utils.py 51.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import ast
import atexit
17
import builtins
18
import copy
19
import functools
20
import importlib.util
21
import inspect
22
import os
23
import shutil
24
import sys
25
import tempfile
26
import textwrap
27
import types
28 29 30 31
import warnings
from importlib.machinery import SourceFileLoader

import astor
32
import numpy as np
33

34
import paddle
35
from paddle.fluid import core, unique_name
36
from paddle.fluid.data_feeder import convert_dtype
37
from paddle.fluid.layer_helper import LayerHelper
38
from paddle.utils import gast
39 40 41

__all__ = []

42 43 44 45
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
PADDLE_MODULE_PREFIX = 'paddle.'
DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph'
46
DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.jit.dy2static'
47 48
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
49
ALREADY_D2S = '__already_d2s'
50
ARGS_NAME = '__args'
51 52
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
DEL_TEMP_DIR = True  # A flag to avoid atexit.register more than once
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

RE_PYNAME = '[a-zA-Z0-9_]+'
RE_PYMODULE = r'[a-zA-Z0-9_]+\.'

# Assign not support float64, use float32 value as magic number.
RETURN_NO_VALUE_VAR_NAME = "__no_value_return_var"
RETURN_NO_VALUE_MAGIC_NUM = 1.77113e27

TRUE_FUNC_PREFIX = 'true_fn'
FALSE_FUNC_PREFIX = 'false_fn'

WHILE_CONDITION_PREFIX = 'while_condition'
WHILE_BODY_PREFIX = 'while_body'
FOR_CONDITION_PREFIX = 'for_loop_condition'
FOR_BODY_PREFIX = 'for_loop_body'

79 80 81

class BaseNodeVisitor(gast.NodeVisitor):
    """
82
    Implement customized NodeVisitor inherited from gast.NodeVisitor.
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


101 102 103 104 105 106 107 108 109 110 111
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}


112 113 114 115 116 117 118
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

119
     Note:
120 121 122 123 124 125 126 127 128 129
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
130
           size. For example, it is useful to set changeable batch size as "None"
131 132 133 134 135 136 137 138 139 140 141 142
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
143
    for i in range(len(shape)):
144 145 146
        if shape[i] is None:
            shape[i] = -1

147 148 149 150 151 152 153 154 155 156
    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        stop_gradient=True,
        lod_level=lod_level,
        is_data=True,
        need_check_feed=False,
    )
157

158

159
def create_undefined_variable():
160 161 162
    var = data_layer_not_check(
        unique_name.generate("undefined_var"), [1], "float64"
    )
163
    var.stop_gradient = False
164 165 166 167
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
168
    paddle.assign(RETURN_NO_VALUE_MAGIC_NUM, var)
169
    helper.main_program.current_block_idx = saved_block_ids
170
    return var
171 172


173 174 175 176 177 178
class UndefinedVar:
    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
179 180
            "local variable '{}' should be created before using it."
        )
181 182


183 184 185 186 187
class Dygraph2StaticException(Exception):
    def __init__(self, message):
        super().__init__(message)


188 189 190 191 192 193 194
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


195 196 197 198
def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
199
    fullargspec = inspect.getfullargspec(function)
200 201 202 203 204 205 206 207 208
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
209
        default_kwarg_names = arg_names[-len(default_values) :]
210 211 212 213 214
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
215 216 217 218
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
219
    fullargspec = inspect.getfullargspec(function)
W
WeiXin 已提交
220 221 222 223
    varargs = fullargspec.varargs
    return varargs


224 225 226 227 228 229 230 231
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

232
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
233
    """
234
    if isinstance(x, (tuple, list, set)):
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

252

253 254 255 256 257 258 259
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
260 261 262 263 264 265 266 267

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
268
    try:
269 270 271 272 273 274
        import paddle  # noqa: F401
        import paddle.fluid as fluid  # noqa: F401
        import paddle.fluid.dygraph as dygraph  # noqa: F401
        import paddle.fluid.layers as layers  # noqa: F401
        import paddle.jit.dy2static as _jst  # noqa: F401
        from paddle import to_tensor  # noqa: F401
275
        from paddle.fluid.dygraph import to_variable  # noqa: F401
276

