utils.py 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
import ast
import atexit
import copy
18
import importlib.util
19
import inspect
20
import os
21
import shutil
22
import sys
23
import tempfile
24
import textwrap
25 26 27 28 29
import warnings
from functools import reduce
from importlib.machinery import SourceFileLoader

import astor
30
import numpy as np
31

32
import paddle
33
from paddle.fluid import core, unique_name
34
from paddle.fluid.data_feeder import convert_dtype
35
from paddle.fluid.layer_helper import LayerHelper
36
from paddle.utils import gast
37 38 39

__all__ = []

40 41 42 43
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
PADDLE_MODULE_PREFIX = 'paddle.'
DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph'
44
DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.jit.dy2static'
45 46
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
47
ALREADY_D2S = '__already_d2s'
48
ARGS_NAME = '__args'
49 50
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
51

52 53 54

class BaseNodeVisitor(gast.NodeVisitor):
    """
55
    Implement customized NodeVisitor inherited from gast.NodeVisitor.
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


74 75 76 77 78 79 80 81 82 83
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

84
DEL_TEMP_DIR = True  # A flag to avoid atexit.register more than once
85 86
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
87 88
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
89 90 91 92 93
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

94
RE_PYNAME = '[a-zA-Z0-9_]+'
95
RE_PYMODULE = r'[a-zA-Z0-9_]+\.'
96

97

98 99 100 101 102 103 104
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

105
     Note:
106 107 108 109 110 111 112 113 114 115
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
116
           size. For example, it is useful to set changeable batch size as "None"
117 118 119 120 121 122 123 124 125 126 127 128
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
129
    for i in range(len(shape)):
130 131 132
        if shape[i] is None:
            shape[i] = -1

133 134 135 136 137 138 139 140 141 142
    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        stop_gradient=True,
        lod_level=lod_level,
        is_data=True,
        need_check_feed=False,
    )
143

144

145
def create_undefined_variable():
146
    from paddle.jit.dy2static.return_transformer import (
147 148 149 150 151 152
        RETURN_NO_VALUE_MAGIC_NUM,
    )

    var = data_layer_not_check(
        unique_name.generate("undefined_var"), [1], "float64"
    )
153
    var.stop_gradient = False
154 155 156 157
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
158
    paddle.assign(RETURN_NO_VALUE_MAGIC_NUM, var)
159
    helper.main_program.current_block_idx = saved_block_ids
160
    return var
161 162


163 164 165 166 167 168
class UndefinedVar:
    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
169 170
            "local variable '{}' should be created before using it."
        )
171 172


173 174 175 176 177
class Dygraph2StaticException(Exception):
    def __init__(self, message):
        super().__init__(message)


178 179 180 181 182 183 184
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


185 186 187 188
def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
189
    fullargspec = inspect.getfullargspec(function)
190 191 192 193 194 195 196 197 198
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
199
        default_kwarg_names = arg_names[-len(default_values) :]
200 201 202 203 204
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
205 206 207 208
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
209
    fullargspec = inspect.getfullargspec(function)
W
WeiXin 已提交
210 211 212 213
    varargs = fullargspec.varargs
    return varargs


214 215 216 217 218 219 220 221
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

222
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
223
    """
224
    if isinstance(x, (tuple, list, set)):
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

242

243 244 245 246 247 248 249
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
250 251 252 253 254 255 256 257

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
258
    try:
259 260 261 262 263 264
        import paddle  # noqa: F401
        import paddle.fluid as fluid  # noqa: F401
        import paddle.fluid.dygraph as dygraph  # noqa: F401
        import paddle.fluid.layers as layers  # noqa: F401
        import paddle.jit.dy2static as _jst  # noqa: F401
        from paddle import to_tensor  # noqa: F401
265
        from paddle.fluid.dygraph import to_variable  # noqa: F401
266

267 268 269
        return eval(
            "_is_api_in_module_helper({}, '{}')".format(func_str, module_prefix)
        )
270
    except Exception:
271 272 273 274
        return False


def is_dygraph_api(node):
275

276
    # Note: A api in module dygraph_to_static is not a real dygraph api.
277
    if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX):
278 279
        return False

