
    if isinstance(name_ids, str):
463 464
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
465
        raise TypeError(
466 467 468
            'name_ids must be list or tuple or set, but received %s'
            % type(type(name_ids))
        )
469 470 471

    def create_node_for_name(name):
        if '.' not in name:
472 473 474
            return gast.Name(
                id=name, ctx=ctx, annotation=None, type_comment=None
            )
475 476 477
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
478
    if len(gast_names) == 1 and not gen_tuple_if_single:
479 480 481 482 483 484 485 486 487 488 489 490 491
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
492 493
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
494 495
    else:
        nodes.append(gast.Return(value=None))
496 497 498 499 500 501 502 503
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None,
    )
504 505 506
    return func_def_node


507 508 509 510 511 512 513 514 515
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


516 517 518 519
def get_temp_dir():
    """
    Return @to_static temp directory.
    """
A
Aurelius84 已提交
520
    dir_name = "paddle/to_static_tmp/{pid}".format(pid=os.getpid())
521 522 523 524 525 526 527 528 529 530 531
    temp_dir = os.path.join(os.path.expanduser('~/.cache'), dir_name)
    is_windows = sys.platform.startswith('win')
    if is_windows:
        temp_dir = os.path.normpath(temp_dir)

    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    return temp_dir


532
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
533 534
    """
    Transform modified AST of decorated function into python callable object.
535 536
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
537
    """
538

539 540 541 542 543 544 545 546 547 548 549 550
    def remove_if_exit(dir_path):
        if os.path.exists(dir_path):
            shutil.rmtree(dir_path)

    def func_prefix(func):
        pre_fix = func.__name__
        if hasattr(func, '__self__'):
            try:
                pre_fix = func.__self__.__class__.__name__ + '_' + func.__name__
            except:
                pass
        return pre_fix
551

552
    source = ast_to_source_code(ast_root)
553
    source = _inject_import_statements() + source
554
    temp_dir = get_temp_dir()
555 556 557 558 559 560 561 562
    f = tempfile.NamedTemporaryFile(
        mode='w',
        prefix=func_prefix(dyfunc),
        suffix='.py',
        delete=False,
        dir=temp_dir,
        encoding='utf-8',
    )
563 564 565 566
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

567 568 569 570 571
    global DEL_TEMP_DIR
    if delete_on_exit and DEL_TEMP_DIR:
        # Clear temporary files in TEMP_DIR while exitting Python process
        atexit.register(remove_if_exit, dir_path=temp_dir)
        DEL_TEMP_DIR = False
572

573
    func_name = dyfunc.__name__
574 575 576 577
    loader = SourceFileLoader(module_name, f.name)
    spec = importlib.util.spec_from_loader(loader.name, loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
W
WeiXin 已提交
578 579 580
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
581
        callable_func = module.__i_m_p_l__
W
WeiXin 已提交
582 583 584 585
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
586
        raise ValueError(
587 588 589
            'Function: %s doesn\'t exist in the Module transformed from AST.'
            % func_name
        )
590 591 592 593 594 595 596 597
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


598 599
def _inject_import_statements():
    import_statements = [
600 601 602 603 604 605 606 607
        "import paddle",
        "from paddle import Tensor",
        "import paddle.fluid as fluid",
        "import paddle.jit.dy2static as _jst",
        "from typing import *",
        "import numpy as np",
        "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)",
608 609 610 611
    ]
    return '\n'.join(import_statements) + '\n'


612 613 614 615 616
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
617

618
    for k, v in src_globals.items():
619 620 621
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
622 623


624 625 626 627
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
628 629
    if isinstance(function, functools.partial):
        function = function.func
630 631
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
632 633 634 635
            "The type of 'function' should be a function or method, but received {}.".format(
                type(function).__name__
            )
        )
636
    source_code_list, _ = inspect.getsourcelines(function)
637
    # Replace comments with blank lines so that error messages are not misplaced
638
    source_code_list = [
639 640
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
641 642
    ]
    source_code = ''.join(source_code_list)
643 644 645 646 647 648
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


L
liym27 已提交
649 650 651 652
def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
653 654 655 656 657 658 659 660 661 662 663
    is_compare_node = isinstance(
        node,
        (
            gast.Compare,
            gast.BoolOp,
            gast.UnaryOp,
            gast.For,
            gast.If,
            gast.While,
        ),
    )
L
liym27 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
679 680 681
            if (isinstance(child, gast.Constant) and child.value is None) or (
                isinstance(child, gast.Name) and child.id == 'None'
            ):
L
liym27 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
699
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
700
        6. calls `range` function in `for` statement and the argument of range is Tensor.
701 702
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

