utils.py 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
import ast
import atexit
import copy
18
import importlib.util
19
import inspect
20
import os
21
import shutil
22
import sys
23
import tempfile
24
import textwrap
25 26 27 28 29
import warnings
from functools import reduce
from importlib.machinery import SourceFileLoader

import astor
30
import numpy as np
31

32
import paddle
33
from paddle.fluid import core, unique_name
34
from paddle.fluid.data_feeder import convert_dtype
35 36
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers import assign
37
from paddle.utils import gast
38 39 40

__all__ = []

41 42 43 44
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
PADDLE_MODULE_PREFIX = 'paddle.'
DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph'
45
DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.jit.dy2static'
46 47
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
48
ALREADY_D2S = '__already_d2s'
49
ARGS_NAME = '__args'
50 51
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
52

53 54 55

class BaseNodeVisitor(gast.NodeVisitor):
    """
56
    Implement customized NodeVisitor inherited from gast.NodeVisitor.
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


75 76 77 78 79 80 81 82 83 84
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

85
DEL_TEMP_DIR = True  # A flag to avoid atexit.register more than once
86 87
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
88 89
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
90 91 92 93 94
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

95
RE_PYNAME = '[a-zA-Z0-9_]+'
96
RE_PYMODULE = r'[a-zA-Z0-9_]+\.'
97

98

99 100 101 102 103 104 105
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

106
     Note:
107 108 109 110 111 112 113 114 115 116
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
117
           size. For example, it is useful to set changeable batch size as "None"
118 119 120 121 122 123 124 125 126 127 128 129
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
130
    for i in range(len(shape)):
131 132 133
        if shape[i] is None:
            shape[i] = -1

134 135 136 137 138 139 140 141 142 143
    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        stop_gradient=True,
        lod_level=lod_level,
        is_data=True,
        need_check_feed=False,
    )
144

145

146
def create_undefined_variable():
147
    from paddle.jit.dy2static.return_transformer import (
148 149 150 151 152 153
        RETURN_NO_VALUE_MAGIC_NUM,
    )

    var = data_layer_not_check(
        unique_name.generate("undefined_var"), [1], "float64"
    )
154
    var.stop_gradient = False
155 156 157 158
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
159
    assign(RETURN_NO_VALUE_MAGIC_NUM, var)
160
    helper.main_program.current_block_idx = saved_block_ids
161
    return var
162 163


164 165 166 167 168 169
class UndefinedVar:
    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
170 171
            "local variable '{}' should be created before using it."
        )
172 173


174 175 176 177 178
class Dygraph2StaticException(Exception):
    def __init__(self, message):
        super().__init__(message)


179 180 181 182 183 184 185
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


186 187 188 189
def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
190
    fullargspec = inspect.getfullargspec(function)
191 192 193 194 195 196 197 198 199
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
200
        default_kwarg_names = arg_names[-len(default_values) :]
201 202 203 204 205
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
206 207 208 209
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
210
    fullargspec = inspect.getfullargspec(function)
W
WeiXin 已提交
211 212 213 214
    varargs = fullargspec.varargs
    return varargs


215 216 217 218 219 220 221 222
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

223
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
224
    """
225
    if isinstance(x, (tuple, list, set)):
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

243

244 245 246 247 248 249 250
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
251 252 253 254 255 256 257 258

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
259
    try:
260 261 262 263 264 265
        import paddle  # noqa: F401
        import paddle.fluid as fluid  # noqa: F401
        import paddle.fluid.dygraph as dygraph  # noqa: F401
        import paddle.fluid.layers as layers  # noqa: F401
        import paddle.jit.dy2static as _jst  # noqa: F401
        from paddle import to_tensor  # noqa: F401
266
        from paddle.fluid.dygraph import to_variable  # noqa: F401
267

268 269 270
        return eval(
            "_is_api_in_module_helper({}, '{}')".format(func_str, module_prefix)
        )
271
    except Exception:
272 273 274 275
        return False


def is_dygraph_api(node):
276

277
    # Note: A api in module dygraph_to_static is not a real dygraph api.
278
    if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX):
279 280
        return False