280 281
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
282
    return is_api_in_module(node, DYGRAPH_MODULE_PREFIX)
283 284 285


def is_paddle_api(node):
286 287 288 289 290 291
    return is_api_in_module(node, PADDLE_MODULE_PREFIX)


def is_paddle_func(func):
    m = inspect.getmodule(func)
    return m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
292 293 294 295 296 297 298


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
299
        import numpy as np  # noqa: F401
300 301 302 303

        module_result = eval(
            "_is_api_in_module_helper({}, '{}')".format(func_str, "numpy")
        )
304 305
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
306 307 308
        return module_result or (
            func_str.startswith("numpy.") or func_str.startswith("np.")
        )
309
    except Exception:
310 311 312
        return False


313 314
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
315
    func_src = astor.to_source(gast.gast_to_ast(node.func))
316
    import paddle.fluid as fluid  # noqa: F401
317

318
    full_args = eval(f"inspect.getfullargspec({func_src})")
319 320 321 322 323 324 325 326 327 328
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
329 330
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
331 332
            "to static graph at present.".format(dygraph_class)
        )
333 334 335 336 337 338 339 340 341 342


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
343 344 345 346
            gast.keyword(
                arg="num_flatten_dims", value=gast.Constant(value=-1, kind=None)
            )
        )
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

365 366 367 368 369 370 371 372 373 374 375
    node.func = gast.Attribute(
        attr=static_api,
        ctx=gast.Load(),
        value=gast.Attribute(
            attr='layers',
            ctx=gast.Load(),
            value=gast.Name(
                ctx=gast.Load(), id='fluid', annotation=None, type_comment=None
            ),
        ),
    )
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

396
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
397
    import paddle.fluid as fluid  # noqa: F401
398

399
    if method_name == "__init__" or eval(
400 401
        "issubclass({}, fluid.dygraph.Layer)".format(class_src)
    ):
402
        full_args = eval(f"inspect.getfullargspec({class_src}.{method_name})")
403 404 405 406 407 408 409 410 411 412 413
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
414 415 416


def create_api_shape_node(tensor_shape_node):
417 418 419
    assert isinstance(
        tensor_shape_node, (gast.Name, gast.Attribute, gast.Subscript)
    )
420 421 422

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
423
            func=gast.parse('paddle.shape').body[0].value,
424
            args=[tensor_shape_node],
425 426
            keywords=[],
        )
427
        return api_shape_node
428 429 430

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
431
            func=gast.parse('paddle.shape').body[0].value,
432
            args=[tensor_shape_node.value],
433 434
            keywords=[],
        )
435 436 437 438 439 440
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
441 442


443
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
444 445 446
    return gast.parse(
        '%s = paddle.full(%s, "%s", %s)' % (name, str(shape), str(value), dtype)
    )
447 448 449 450


def get_attribute_full_name(node):
    assert isinstance(
451 452
        node, gast.Attribute
    ), "Input non-Attribute node to get attribute full name"
453 454 455
    return astor.to_source(gast.gast_to_ast(node)).strip()


456
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
457
    """
458 459 460 461 462 463 464
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
465
    """
466
    if isinstance(name_ids, str):
467 468
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
469
        raise TypeError(
470 471 472
            'name_ids must be list or tuple or set, but received %s'
            % type(type(name_ids))
        )
473 474 475

    def create_node_for_name(name):
        if '.' not in name:
476 477 478
            return gast.Name(
                id=name, ctx=ctx, annotation=None, type_comment=None
            )
479 480 481
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
482
    if len(gast_names) == 1 and not gen_tuple_if_single:
483 484 485 486 487 488 489 490 491 492 493 494 495
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
496 497
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
498 499
    else:
        nodes.append(gast.Return(value=None))
500 501 502 503 504 505 506 507
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None,
    )
508 509 510
    return func_def_node


511 512 513 514 515 516 517 518
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


519 520 521 522 523 524 525 526 527
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


528 529 530 531
def get_temp_dir():
    """
    Return @to_static temp directory.
    """
A
Aurelius84 已提交
532
    dir_name = "paddle/to_static_tmp/{pid}".format(pid=os.getpid())
533 534 535 536 537 538 539 540 541 542 543
    temp_dir = os.path.join(os.path.expanduser('~/.cache'), dir_name)
    is_windows = sys.platform.startswith('win')
    if is_windows:
        temp_dir = os.path.normpath(temp_dir)