716 717 718
    def __init__(
        self, ast_node, static_analysis_visitor=None, node_var_type_map=None
    ):
L
liym27 已提交
719 720 721
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
722 723
            ast_node
        )
L
liym27 已提交
724 725 726 727
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
728 729
        self.node_to_wrapper_map = (
            self.static_analysis_visitor.get_node_to_wrapper_map()
L
liym27 已提交
730 731 732 733 734 735 736 737
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
738 739 740 741 742 743 744 745
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
746 747 748 749 750 751 752 753 754
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
755 756 757
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
758 759 760 761
                if (
                    node.iter.func.id == "range"
                    or node.iter.func.id == "enumerate"
                ):
762 763 764 765 766 767 768 769 770 771
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
772 773
            else:
                return
774 775 776
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
777
        else:
L
liym27 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
816
            self.visit(child)
L
liym27 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
862
            if name_id and isinstance(name_id, str):
L
liym27 已提交
863
                var_type = self.node_var_type_map.get(name_id, None)
864
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
865 866
                    return True
        # if not found, look up the node_to_wrapper_map by node.
867
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
868
        if wrapper_node is not None:
869
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
870 871 872 873 874 875
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
876 877


878 879 880 881 882 883 884 885 886 887
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
888
    while _is_wrapped(unwrapped_f):
889 890 891
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
892 893


C
Chen Weihang 已提交
894
def input_specs_compatible(src_input_specs, desired_input_specs):
895 896 897 898
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
899 900 901 902
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
903 904
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
905 906
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
907
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
908 909 910 911
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
912 913 914
        for (src_spec, desired_spec) in zip(
            src_input_specs, desired_input_specs
        ):
915
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
916 917
                desired_spec, paddle.static.InputSpec
            ):
918 919 920 921
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
922 923
                    return False

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
951 952

    return True
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

975

976 977
class NameScope:
    def __init__(self):
978
        """
979 980
        A NameScope is a object which manager all the variable names.
        only FunctionDef and Controlflow node will have a namescope property.
981

982
        type can be "function" and "controlflow"
983

984
        we don't analyze the read only variable because they don't affect the analysis.
985 986 987 988 989 990
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
991
        self.created = set()  # useful for control flow compatibility
992
        # only valid in control_flow nodes
993 994
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
995 996 997 998 999

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
1000 1001
        """vars existing in current scope.
        they must not contain qualified names.
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1013
    def variadic_length_vars(self):
1014
        """
1015
        At present, we do not support global append, such as
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
        import numpy as np
        a = []
        def func():
            a.append() # global names `a`, we will raise a warning.
            p.append(a, 1) # global names `np`, we will raise a warning.
        """
        non_global_push_pop_names = []
        for var in self.push_pop_vars:
            if self._is_simple_name(var) and self.is_global_var(var):
                warnings.warn(
                    f"Find variable `{var}` defined in global scope"
                    f" and call `{var}.append() or {var}.pop()`"
                    f", which will be ignored and never be transfered into"
1030 1031
                    f" tensor array."
                )
1032 1033 1034
            else:
                non_global_push_pop_names.append(var)
        return set(non_global_push_pop_names)
1035

1036 1037
    def control_flow_vars(self):
        valid_names = self.w_vars
1038
        tmp = (self.father.global_vars & valid_names,)
1039 1040
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

1041
    def _is_simple_name(self, name):
1042 1043
        if '.' in name or '[' in name:
            return False
1044 1045 1046
        return True

    def is_global_var(self, name):
1047
        """
1048
        Return whether the name is a var created in global scope.
1049
        Search from bottom to top. If it is not created or modified,
1050 1051 1052 1053
        it means global vars; otherwise, it means local vars.
        Only valid after FunctionNameLivenessAnalysis visitor.
        """
        assert self._is_simple_name(
1054 1055
            name
        ), "is_global_var accept a simple name, but get `{name}`."
1056 1057
        ancestor = self
        while ancestor is not None:
1058 1059 1060 1061
            if name in ancestor.globals:
                return True
            if name in (ancestor.nonlocals | ancestor.w_vars):
                return False
1062 1063 1064 1065 1066
            ancestor = ancestor.father
        return True

    def is_local_var(self, name):
        return not self.is_global_var(name)
1067 1068 1069 1070 1071 1072

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1073
        self.push_pop_vars |= name_scope.push_pop_vars
1074 1075 1076


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
    """analyze the liveness of a function.

    every variables stored in this scope will be collected,
    in addition with global/nonlocal information and
    push_pop information.

    1. global variable is stored in node.var_globals.
    2. nonlocal variable is stored in node.var_nonlocals.
    3. arguments is stored in node.var_args.
    4. if a variable's push and pop attribute is called,
       it will be collected in push_pop_vars. They are
       used for transformation to tensor_array.
       NOTE: push_pop_vars **may not** in w_vars.
       a.push(0) don't modify the variable a, but the content
       of a.