277 278 279
        return eval(
            "_is_api_in_module_helper({}, '{}')".format(func_str, module_prefix)
        )
280
    except Exception:
281 282 283 284
        return False


def is_dygraph_api(node):
285

286
    # Note: A api in module dygraph_to_static is not a real dygraph api.
287
    if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX):
288 289
        return False

290 291
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
292
    return is_api_in_module(node, DYGRAPH_MODULE_PREFIX)
293 294 295


def is_paddle_api(node):
296 297 298
    return is_api_in_module(node, PADDLE_MODULE_PREFIX)


299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
# NOTE(Aurelius84): Consider the following paddle inner API as common case to
# apply @to_static code transformation as usual. Because they contains
# user-defined layer, like paddle.distributed.auto_parallel.helper.ProxyLayer.
AS_NOT_INNER_FUNC_LIST = set()


def as_not_paddle_func(path):
    """
    Append API or class as ignored case for is_paddle_func, and they
    will be retured False while calling is_paddle_func(func).
    """
    global INNER_FUNC_WHITE_LIST
    AS_NOT_INNER_FUNC_LIST.add(path)


def is_paddle_func(func, ignore_white_list=True):
    """
    Return True if function is defined in Paddle module.
    Skip to check APIs in white list if specifying ignore_white_list as True.
    """

    def in_white_list(module, func_name):
        if func_name is None:
            return False
        return (module.__name__ + '.' + func_name) in AS_NOT_INNER_FUNC_LIST

325 326 327 328
    try:
        if isinstance(func, functools.partial):
            func = func.func

329
        func_name = getattr(func, '__name__', None)
330 331 332 333 334
        # In case of dynamically monkey patch customised function
        # into paddle class obj, so we consider its class module
        # path as prefix.
        if hasattr(func, "__self__"):
            func = func.__self__
335
            func_name = func.__class__.__name__
336 337 338 339
        elif inspect.ismethod(func):
            func = func.__func__

        m = inspect.getmodule(func)
340 341 342 343
        flag = m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
        if ignore_white_list:
            flag = flag and not in_white_list(m, func_name)
        return flag
344 345
    except Exception:
        return False
346 347 348 349 350 351 352


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
353
        import numpy as np  # noqa: F401
354 355 356 357

        module_result = eval(
            "_is_api_in_module_helper({}, '{}')".format(func_str, "numpy")
        )
358 359
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
360 361 362
        return module_result or (
            func_str.startswith("numpy.") or func_str.startswith("np.")
        )
363
    except Exception:
364 365 366
        return False


367 368
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
369
    func_src = astor.to_source(gast.gast_to_ast(node.func))
370
    import paddle.fluid as fluid  # noqa: F401
371

372
    full_args = eval(f"inspect.getfullargspec({func_src})")
373 374 375 376 377 378 379 380 381 382
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
383 384
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
385 386
            "to static graph at present.".format(dygraph_class)
        )
387 388 389 390 391 392 393 394 395 396


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
397 398 399 400
            gast.keyword(
                arg="num_flatten_dims", value=gast.Constant(value=-1, kind=None)
            )
        )
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

419 420 421 422 423 424 425 426 427 428 429
    node.func = gast.Attribute(
        attr=static_api,
        ctx=gast.Load(),
        value=gast.Attribute(
            attr='layers',
            ctx=gast.Load(),
            value=gast.Name(
                ctx=gast.Load(), id='fluid', annotation=None, type_comment=None
            ),
        ),
    )
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

450
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
451
    import paddle.fluid as fluid  # noqa: F401
452

453
    if method_name == "__init__" or eval(
454 455
        "issubclass({}, fluid.dygraph.Layer)".format(class_src)
    ):
456
        full_args = eval(f"inspect.getfullargspec({class_src}.{method_name})")
457 458 459 460 461 462 463 464 465 466 467
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
468 469 470


def create_api_shape_node(tensor_shape_node):
471 472 473
    assert isinstance(
        tensor_shape_node, (gast.Name, gast.Attribute, gast.Subscript)
    )
474 475 476