    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    return temp_dir


544
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
545 546
    """
    Transform modified AST of decorated function into python callable object.
547 548
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
549
    """
550

551 552 553 554 555 556 557 558 559 560 561 562
    def remove_if_exit(dir_path):
        if os.path.exists(dir_path):
            shutil.rmtree(dir_path)

    def func_prefix(func):
        pre_fix = func.__name__
        if hasattr(func, '__self__'):
            try:
                pre_fix = func.__self__.__class__.__name__ + '_' + func.__name__
            except:
                pass
        return pre_fix
563

564
    source = ast_to_source_code(ast_root)
565
    source = _inject_import_statements() + source
566
    temp_dir = get_temp_dir()
567 568 569 570 571 572 573 574
    f = tempfile.NamedTemporaryFile(
        mode='w',
        prefix=func_prefix(dyfunc),
        suffix='.py',
        delete=False,
        dir=temp_dir,
        encoding='utf-8',
    )
575 576 577 578
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

579 580 581 582 583
    global DEL_TEMP_DIR
    if delete_on_exit and DEL_TEMP_DIR:
        # Clear temporary files in TEMP_DIR while exitting Python process
        atexit.register(remove_if_exit, dir_path=temp_dir)
        DEL_TEMP_DIR = False
584

585
    func_name = dyfunc.__name__
586 587 588 589
    loader = SourceFileLoader(module_name, f.name)
    spec = importlib.util.spec_from_loader(loader.name, loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
W
WeiXin 已提交
590 591 592 593 594 595 596 597
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
598
        raise ValueError(
599 600 601
            'Function: %s doesn\'t exist in the Module transformed from AST.'
            % func_name
        )
602 603 604 605 606 607 608 609
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


610 611
def _inject_import_statements():
    import_statements = [
612 613 614 615 616 617 618 619
        "import paddle",
        "from paddle import Tensor",
        "import paddle.fluid as fluid",
        "import paddle.jit.dy2static as _jst",
        "from typing import *",
        "import numpy as np",
        "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)",
620 621 622 623
    ]
    return '\n'.join(import_statements) + '\n'


624 625 626 627 628
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
629

630
    for k, v in src_globals.items():
631 632 633
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
634 635


636 637 638 639 640 641
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
642 643 644 645
            "The type of 'function' should be a function or method, but received {}.".format(
                type(function).__name__
            )
        )
646
    source_code_list, _ = inspect.getsourcelines(function)
647
    # Replace comments with blank lines so that error messages are not misplaced
648
    source_code_list = [
649 650
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
651 652
    ]
    source_code = ''.join(source_code_list)
653 654 655 656 657 658
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


659 660
def ast_to_source_code(ast_node):
    """
661
    Transforms ast node into source code.
662 663 664
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
665 666 667
            "Type of ast_root should be gast.AST or ast.AST, but received %s."
            % type(ast_node)
        )
668 669
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
670 671 672 673 674 675

    # Do not wrap lines even if they are too long
    def pretty_source(source):
        return ''.join(source)

    source_code = astor.to_source(ast_node, pretty_source=pretty_source)
676
    return source_code
L
liym27 已提交
677 678 679 680 681 682


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
683 684 685 686 687 688 689 690 691 692 693
    is_compare_node = isinstance(
        node,
        (
            gast.Compare,
            gast.BoolOp,
            gast.UnaryOp,
            gast.For,
            gast.If,
            gast.While,
        ),
    )
L
liym27 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
709 710 711
            if (isinstance(child, gast.Constant) and child.value is None) or (
                isinstance(child, gast.Name) and child.id == 'None'
            ):
L
liym27 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
729
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
730
        6. calls `range` function in `for` statement and the argument of range is Tensor.
731 732
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

746 747 748
    def __init__(
        self, ast_node, static_analysis_visitor=None, node_var_type_map=None
    ):
L
liym27 已提交
749 750 751
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
752 753
            ast_node
        )
L
liym27 已提交
754 755 756
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
757