281 282
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
283
    return is_api_in_module(node, DYGRAPH_MODULE_PREFIX)
284 285 286


def is_paddle_api(node):
287 288 289 290 291 292
    return is_api_in_module(node, PADDLE_MODULE_PREFIX)


def is_paddle_func(func):
    m = inspect.getmodule(func)
    return m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
293 294 295 296 297 298 299


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
300
        import numpy as np  # noqa: F401
301 302 303 304

        module_result = eval(
            "_is_api_in_module_helper({}, '{}')".format(func_str, "numpy")
        )
305 306
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
307 308 309
        return module_result or (
            func_str.startswith("numpy.") or func_str.startswith("np.")
        )
310
    except Exception:
311 312 313
        return False


314 315
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
316
    func_src = astor.to_source(gast.gast_to_ast(node.func))
317
    import paddle.fluid as fluid  # noqa: F401
318

319
    full_args = eval(f"inspect.getfullargspec({func_src})")
320 321 322 323 324 325 326 327 328 329
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
330 331
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
332 333
            "to static graph at present.".format(dygraph_class)
        )
334 335 336 337 338 339 340 341 342 343


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
344 345 346 347
            gast.keyword(
                arg="num_flatten_dims", value=gast.Constant(value=-1, kind=None)
            )
        )
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

366 367 368 369 370 371 372 373 374 375 376
    node.func = gast.Attribute(
        attr=static_api,
        ctx=gast.Load(),
        value=gast.Attribute(
            attr='layers',
            ctx=gast.Load(),
            value=gast.Name(
                ctx=gast.Load(), id='fluid', annotation=None, type_comment=None
            ),
        ),
    )
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

397
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
398
    import paddle.fluid as fluid  # noqa: F401
399

400
    if method_name == "__init__" or eval(
401 402
        "issubclass({}, fluid.dygraph.Layer)".format(class_src)
    ):
403
        full_args = eval(f"inspect.getfullargspec({class_src}.{method_name})")
404 405 406 407 408 409 410 411 412 413 414
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
415 416 417


def create_api_shape_node(tensor_shape_node):
418 419 420
    assert isinstance(
        tensor_shape_node, (gast.Name, gast.Attribute, gast.Subscript)
    )
421 422 423

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
424
            func=gast.parse('paddle.shape').body[0].value,
425
            args=[tensor_shape_node],
426 427
            keywords=[],
        )
428
        return api_shape_node
429 430 431

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
432
            func=gast.parse('paddle.shape').body[0].value,
433
            args=[tensor_shape_node.value],
434 435
            keywords=[],
        )
436 437 438 439 440 441
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
442 443


444
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
445 446 447
    return gast.parse(
        '%s = paddle.full(%s, "%s", %s)' % (name, str(shape), str(value), dtype)
    )
448 449 450 451


def get_attribute_full_name(node):
    assert isinstance(
452 453
        node, gast.Attribute
    ), "Input non-Attribute node to get attribute full name"
454 455 456
    return astor.to_source(gast.gast_to_ast(node)).strip()


457
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
458
    """
459 460 461 462 463 464 465
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
466
    """
467
    if isinstance(name_ids, str):
468 469
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
470
        raise TypeError(
471 472 473
            'name_ids must be list or tuple or set, but received %s'
            % type(type(name_ids))
        )
474 475 476

    def create_node_for_name(name):
        if '.' not in name:
477 478 479
            return gast.Name(
                id=name, ctx=ctx, annotation=None, type_comment=None
            )
480 481 482
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
483
    if len(gast_names) == 1 and not gen_tuple_if_single:
484 485 486 487 488 489 490 491 492 493 494 495 496
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
497 498
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
499 500
    else:
        nodes.append(gast.Return(value=None))
501 502 503 504 505 506 507 508
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None,
    )
509 510 511
    return func_def_node


512 513 514 515 516 517 518 519
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


520 521 522 523 524 525 526 527 528
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


529 530 531 532
def get_temp_dir():
    """
    Return @to_static temp directory.
    """
A
Aurelius84 已提交
533
    dir_name = "paddle/to_static_tmp/{pid}".format(pid=os.getpid())
534 535 536 537 538 539 540 541 542 543 544
    temp_dir = os.path.join(os.path.expanduser('~/.cache'), dir_name)
    is_windows = sys.platform.startswith('win')
    if is_windows:
        temp_dir = os.path.normpath(temp_dir)