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
477
            func=gast.parse('paddle.shape').body[0].value,
478
            args=[tensor_shape_node],
479 480
            keywords=[],
        )
481
        return api_shape_node
482 483 484

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
485
            func=gast.parse('paddle.shape').body[0].value,
486
            args=[tensor_shape_node.value],
487 488
            keywords=[],
        )
489 490 491 492 493 494
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
495 496


497
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
498 499 500
    return gast.parse(
        '%s = paddle.full(%s, "%s", %s)' % (name, str(shape), str(value), dtype)
    )
501 502 503 504


def get_attribute_full_name(node):
    assert isinstance(
505 506
        node, gast.Attribute
    ), "Input non-Attribute node to get attribute full name"
507 508 509
    return astor.to_source(gast.gast_to_ast(node)).strip()


510
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
511
    """
512 513 514 515 516 517 518
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
519
    """
520
    if isinstance(name_ids, str):
521 522
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
523
        raise TypeError(
524 525 526
            'name_ids must be list or tuple or set, but received %s'
            % type(type(name_ids))
        )
527 528 529

    def create_node_for_name(name):
        if '.' not in name:
530 531 532
            return gast.Name(
                id=name, ctx=ctx, annotation=None, type_comment=None
            )
533 534 535
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
536
    if len(gast_names) == 1 and not gen_tuple_if_single:
537 538 539 540 541 542 543 544 545 546 547 548 549
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
550 551
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
552 553
    else:
        nodes.append(gast.Return(value=None))
554 555 556 557 558 559 560 561
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None,
    )
562 563 564
    return func_def_node


565 566 567 568 569 570 571 572
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


573 574 575 576 577 578 579 580 581
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


582 583 584 585
def get_temp_dir():
    """
    Return @to_static temp directory.
    """
A
Aurelius84 已提交
586
    dir_name = "paddle/to_static_tmp/{pid}".format(pid=os.getpid())
587 588 589 590 591 592 593 594 595 596 597
    temp_dir = os.path.join(os.path.expanduser('~/.cache'), dir_name)
    is_windows = sys.platform.startswith('win')
    if is_windows:
        temp_dir = os.path.normpath(temp_dir)

    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    return temp_dir


598
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
599 600
    """
    Transform modified AST of decorated function into python callable object.
601 602
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
603
    """
604

605 606 607 608 609 610 611 612 613 614 615 616
    def remove_if_exit(dir_path):
        if os.path.exists(dir_path):
            shutil.rmtree(dir_path)

    def func_prefix(func):
        pre_fix = func.__name__
        if hasattr(func, '__self__'):
            try:
                pre_fix = func.__self__.__class__.__name__ + '_' + func.__name__
            except:
                pass
        return pre_fix
617

618
    source = ast_to_source_code(ast_root)
619
    source = _inject_import_statements() + source
620
    temp_dir = get_temp_dir()
621 622 623 624 625 626 627 628
    f = tempfile.NamedTemporaryFile(
        mode='w',
        prefix=func_prefix(dyfunc),
        suffix='.py',
        delete=False,
        dir=temp_dir,
        encoding='utf-8',
    )
629 630 631 632
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

633 634 635 636 637
    global DEL_TEMP_DIR
    if delete_on_exit and DEL_TEMP_DIR:
        # Clear temporary files in TEMP_DIR while exitting Python process
        atexit.register(remove_if_exit, dir_path=temp_dir)
        DEL_TEMP_DIR = False
638

639
    func_name = dyfunc.__name__
640 641 642 643
    loader = SourceFileLoader(module_name, f.name)
    spec = importlib.util.spec_from_loader(loader.name, loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
W
WeiXin 已提交
644 645 646 647 648 649 650 651
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
652
        raise ValueError(
653 654 655
            'Function: %s doesn\'t exist in the Module transformed from AST.'
            % func_name
        )
656 657 658 659 660 661 662 663
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