L
liym27 已提交
758 759
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
760 761
        self.node_to_wrapper_map = (
            self.static_analysis_visitor.get_node_to_wrapper_map()
L
liym27 已提交
762 763 764 765 766 767 768 769
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
770 771 772 773 774 775 776 777
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
778 779 780 781 782 783 784 785 786
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
787 788 789
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
790 791 792 793
                if (
                    node.iter.func.id == "range"
                    or node.iter.func.id == "enumerate"
                ):
794 795 796 797 798 799 800 801 802 803
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
804 805
            else:
                return
806 807 808
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
809
        else:
L
liym27 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
848
            self.visit(child)
L
liym27 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
892
        from paddle.jit.dy2static.static_analysis import NodeVarType
L
liym27 已提交
893 894 895

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
896
            if name_id and isinstance(name_id, str):
L
liym27 已提交
897
                var_type = self.node_var_type_map.get(name_id, None)
898
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
899 900
                    return True
        # if not found, look up the node_to_wrapper_map by node.
901
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
902
        if wrapper_node is not None:
903
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
904 905 906 907 908 909
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
910 911


912 913 914 915 916 917 918 919 920 921
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
922
    while _is_wrapped(unwrapped_f):
923 924 925
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
926 927


C
Chen Weihang 已提交
928
def input_specs_compatible(src_input_specs, desired_input_specs):
929 930 931 932
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
933 934 935 936
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
937 938
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
939 940
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
941
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
942 943 944 945
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
946 947 948
        for (src_spec, desired_spec) in zip(
            src_input_specs, desired_input_specs
        ):
949
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
950 951
                desired_spec, paddle.static.InputSpec
            ):
952 953 954 955
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
956 957
                    return False

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
985 986

    return True
987

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

1009

1010 1011
class NameScope:
    def __init__(self):
1012
        """
1013 1014
        A NameScope is a object which manager all the variable names.
        only FunctionDef and Controlflow node will have a namescope property.
1015

1016
        type can be "function" and "controlflow"
1017

1018
        we don't analyze the read only variable because they don't affect the analysis.
1019 1020 1021 1022 1023 1024
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
1025
        self.created = set()  # useful for control flow compatibility
1026
        # only valid in control_flow nodes
1027 1028
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
1029 1030 1031 1032 1033

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
1034 1035
        """vars existing in current scope.
        they must not contain qualified names.
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1047
    def variadic_length_vars(self):
1048
        """
1049
        At present, we do not support global append, such as
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        import numpy as np
        a = []
        def func():
            a.append() # global names `a`, we will raise a warning.
            p.append(a, 1) # global names `np`, we will raise a warning.
        """
        non_global_push_pop_names = []
        for var in self.push_pop_vars:
            if self._is_simple_name(var) and self.is_global_var(var):
                warnings.warn(
                    f"Find variable `{var}` defined in global scope"
                    f" and call `{var}.append() or {var}.pop()`"
                    f", which will be ignored and never be transfered into"
1064 1065
                    f" tensor array."
                )
1066 1067 1068
            else:
                non_global_push_pop_names.append(var)
        return set(non_global_push_pop_names)
1069

1070 1071
    def control_flow_vars(self):
        valid_names = self.w_vars
1072
        tmp = (self.father.global_vars & valid_names,)
1073 1074
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

1075
    def _is_simple_name(self, name):
1076 1077
        if '.' in name or '[' in name:
            return False
1078 1079 1080
        return True

    def is_global_var(self, name):
1081
        """
1082
        Return whether the name is a var created in global scope.
1083
        Search from bottom to top. If it is not created or modified,
1084 1085 1086 1087
        it means global vars; otherwise, it means local vars.
        Only valid after FunctionNameLivenessAnalysis visitor.
        """
        assert self._is_simple_name(
1088 1089
            name
        ), "is_global_var accept a simple name, but get `{name}`."
1090 1091
        ancestor = self
        while ancestor is not None:
1092 1093 1094 1095
            if name in ancestor.globals:
                return True
            if name in (ancestor.nonlocals | ancestor.w_vars):
                return False
1096 1097 1098 1099 1100
            ancestor = ancestor.father
        return True

    def is_local_var(self, name):
        return not self.is_global_var(name)
1101 1102 1103 1104 1105 1106

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1107
        self.push_pop_vars |= name_scope.push_pop_vars
1108 1109 1110


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    """analyze the liveness of a function.

    every variables stored in this scope will be collected,
    in addition with global/nonlocal information and
    push_pop information.