    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    return temp_dir


545
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
546 547
    """
    Transform modified AST of decorated function into python callable object.
548 549
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
550
    """
551

552 553 554 555 556 557 558 559 560 561 562 563
    def remove_if_exit(dir_path):
        if os.path.exists(dir_path):
            shutil.rmtree(dir_path)

    def func_prefix(func):
        pre_fix = func.__name__
        if hasattr(func, '__self__'):
            try:
                pre_fix = func.__self__.__class__.__name__ + '_' + func.__name__
            except:
                pass
        return pre_fix
564

565
    source = ast_to_source_code(ast_root)
566
    source = _inject_import_statements() + source
567
    temp_dir = get_temp_dir()
568 569 570 571 572 573 574 575
    f = tempfile.NamedTemporaryFile(
        mode='w',
        prefix=func_prefix(dyfunc),
        suffix='.py',
        delete=False,
        dir=temp_dir,
        encoding='utf-8',
    )
576 577 578 579
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

580 581 582 583 584
    global DEL_TEMP_DIR
    if delete_on_exit and DEL_TEMP_DIR:
        # Clear temporary files in TEMP_DIR while exitting Python process
        atexit.register(remove_if_exit, dir_path=temp_dir)
        DEL_TEMP_DIR = False
585

586
    func_name = dyfunc.__name__
587 588 589 590
    loader = SourceFileLoader(module_name, f.name)
    spec = importlib.util.spec_from_loader(loader.name, loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
W
WeiXin 已提交
591 592 593 594 595 596 597 598
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
599
        raise ValueError(
600 601 602
            'Function: %s doesn\'t exist in the Module transformed from AST.'
            % func_name
        )
603 604 605 606 607 608 609 610
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


611 612
def _inject_import_statements():
    import_statements = [
613 614 615 616 617 618 619 620
        "import paddle",
        "from paddle import Tensor",
        "import paddle.fluid as fluid",
        "import paddle.jit.dy2static as _jst",
        "from typing import *",
        "import numpy as np",
        "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)",
621 622 623 624
    ]
    return '\n'.join(import_statements) + '\n'


625 626 627 628 629
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
630

631
    for k, v in src_globals.items():
632 633 634
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
635 636


637 638 639 640 641 642
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
643 644 645 646
            "The type of 'function' should be a function or method, but received {}.".format(
                type(function).__name__
            )
        )
647
    source_code_list, _ = inspect.getsourcelines(function)
648
    # Replace comments with blank lines so that error messages are not misplaced
649
    source_code_list = [
650 651
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
652 653
    ]
    source_code = ''.join(source_code_list)
654 655 656 657 658 659
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


660 661
def ast_to_source_code(ast_node):
    """
662
    Transforms ast node into source code.
663 664 665
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
666 667 668
            "Type of ast_root should be gast.AST or ast.AST, but received %s."
            % type(ast_node)
        )
669 670
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
671 672 673 674 675 676

    # Do not wrap lines even if they are too long
    def pretty_source(source):
        return ''.join(source)

    source_code = astor.to_source(ast_node, pretty_source=pretty_source)
677
    return source_code
L
liym27 已提交
678 679 680 681 682 683


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
684 685 686 687 688 689 690 691 692 693 694
    is_compare_node = isinstance(
        node,
        (
            gast.Compare,
            gast.BoolOp,
            gast.UnaryOp,
            gast.For,
            gast.If,
            gast.While,
        ),
    )
L
liym27 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
710 711 712
            if (isinstance(child, gast.Constant) and child.value is None) or (
                isinstance(child, gast.Name) and child.id == 'None'
            ):
L
liym27 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
730
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
731
        6. calls `range` function in `for` statement and the argument of range is Tensor.
732 733
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

747 748 749
    def __init__(
        self, ast_node, static_analysis_visitor=None, node_var_type_map=None
    ):
L
liym27 已提交
750 751 752
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
753 754
            ast_node
        )
L
liym27 已提交
755 756 757
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
758