664 665
def _inject_import_statements():
    import_statements = [
666 667 668 669 670 671 672 673
        "import paddle",
        "from paddle import Tensor",
        "import paddle.fluid as fluid",
        "import paddle.jit.dy2static as _jst",
        "from typing import *",
        "import numpy as np",
        "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)",
674 675 676 677
    ]
    return '\n'.join(import_statements) + '\n'


678 679 680 681 682
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
683

684
    for k, v in src_globals.items():
685 686 687
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
688 689


690 691 692 693
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
694 695
    if isinstance(function, functools.partial):
        function = function.func
696 697
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
698 699 700 701
            "The type of 'function' should be a function or method, but received {}.".format(
                type(function).__name__
            )
        )
702
    source_code_list, _ = inspect.getsourcelines(function)
703
    # Replace comments with blank lines so that error messages are not misplaced
704
    source_code_list = [
705 706
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
707 708
    ]
    source_code = ''.join(source_code_list)
709 710 711 712 713 714
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


715 716
def ast_to_source_code(ast_node):
    """
717
    Transforms ast node into source code.
718 719 720
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
721 722 723
            "Type of ast_root should be gast.AST or ast.AST, but received %s."
            % type(ast_node)
        )
724 725
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
726 727 728 729 730 731

    # Do not wrap lines even if they are too long
    def pretty_source(source):
        return ''.join(source)

    source_code = astor.to_source(ast_node, pretty_source=pretty_source)
732
    return source_code
L
liym27 已提交
733 734 735 736 737 738


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
739 740 741 742 743 744 745 746 747 748 749
    is_compare_node = isinstance(
        node,
        (
            gast.Compare,
            gast.BoolOp,
            gast.UnaryOp,
            gast.For,
            gast.If,
            gast.While,
        ),
    )
L
liym27 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
765 766 767
            if (isinstance(child, gast.Constant) and child.value is None) or (
                isinstance(child, gast.Name) and child.id == 'None'
            ):
L
liym27 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
785
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
786
        6. calls `range` function in `for` statement and the argument of range is Tensor.
787 788
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

802 803 804
    def __init__(
        self, ast_node, static_analysis_visitor=None, node_var_type_map=None
    ):
L
liym27 已提交
805 806 807
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
808 809
            ast_node
        )
L
liym27 已提交
810 811 812
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
813

L
liym27 已提交
814 815
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
816 817
        self.node_to_wrapper_map = (
            self.static_analysis_visitor.get_node_to_wrapper_map()
L
liym27 已提交
818 819 820 821 822 823 824 825
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
826 827 828 829 830 831 832 833
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
834 835 836 837 838 839 840 841 842
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
843 844 845
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
846 847 848 849
                if (
                    node.iter.func.id == "range"
                    or node.iter.func.id == "enumerate"
                ):
850 851 852 853 854 855 856 857 858 859
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
860 861
            else:
                return
862 863 864
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
865
        else:
L
liym27 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
904
            self.visit(child)
L
liym27 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
948
        from paddle.jit.dy2static.static_analysis import NodeVarType
L
liym27 已提交
949 950 951

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
952
            if name_id and isinstance(name_id, str):
L
liym27 已提交
953
                var_type = self.node_var_type_map.get(name_id, None)
954
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
955 956
                    return True
        # if not found, look up the node_to_wrapper_map by node.
957
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
958
        if wrapper_node is not None:
959
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
960 961 962 963 964 965
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
966 967


968 969 970 971 972 973 974 975 976 977
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
978
    while _is_wrapped(unwrapped_f):
979 980 981
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
982 983


C
Chen Weihang 已提交
984
def input_specs_compatible(src_input_specs, desired_input_specs):
985 986 987 988
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
989 990 991 992
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
993 994
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
995 996
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
997
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
998 999 1000 1001
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
1002 1003 1004
        for (src_spec, desired_spec) in zip(
            src_input_specs, desired_input_specs
        ):
1005
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
1006 1007
                desired_spec, paddle.static.InputSpec
            ):
1008 1009 1010 1011
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
1012 1013
                    return False

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
1041 1042

    return True
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

1065

1066 1067
class NameScope:
    def __init__(self):
1068
        """
1069 1070
        A NameScope is a object which manager all the variable names.
        only FunctionDef and Controlflow node will have a namescope property.
1071