    1. global variable is stored in node.var_globals.
    2. nonlocal variable is stored in node.var_nonlocals.
    3. arguments is stored in node.var_args.
    4. if a variable's push and pop attribute is called,
       it will be collected in push_pop_vars. They are
       used for transformation to tensor_array.
       NOTE: push_pop_vars **may not** in w_vars.
       a.push(0) don't modify the variable a, but the content
       of a.

    For example:

    def func(*args, **kargs):
        a = 12
        global i,j
        nonlocal x,y
        print(a)
        i = k
        b = []
        c = [1,2,3]
        for m in range(10):
            q = 12
            b.push(1)
            c.pop()

    After this visitor we have:
    # node is the FunctionDef node with name: "func"
    node.pd_scope = NameScope(
        globals = ['i', 'j'],
        nonlocals = ['x', 'y'],
        args = ['args', 'kargs'],
        wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
        push_pop_vars = ['b', 'c']
    )
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
        setattr(node, "pd_scope", NameScope())

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
            setattr(node, "pd_scope", NameScope())
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
1170 1171
        if len(self.scope_node_stack) == 1:
            return None
1172 1173 1174
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
1175 1176
        if len(self.scope_node_stack) == 1:
            return None
1177 1178 1179 1180
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1181
    def visit_ListComp(self, node):
1182 1183 1184
        """[ i for i in range(10) ]
        In this case, `i` will not created in FunctionScope.
        We don't collect `i` by not calling generic_visit.
1185 1186 1187 1188
        """
        pass

    def visit_DictComp(self, node):
1189
        """the same as ListComp."""
1190 1191
        pass

1192 1193 1194 1195 1196 1197 1198 1199 1200
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):
        def pre_func():
            self._current_name_scope().args |= set(
1201 1202
                self._get_argument_names(node)
            )
1203 1204

        def post_func():
1205 1206
            """NOTE: why we need merge w_vars and push_pop_vars here ?
            because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
1207
            """
1208
            from paddle.jit.dy2static.ifelse_transformer import (
1209
                FALSE_FUNC_PREFIX,
1210 1211 1212 1213 1214 1215
                TRUE_FUNC_PREFIX,
            )
            from paddle.jit.dy2static.loop_transformer import (
                FOR_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                WHILE_BODY_PREFIX,
1216 1217
            )

1218
            control_flow_function_def = [
1219 1220 1221 1222 1223 1224
                WHILE_BODY_PREFIX,
                WHILE_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX,
                TRUE_FUNC_PREFIX,
                FALSE_FUNC_PREFIX,
1225 1226 1227 1228
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
1229 1230
                    if node.name.startswith(prefix):
                        return True
1231 1232 1233
                return False

            if self._father_name_scope() and is_control_flow_def_node():
1234 1235 1236 1237 1238 1239
                self._father_name_scope().w_vars |= (
                    self._current_name_scope().w_vars
                )
                self._father_name_scope().push_pop_vars |= (
                    self._current_name_scope().push_pop_vars
                )
1240 1241 1242 1243

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
1244 1245
        """scope node main visit logic.
        pre_func and post_func is callbacks
1246 1247 1248
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
1249
        self._current_name_scope().set_father(self._nearest_function_scope())
1250 1251
        if pre_func:
            pre_func()
1252
        self.generic_visit(node)
1253 1254
        if post_func:
            post_func()
1255 1256 1257 1258 1259
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):
        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1260
            self._nearest_function_scope().merge_from(
1261 1262 1263 1264 1265 1266
                self._current_name_scope()
            )
            self._current_name_scope().created = (
                self._nearest_function_scope().existed_vars()
                - node.before_created
            )
1267
            # gather created vars into father and used in CreateUndefinedVarTransform
1268 1269 1270
            self._nearest_function_scope().created |= (
                self._current_name_scope().created
            )
1271 1272