    For example:

    def func(*args, **kargs):
        a = 12
        global i,j
        nonlocal x,y
        print(a)
        i = k
        b = []
        c = [1,2,3]
        for m in range(10):
            q = 12
            b.push(1)
            c.pop()

    After this visitor we have:
    # node is the FunctionDef node with name: "func"
    node.pd_scope = NameScope(
        globals = ['i', 'j'],
        nonlocals = ['x', 'y'],
        args = ['args', 'kargs'],
        wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
        push_pop_vars = ['b', 'c']
    )
1117 1118 1119 1120 1121 1122 1123 1124
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
1125
        node.pd_scope = NameScope()
1126 1127 1128

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
1129
            node.pd_scope = NameScope()
1130 1131 1132 1133 1134 1135
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
1136 1137
        if len(self.scope_node_stack) == 1:
            return None
1138 1139 1140
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
1141 1142
        if len(self.scope_node_stack) == 1:
            return None
1143 1144 1145 1146
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1147
    def visit_ListComp(self, node):
1148 1149 1150
        """[ i for i in range(10) ]
        In this case, `i` will not created in FunctionScope.
        We don't collect `i` by not calling generic_visit.
1151 1152 1153 1154
        """
        pass

    def visit_DictComp(self, node):
1155
        """the same as ListComp."""
1156 1157
        pass

1158 1159 1160 1161 1162 1163 1164 1165 1166
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):
        def pre_func():
            self._current_name_scope().args |= set(
1167 1168
                self._get_argument_names(node)
            )
1169 1170

        def post_func():
1171 1172
            """NOTE: why we need merge w_vars and push_pop_vars here ?
            because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
1173 1174
            """
            control_flow_function_def = [
1175 1176 1177 1178 1179 1180
                WHILE_BODY_PREFIX,
                WHILE_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX,
                TRUE_FUNC_PREFIX,
                FALSE_FUNC_PREFIX,
1181 1182 1183 1184
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
1185 1186
                    if node.name.startswith(prefix):
                        return True
1187 1188 1189
                return False

            if self._father_name_scope() and is_control_flow_def_node():
1190 1191 1192 1193 1194 1195
                self._father_name_scope().w_vars |= (
                    self._current_name_scope().w_vars
                )
                self._father_name_scope().push_pop_vars |= (
                    self._current_name_scope().push_pop_vars
                )
1196 1197 1198 1199

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
1200 1201
        """scope node main visit logic.
        pre_func and post_func is callbacks
1202 1203 1204
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
1205
        self._current_name_scope().set_father(self._nearest_function_scope())
1206 1207
        if pre_func:
            pre_func()
1208
        self.generic_visit(node)
1209 1210
        if post_func:
            post_func()
1211 1212 1213 1214 1215
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):
        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1216
            self._nearest_function_scope().merge_from(
1217 1218 1219 1220 1221 1222
                self._current_name_scope()
            )
            self._current_name_scope().created = (
                self._nearest_function_scope().existed_vars()
                - node.before_created
            )
1223
            # gather created vars into father and used in CreateUndefinedVarTransform
1224 1225 1226
            self._nearest_function_scope().created |= (
                self._current_name_scope().created
            )
1227 1228

        def pre_func():
1229
            node.before_created = self._nearest_function_scope().existed_vars()
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1255 1256 1257 1258 1259 1260 1261 1262 1263
    def visit_Subscript(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            while isinstance(node.value, gast.Subscript):
                node = node.value
            if isinstance(node.value, gast.Name):
                self._current_name_scope().w_vars.add(node.value.id)

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1275
    def _get_argument_names(self, node):
1276 1277 1278
        """get all arguments name in the functiondef node.
        this node is local to the function and shouldn't
        be created.
1279 1280
        """
        assert isinstance(
1281 1282
            node, gast.FunctionDef
        ), "Input node is not function define node"
1283 1284 1285 1286 1287 1288 1289
        names = [a for a in node.args.args]
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
1303 1304 1305
        """.format(
            func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX)
        )
1306 1307 1308
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1309
    node = create_nonlocal_stmt_nodes(names)
1310 1311
    if not names:
        return empty_node()
1312
    if node == []:
1313 1314
        nonlocal_vars = "\n"
    else:
1315
        nonlocal_vars = ast_to_source_code(node[0])
1316 1317
    template = """
    def {func_name}():
1318
        {nonlocal_vars}
1319
        return {vars},
1320 1321 1322
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1323
        nonlocal_vars=nonlocal_vars,
1324 1325
        vars=",".join(names),
    )
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
1342 1343 1344
        """.format(
            func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX), args=ARGS_NAME
        )
1345 1346 1347
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1348
    node = create_nonlocal_stmt_nodes(names)
1349 1350
    if not names:
        return empty_node()
1351
    if node == []:
1352 1353
        nonlocal_vars = "\n"
    else:
1354
        nonlocal_vars = ast_to_source_code(node[0])
1355 1356
    template = """
    def {func_name}({args}):
1357
        {nonlocal_vars}
1358
        {vars}, = {args}
1359 1360 1361 1362
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1363
        nonlocal_vars=nonlocal_vars,
1364 1365
        vars=",".join(names),
    )
1366 1367 1368
    return gast.parse(textwrap.dedent(func_def)).body[0]