1072
        type can be "function" and "controlflow"
1073

1074
        we don't analyze the read only variable because they don't affect the analysis.
1075 1076 1077 1078 1079 1080
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
1081
        self.created = set()  # useful for control flow compatibility
1082
        # only valid in control_flow nodes
1083 1084
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
1085 1086 1087 1088 1089

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
1090 1091
        """vars existing in current scope.
        they must not contain qualified names.
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1103
    def variadic_length_vars(self):
1104
        """
1105
        At present, we do not support global append, such as
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
        import numpy as np
        a = []
        def func():
            a.append() # global names `a`, we will raise a warning.
            p.append(a, 1) # global names `np`, we will raise a warning.
        """
        non_global_push_pop_names = []
        for var in self.push_pop_vars:
            if self._is_simple_name(var) and self.is_global_var(var):
                warnings.warn(
                    f"Find variable `{var}` defined in global scope"
                    f" and call `{var}.append() or {var}.pop()`"
                    f", which will be ignored and never be transfered into"
1120 1121
                    f" tensor array."
                )
1122 1123 1124
            else:
                non_global_push_pop_names.append(var)
        return set(non_global_push_pop_names)
1125

1126 1127
    def control_flow_vars(self):
        valid_names = self.w_vars
1128
        tmp = (self.father.global_vars & valid_names,)
1129 1130
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

1131
    def _is_simple_name(self, name):
1132 1133
        if '.' in name or '[' in name:
            return False
1134 1135 1136
        return True

    def is_global_var(self, name):
1137
        """
1138
        Return whether the name is a var created in global scope.
1139
        Search from bottom to top. If it is not created or modified,
1140 1141 1142 1143
        it means global vars; otherwise, it means local vars.
        Only valid after FunctionNameLivenessAnalysis visitor.
        """
        assert self._is_simple_name(
1144 1145
            name
        ), "is_global_var accept a simple name, but get `{name}`."
1146 1147
        ancestor = self
        while ancestor is not None:
1148 1149 1150 1151
            if name in ancestor.globals:
                return True
            if name in (ancestor.nonlocals | ancestor.w_vars):
                return False
1152 1153 1154 1155 1156
            ancestor = ancestor.father
        return True

    def is_local_var(self, name):
        return not self.is_global_var(name)
1157 1158 1159 1160 1161 1162

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1163
        self.push_pop_vars |= name_scope.push_pop_vars
1164 1165 1166


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    """analyze the liveness of a function.

    every variables stored in this scope will be collected,
    in addition with global/nonlocal information and
    push_pop information.

    1. global variable is stored in node.var_globals.
    2. nonlocal variable is stored in node.var_nonlocals.
    3. arguments is stored in node.var_args.
    4. if a variable's push and pop attribute is called,
       it will be collected in push_pop_vars. They are
       used for transformation to tensor_array.
       NOTE: push_pop_vars **may not** in w_vars.
       a.push(0) don't modify the variable a, but the content
       of a.

    For example:

    def func(*args, **kargs):
        a = 12
        global i,j
        nonlocal x,y
        print(a)
        i = k
        b = []
        c = [1,2,3]
        for m in range(10):
            q = 12
            b.push(1)
            c.pop()

    After this visitor we have:
    # node is the FunctionDef node with name: "func"
    node.pd_scope = NameScope(
        globals = ['i', 'j'],
        nonlocals = ['x', 'y'],
        args = ['args', 'kargs'],
        wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
        push_pop_vars = ['b', 'c']
    )
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
        setattr(node, "pd_scope", NameScope())

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
            setattr(node, "pd_scope", NameScope())
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
1226 1227
        if len(self.scope_node_stack) == 1:
            return None
1228 1229 1230
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
1231 1232
        if len(self.scope_node_stack) == 1:
            return None
1233 1234 1235 1236
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1237
    def visit_ListComp(self, node):
1238 1239 1240
        """[ i for i in range(10) ]
        In this case, `i` will not created in FunctionScope.
        We don't collect `i` by not calling generic_visit.
1241 1242 1243 1244
        """
        pass

    def visit_DictComp(self, node):
1245
        """the same as ListComp."""
1246 1247
        pass