        def pre_func():
1273 1274 1275 1276 1277
            setattr(
                node,
                "before_created",
                self._nearest_function_scope().existed_vars(),
            )
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1314
    def _get_argument_names(self, node):
1315 1316 1317
        """get all arguments name in the functiondef node.
        this node is local to the function and shouldn't
        be created.
1318 1319
        """
        assert isinstance(
1320 1321
            node, gast.FunctionDef
        ), "Input node is not function define node"
1322 1323 1324 1325 1326 1327 1328
        names = [a for a in node.args.args]
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
1342 1343 1344
        """.format(
            func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX)
        )
1345 1346 1347
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1348
    node = create_nonlocal_stmt_nodes(names)
1349 1350
    if not names:
        return empty_node()
1351
    if node == []:
1352 1353
        nonlocal_vars = "\n"
    else:
1354
        nonlocal_vars = ast_to_source_code(node[0])
1355 1356
    template = """
    def {func_name}():
1357
        {nonlocal_vars}
1358
        return {vars},
1359 1360 1361
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1362
        nonlocal_vars=nonlocal_vars,
1363 1364
        vars=",".join(names),
    )
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
1381 1382 1383
        """.format(
            func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX), args=ARGS_NAME
        )
1384 1385 1386
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1387
    node = create_nonlocal_stmt_nodes(names)
1388 1389
    if not names:
        return empty_node()
1390
    if node == []:
1391 1392
        nonlocal_vars = "\n"
    else:
1393
        nonlocal_vars = ast_to_source_code(node[0])
1394 1395
    template = """
    def {func_name}({args}):
1396
        {nonlocal_vars}
1397
        {vars}, = {args}
1398 1399 1400 1401
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1402
        nonlocal_vars=nonlocal_vars,
1403 1404
        vars=",".join(names),
    )
1405 1406 1407
    return gast.parse(textwrap.dedent(func_def)).body[0]


1408
def create_nonlocal_stmt_nodes(names):
1409 1410 1411
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
1412
    mapped = list(filter(lambda n: '[' not in n, mapped))
1413
    names = sorted(
1414 1415
        mapped, key=mapped.index
    )  # to keep the order, we can't use set() to unique
1416 1417
    if not names:
        return []
1418
    func_code = "nonlocal {}".format(','.join(names))
1419
    return [gast.parse(func_code).body[0]]
1420 1421 1422


class GetterSetterHelper:
1423 1424 1425 1426
    """we have two classes of names in setter and getter function:
    w_vars(loop_vars) + push_pop_vars
    To simplify the setter logic in convert_while and convert_cond,
    we extract the helper class here.
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    """

    def __init__(self, getter_func, setter_func, *name_lists):
        name_lists = map(lambda x: [] if x is None else x, name_lists)
        name_sets = map(lambda x: set(x), name_lists)
        self._union = list(reduce(lambda x, y: x | y, name_sets, set()))
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
1442 1443
        if names is None:
            names = []
1444
        vars = self.getter()
1445 1446
        if vars is None:
            return tuple()
1447
        for n in names:
1448 1449 1450 1451 1452
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1453 1454 1455
        return tuple(map(lambda n: vars[self.name2id[n]], names))

    def set(self, names, values):
1456 1457 1458 1459
        if names is None:
            names = []
        if values is None:
            values = []
1460
        vars = self.getter()
1461 1462
        if vars is None:
            return
1463
        for n in names:
1464 1465 1466 1467 1468
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
        vars = list(vars)
        indices = list(map(lambda n: self.name2id[n], names))
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

1483
    names_str = ["'%s'" % (name.replace("'", "\\'")) for name in name_ids]
1484
    return "(%s, )" % ','.join(names_str)
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513


def _param_grad_names(program_desc, params):
    """
    Parse PARAM@GARD name from original train and infer program.
    """
    names = []
    # NOTE: `names` and `self._params` must be in the same order so that
    # the param grad name can be set correctly in the run_program.
    for param in params:
        candidate = [
            var.name()
            for var in program_desc.block(0).all_vars()
            if var.name().endswith(param.name + '@GRAD')
        ]
        if candidate:
            names.append(max(candidate, key=lambda name: name.count('grad/')))
        else:
            names.append(param.name + '@GRAD')

    return names


def _out_grad_names(program_desc, fwd_end_op_index, out_size):
    """
    Parse Out@GARD name from original train and infer program.
    """
    names = []
    for i in range(
1514 1515
        fwd_end_op_index,
        min(fwd_end_op_index + out_size, program_desc.block(0).op_size()),
1516 1517
    ):
        op = program_desc.block(0).op(i)
1518
        if op.type() == 'fill_any_like':
1519 1520 1521
            var_name = op.output('Out')[0]
            names.append(var_name)
    return names