L
liym27 已提交
759 760
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
761 762
        self.node_to_wrapper_map = (
            self.static_analysis_visitor.get_node_to_wrapper_map()
L
liym27 已提交
763 764 765 766 767 768 769 770
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
771 772 773 774 775 776 777 778
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
779 780 781 782 783 784 785 786 787
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
788 789 790
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
791 792 793 794
                if (
                    node.iter.func.id == "range"
                    or node.iter.func.id == "enumerate"
                ):
795 796 797 798 799 800 801 802 803 804
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
805 806
            else:
                return
807 808 809
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
810
        else:
L
liym27 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
849
            self.visit(child)
L
liym27 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
893
        from paddle.jit.dy2static.static_analysis import NodeVarType
L
liym27 已提交
894 895 896

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
897
            if name_id and isinstance(name_id, str):
L
liym27 已提交
898
                var_type = self.node_var_type_map.get(name_id, None)
899
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
900 901
                    return True
        # if not found, look up the node_to_wrapper_map by node.
902
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
903
        if wrapper_node is not None:
904
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
905 906 907 908 909 910
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
911 912


913 914 915 916 917 918 919 920 921 922
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
923
    while _is_wrapped(unwrapped_f):
924 925 926
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
927 928


C
Chen Weihang 已提交
929
def input_specs_compatible(src_input_specs, desired_input_specs):
930 931 932 933
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
934 935 936 937
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
938 939
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
940 941
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
942
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
943 944 945 946
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
947 948 949
        for (src_spec, desired_spec) in zip(
            src_input_specs, desired_input_specs
        ):
950
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
951 952
                desired_spec, paddle.static.InputSpec
            ):
953 954 955 956
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
957 958
                    return False

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
986 987

    return True
988

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

1010

1011 1012
class NameScope:
    def __init__(self):
1013
        """
1014 1015
        A NameScope is a object which manager all the variable names.
        only FunctionDef and Controlflow node will have a namescope property.
1016

1017
        type can be "function" and "controlflow"
1018

1019
        we don't analyze the read only variable because they don't affect the analysis.
1020 1021 1022 1023 1024 1025
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
1026
        self.created = set()  # useful for control flow compatibility
1027
        # only valid in control_flow nodes
1028 1029
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
1030 1031 1032 1033 1034

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
1035 1036
        """vars existing in current scope.
        they must not contain qualified names.
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1048
    def variadic_length_vars(self):
1049
        """
1050
        At present, we do not support global append, such as
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
        import numpy as np
        a = []
        def func():
            a.append() # global names `a`, we will raise a warning.
            p.append(a, 1) # global names `np`, we will raise a warning.
        """
        non_global_push_pop_names = []
        for var in self.push_pop_vars:
            if self._is_simple_name(var) and self.is_global_var(var):
                warnings.warn(
                    f"Find variable `{var}` defined in global scope"
                    f" and call `{var}.append() or {var}.pop()`"
                    f", which will be ignored and never be transfered into"
1065 1066
                    f" tensor array."
                )
1067 1068 1069
            else:
                non_global_push_pop_names.append(var)
        return set(non_global_push_pop_names)
1070

1071 1072
    def control_flow_vars(self):
        valid_names = self.w_vars
1073
        tmp = (self.father.global_vars & valid_names,)
1074 1075
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

1076
    def _is_simple_name(self, name):
1077 1078
        if '.' in name or '[' in name:
            return False
1079 1080 1081
        return True

    def is_global_var(self, name):
1082
        """
1083
        Return whether the name is a var created in global scope.
1084
        Search from bottom to top. If it is not created or modified,
1085 1086 1087 1088
        it means global vars; otherwise, it means local vars.
        Only valid after FunctionNameLivenessAnalysis visitor.
        """
        assert self._is_simple_name(
1089 1090
            name
        ), "is_global_var accept a simple name, but get `{name}`."
1091 1092
        ancestor = self
        while ancestor is not None:
1093 1094 1095 1096
            if name in ancestor.globals:
                return True
            if name in (ancestor.nonlocals | ancestor.w_vars):
                return False
1097 1098 1099 1100 1101
            ancestor = ancestor.father
        return True

    def is_local_var(self, name):
        return not self.is_global_var(name)
1102 1103 1104 1105 1106 1107

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1108
        self.push_pop_vars |= name_scope.push_pop_vars
1109 1110 1111


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    """analyze the liveness of a function.

    every variables stored in this scope will be collected,
    in addition with global/nonlocal information and
    push_pop information.