1248 1249 1250 1251 1252 1253 1254 1255 1256
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):
        def pre_func():
            self._current_name_scope().args |= set(
1257 1258
                self._get_argument_names(node)
            )
1259 1260

        def post_func():
1261 1262
            """NOTE: why we need merge w_vars and push_pop_vars here ?
            because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
1263 1264
            """
            control_flow_function_def = [
1265 1266 1267 1268 1269 1270
                WHILE_BODY_PREFIX,
                WHILE_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX,
                TRUE_FUNC_PREFIX,
                FALSE_FUNC_PREFIX,
1271 1272 1273 1274
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
1275 1276
                    if node.name.startswith(prefix):
                        return True
1277 1278 1279
                return False

            if self._father_name_scope() and is_control_flow_def_node():
1280 1281 1282 1283 1284 1285
                self._father_name_scope().w_vars |= (
                    self._current_name_scope().w_vars
                )
                self._father_name_scope().push_pop_vars |= (
                    self._current_name_scope().push_pop_vars
                )
1286 1287 1288 1289

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
1290 1291
        """scope node main visit logic.
        pre_func and post_func is callbacks
1292 1293 1294
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
1295
        self._current_name_scope().set_father(self._nearest_function_scope())
1296 1297
        if pre_func:
            pre_func()
1298
        self.generic_visit(node)
1299 1300
        if post_func:
            post_func()
1301 1302 1303 1304 1305
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):
        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1306
            self._nearest_function_scope().merge_from(
1307 1308 1309 1310 1311 1312
                self._current_name_scope()
            )
            self._current_name_scope().created = (
                self._nearest_function_scope().existed_vars()
                - node.before_created
            )
1313
            # gather created vars into father and used in CreateUndefinedVarTransform
1314 1315 1316
            self._nearest_function_scope().created |= (
                self._current_name_scope().created
            )
1317 1318

        def pre_func():
1319 1320 1321 1322 1323
            setattr(
                node,
                "before_created",
                self._nearest_function_scope().existed_vars(),
            )
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1349 1350 1351 1352 1353 1354 1355 1356 1357
    def visit_Subscript(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            while isinstance(node.value, gast.Subscript):
                node = node.value
            if isinstance(node.value, gast.Name):
                self._current_name_scope().w_vars.add(node.value.id)

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1369
    def _get_argument_names(self, node):
1370 1371 1372
        """get all arguments name in the functiondef node.
        this node is local to the function and shouldn't
        be created.
1373 1374
        """
        assert isinstance(
1375 1376
            node, gast.FunctionDef
        ), "Input node is not function define node"
1377 1378 1379 1380 1381 1382 1383
        names = [a for a in node.args.args]
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
1397 1398 1399
        """.format(
            func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX)
        )
1400 1401 1402
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1403
    node = create_nonlocal_stmt_nodes(names)
1404 1405
    if not names:
        return empty_node()
1406
    if node == []:
1407 1408
        nonlocal_vars = "\n"
    else:
1409
        nonlocal_vars = ast_to_source_code(node[0])
1410 1411
    template = """
    def {func_name}():
1412
        {nonlocal_vars}
1413
        return {vars},
1414 1415 1416
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1417
        nonlocal_vars=nonlocal_vars,
1418 1419
        vars=",".join(names),
    )
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
1436 1437 1438
        """.format(
            func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX), args=ARGS_NAME
        )
1439 1440 1441
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1442
    node = create_nonlocal_stmt_nodes(names)
1443 1444
    if not names:
        return empty_node()
1445
    if node == []:
1446 1447
        nonlocal_vars = "\n"
    else:
1448
        nonlocal_vars = ast_to_source_code(node[0])
1449 1450
    template = """
    def {func_name}({args}):
1451
        {nonlocal_vars}
1452
        {vars}, = {args}
1453 1454 1455 1456
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1457
        nonlocal_vars=nonlocal_vars,
1458 1459
        vars=",".join(names),
    )
1460 1461 1462
    return gast.parse(textwrap.dedent(func_def)).body[0]