1369
def create_nonlocal_stmt_nodes(names):
1370 1371 1372
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
1373
    mapped = list(filter(lambda n: '[' not in n, mapped))
1374
    names = sorted(
1375 1376
        mapped, key=mapped.index
    )  # to keep the order, we can't use set() to unique
1377 1378
    if not names:
        return []
1379
    func_code = "nonlocal {}".format(','.join(names))
1380
    return [gast.parse(func_code).body[0]]
1381 1382 1383


class GetterSetterHelper:
1384 1385 1386 1387
    """we have two classes of names in setter and getter function:
    w_vars(loop_vars) + push_pop_vars
    To simplify the setter logic in convert_while and convert_cond,
    we extract the helper class here.
1388 1389 1390 1391 1392
    """

    def __init__(self, getter_func, setter_func, *name_lists):
        name_lists = map(lambda x: [] if x is None else x, name_lists)
        name_sets = map(lambda x: set(x), name_lists)
1393 1394 1395
        self._union = list(
            functools.reduce(lambda x, y: x | y, name_sets, set())
        )
1396 1397 1398 1399 1400 1401 1402 1403 1404
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
1405 1406
        if names is None:
            names = []
1407
        vars = self.getter()
1408 1409
        if vars is None:
            return tuple()
1410
        for n in names:
1411 1412 1413 1414 1415
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1416 1417 1418
        return tuple(map(lambda n: vars[self.name2id[n]], names))

    def set(self, names, values):
1419 1420 1421 1422
        if names is None:
            names = []
        if values is None:
            values = []
1423
        vars = self.getter()
1424 1425
        if vars is None:
            return
1426
        for n in names:
1427 1428 1429 1430 1431
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
        vars = list(vars)
        indices = list(map(lambda n: self.name2id[n], names))
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

1446
    names_str = ["'%s'" % (name.replace("'", "\\'")) for name in name_ids]
1447
    return "(%s, )" % ','.join(names_str)
1448 1449 1450 1451 1452 1453 1454


def _param_grad_names(program_desc, params):
    """
    Parse PARAM@GARD name from original train and infer program.
    """
    names = []
1455
    # NOTE: `names` and `params` must be in the same order so that
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
    # the param grad name can be set correctly in the run_program.
    for param in params:
        candidate = [
            var.name()
            for var in program_desc.block(0).all_vars()
            if var.name().endswith(param.name + '@GRAD')
        ]
        if candidate:
            names.append(max(candidate, key=lambda name: name.count('grad/')))
        else:
            names.append(param.name + '@GRAD')

    return names


def _out_grad_names(program_desc, fwd_end_op_index, out_size):
    """
    Parse Out@GARD name from original train and infer program.
    """
    names = []
    for i in range(
1477 1478
        fwd_end_op_index,
        min(fwd_end_op_index + out_size, program_desc.block(0).op_size()),
1479 1480
    ):
        op = program_desc.block(0).op(i)
1481
        if op.type() == 'fill_any_like':
1482 1483 1484
            var_name = op.output('Out')[0]
            names.append(var_name)
    return names
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506


def prim_or_cinn_is_enabled(build_strategy):
    if build_strategy is not None and build_strategy.build_cinn_pass:
        return True

    if core._is_bwd_prim_enabled() or core._is_fwd_prim_enabled():
        return True

    env_flags = [
        'FLAGS_prim_forward',
        'FLAGS_prim_backward',
        'FLAGS_prim_all',
        'FLAGS_use_cinn',
    ]
    for flag in env_flags:
        value = os.getenv(flag)
        if value is None:
            continue
        elif value.lower() in ['true', '1']:
            return True
    return False
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522


def is_builtin(func, name=None):
    """predict whether a function is a builtin function with name={name}.
    if name == None, then any builtin function will return True
    """

    def name_judge():
        return name is None or func.__name__ == name

    if isinstance(func, types.BuiltinFunctionType) and name_judge():
        return True
    elif func in builtins.__dict__.values() and name_judge():
        return True
    else:
        return False