    1. global variable is stored in node.var_globals.
    2. nonlocal variable is stored in node.var_nonlocals.
    3. arguments is stored in node.var_args.
    4. if a variable's push and pop attribute is called,
       it will be collected in push_pop_vars. They are
       used for transformation to tensor_array.
       NOTE: push_pop_vars **may not** in w_vars.
       a.push(0) don't modify the variable a, but the content
       of a.

    For example:

    def func(*args, **kargs):
        a = 12
        global i,j
        nonlocal x,y
        print(a)
        i = k
        b = []
        c = [1,2,3]
        for m in range(10):
            q = 12
            b.push(1)
            c.pop()

    After this visitor we have:
    # node is the FunctionDef node with name: "func"
    node.pd_scope = NameScope(
        globals = ['i', 'j'],
        nonlocals = ['x', 'y'],
        args = ['args', 'kargs'],
        wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
        push_pop_vars = ['b', 'c']
    )
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
        setattr(node, "pd_scope", NameScope())

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
            setattr(node, "pd_scope", NameScope())
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
1171 1172
        if len(self.scope_node_stack) == 1:
            return None
1173 1174 1175
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
1176 1177
        if len(self.scope_node_stack) == 1:
            return None
1178 1179 1180 1181
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1182
    def visit_ListComp(self, node):
1183 1184 1185
        """[ i for i in range(10) ]
        In this case, `i` will not created in FunctionScope.
        We don't collect `i` by not calling generic_visit.
1186 1187 1188 1189
        """
        pass

    def visit_DictComp(self, node):
1190
        """the same as ListComp."""
1191 1192
        pass

1193 1194 1195 1196 1197 1198 1199 1200 1201
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):
        def pre_func():
            self._current_name_scope().args |= set(
1202 1203
                self._get_argument_names(node)
            )
1204 1205

        def post_func():
1206 1207
            """NOTE: why we need merge w_vars and push_pop_vars here ?
            because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
1208
            """
1209
            from paddle.jit.dy2static.ifelse_transformer import (
1210
                FALSE_FUNC_PREFIX,
1211 1212 1213 1214 1215 1216
                TRUE_FUNC_PREFIX,
            )
            from paddle.jit.dy2static.loop_transformer import (
                FOR_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                WHILE_BODY_PREFIX,
1217 1218
            )

1219
            control_flow_function_def = [
1220 1221 1222 1223 1224 1225
                WHILE_BODY_PREFIX,
                WHILE_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX,
                TRUE_FUNC_PREFIX,
                FALSE_FUNC_PREFIX,
1226 1227 1228 1229
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
1230 1231
                    if node.name.startswith(prefix):
                        return True
1232 1233 1234
                return False

            if self._father_name_scope() and is_control_flow_def_node():
1235 1236 1237 1238 1239 1240
                self._father_name_scope().w_vars |= (
                    self._current_name_scope().w_vars
                )
                self._father_name_scope().push_pop_vars |= (
                    self._current_name_scope().push_pop_vars
                )
1241 1242 1243 1244

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
1245 1246
        """scope node main visit logic.
        pre_func and post_func is callbacks
1247 1248 1249
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
1250
        self._current_name_scope().set_father(self._nearest_function_scope())
1251 1252
        if pre_func:
            pre_func()
1253
        self.generic_visit(node)
1254 1255
        if post_func:
            post_func()
1256 1257 1258 1259 1260
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):
        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1261
            self._nearest_function_scope().merge_from(
1262 1263 1264 1265 1266 1267
                self._current_name_scope()
            )
            self._current_name_scope().created = (
                self._nearest_function_scope().existed_vars()
                - node.before_created
            )
1268
            # gather created vars into father and used in CreateUndefinedVarTransform
1269 1270 1271
            self._nearest_function_scope().created |= (
                self._current_name_scope().created
            )
1272 1273