1463
def create_nonlocal_stmt_nodes(names):
1464 1465 1466
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
1467
    mapped = list(filter(lambda n: '[' not in n, mapped))
1468
    names = sorted(
1469 1470
        mapped, key=mapped.index
    )  # to keep the order, we can't use set() to unique
1471 1472
    if not names:
        return []
1473
    func_code = "nonlocal {}".format(','.join(names))
1474
    return [gast.parse(func_code).body[0]]
1475 1476 1477


class GetterSetterHelper:
1478 1479 1480 1481
    """we have two classes of names in setter and getter function:
    w_vars(loop_vars) + push_pop_vars
    To simplify the setter logic in convert_while and convert_cond,
    we extract the helper class here.
1482 1483 1484 1485 1486
    """

    def __init__(self, getter_func, setter_func, *name_lists):
        name_lists = map(lambda x: [] if x is None else x, name_lists)
        name_sets = map(lambda x: set(x), name_lists)
1487 1488 1489
        self._union = list(
            functools.reduce(lambda x, y: x | y, name_sets, set())
        )
1490 1491 1492 1493 1494 1495 1496 1497 1498
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
1499 1500
        if names is None:
            names = []
1501
        vars = self.getter()
1502 1503
        if vars is None:
            return tuple()
1504
        for n in names:
1505 1506 1507 1508 1509
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1510 1511 1512
        return tuple(map(lambda n: vars[self.name2id[n]], names))

    def set(self, names, values):
1513 1514 1515 1516
        if names is None:
            names = []
        if values is None:
            values = []
1517
        vars = self.getter()
1518 1519
        if vars is None:
            return
1520
        for n in names:
1521 1522 1523 1524 1525
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
        vars = list(vars)
        indices = list(map(lambda n: self.name2id[n], names))
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

1540
    names_str = ["'%s'" % (name.replace("'", "\\'")) for name in name_ids]
1541
    return "(%s, )" % ','.join(names_str)
1542 1543 1544 1545 1546 1547 1548


def _param_grad_names(program_desc, params):
    """
    Parse PARAM@GARD name from original train and infer program.
    """
    names = []
1549
    # NOTE: `names` and `params` must be in the same order so that
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    # the param grad name can be set correctly in the run_program.
    for param in params:
        candidate = [
            var.name()
            for var in program_desc.block(0).all_vars()
            if var.name().endswith(param.name + '@GRAD')
        ]
        if candidate:
            names.append(max(candidate, key=lambda name: name.count('grad/')))
        else:
            names.append(param.name + '@GRAD')

    return names


def _out_grad_names(program_desc, fwd_end_op_index, out_size):
    """
    Parse Out@GARD name from original train and infer program.
    """
    names = []
    for i in range(
1571 1572
        fwd_end_op_index,
        min(fwd_end_op_index + out_size, program_desc.block(0).op_size()),
1573 1574
    ):
        op = program_desc.block(0).op(i)
1575
        if op.type() == 'fill_any_like':
1576 1577 1578
            var_name = op.output('Out')[0]
            names.append(var_name)
    return names
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600


def prim_or_cinn_is_enabled(build_strategy):
    if build_strategy is not None and build_strategy.build_cinn_pass:
        return True

    if core._is_bwd_prim_enabled() or core._is_fwd_prim_enabled():
        return True

    env_flags = [
        'FLAGS_prim_forward',
        'FLAGS_prim_backward',
        'FLAGS_prim_all',
        'FLAGS_use_cinn',
    ]
    for flag in env_flags:
        value = os.getenv(flag)
        if value is None:
            continue
        elif value.lower() in ['true', '1']:
            return True
    return False
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616


def is_builtin(func, name=None):
    """predict whether a function is a builtin function with name={name}.
    if name == None, then any builtin function will return True
    """

    def name_judge():
        return name is None or func.__name__ == name

    if isinstance(func, types.BuiltinFunctionType) and name_judge():
        return True
    elif func in builtins.__dict__.values() and name_judge():
        return True
    else:
        return False