        def pre_func():
1274 1275 1276 1277 1278
            setattr(
                node,
                "before_created",
                self._nearest_function_scope().existed_vars(),
            )
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1315
    def _get_argument_names(self, node):
1316 1317 1318
        """get all arguments name in the functiondef node.
        this node is local to the function and shouldn't
        be created.
1319 1320
        """
        assert isinstance(
1321 1322
            node, gast.FunctionDef
        ), "Input node is not function define node"
1323 1324 1325 1326 1327 1328 1329
        names = [a for a in node.args.args]
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
1343 1344 1345
        """.format(
            func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX)
        )
1346 1347 1348
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1349
    node = create_nonlocal_stmt_nodes(names)
1350 1351
    if not names:
        return empty_node()
1352
    if node == []:
1353 1354
        nonlocal_vars = "\n"
    else:
1355
        nonlocal_vars = ast_to_source_code(node[0])
1356 1357
    template = """
    def {func_name}():
1358
        {nonlocal_vars}
1359
        return {vars},
1360 1361 1362
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1363
        nonlocal_vars=nonlocal_vars,
1364 1365
        vars=",".join(names),
    )
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
1382 1383 1384
        """.format(
            func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX), args=ARGS_NAME
        )
1385 1386 1387
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1388
    node = create_nonlocal_stmt_nodes(names)
1389 1390
    if not names:
        return empty_node()
1391
    if node == []:
1392 1393
        nonlocal_vars = "\n"
    else:
1394
        nonlocal_vars = ast_to_source_code(node[0])
1395 1396
    template = """
    def {func_name}({args}):
1397
        {nonlocal_vars}
1398
        {vars}, = {args}
1399 1400 1401 1402
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1403
        nonlocal_vars=nonlocal_vars,
1404 1405
        vars=",".join(names),
    )
1406 1407 1408
    return gast.parse(textwrap.dedent(func_def)).body[0]


1409
def create_nonlocal_stmt_nodes(names):
1410 1411 1412
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
1413
    mapped = list(filter(lambda n: '[' not in n, mapped))
1414
    names = sorted(
1415 1416
        mapped, key=mapped.index
    )  # to keep the order, we can't use set() to unique
1417 1418
    if not names:
        return []
1419
    func_code = "nonlocal {}".format(','.join(names))
1420
    return [gast.parse(func_code).body[0]]
1421 1422 1423


class GetterSetterHelper:
1424 1425 1426 1427
    """we have two classes of names in setter and getter function:
    w_vars(loop_vars) + push_pop_vars
    To simplify the setter logic in convert_while and convert_cond,
    we extract the helper class here.
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    """

    def __init__(self, getter_func, setter_func, *name_lists):
        name_lists = map(lambda x: [] if x is None else x, name_lists)
        name_sets = map(lambda x: set(x), name_lists)
        self._union = list(reduce(lambda x, y: x | y, name_sets, set()))
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
1443 1444
        if names is None:
            names = []
1445
        vars = self.getter()
1446 1447
        if vars is None:
            return tuple()
1448
        for n in names:
1449 1450 1451 1452 1453
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1454 1455 1456
        return tuple(map(lambda n: vars[self.name2id[n]], names))

    def set(self, names, values):
1457 1458 1459 1460
        if names is None:
            names = []
        if values is None:
            values = []
1461
        vars = self.getter()
1462 1463
        if vars is None:
            return
1464
        for n in names:
1465 1466 1467 1468 1469
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
        vars = list(vars)
        indices = list(map(lambda n: self.name2id[n], names))
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

1484
    names_str = ["'%s'" % (name.replace("'", "\\'")) for name in name_ids]
1485
    return "(%s, )" % ','.join(names_str)
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523


def _param_grad_names(program_desc, params):
    """
    Parse PARAM@GARD name from original train and infer program.
    """
    names = []
    # NOTE: `names` and `self._params` must be in the same order so that
    # the param grad name can be set correctly in the run_program.
    for param in params:
        candidate = [
            var.name()
            for var in program_desc.block(0).all_vars()
            if var.name().endswith(param.name + '@GRAD')
        ]
        if candidate:
            names.append(max(candidate, key=lambda name: name.count('grad/')))
        else:
            names.append(param.name + '@GRAD')

    return names


def _out_grad_names(program_desc, fwd_end_op_index, out_size):
    """
    Parse Out@GARD name from original train and infer program.
    """
    names = []
    for i in range(
        fwd_end_op_index + 1,
        min(fwd_end_op_index + 2 * out_size, program_desc.block(0).op_size()),
        2,
    ):
        op = program_desc.block(0).op(i)
        if op.type() == 'fill_constant':
            var_name = op.output('Out')[0]
            names.append(var_name)
    return names