test_flash_attention.py 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import unittest

import numpy as np

import paddle
import paddle.nn.functional as F
23 24
from paddle import fluid
from paddle.fluid import core
25 26 27
from paddle.nn.functional.flash_attention import (
    flash_attention,
    flash_attn_unpadded,
28
    scaled_dot_product_attention,
29
)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


def get_cuda_version():
    result = os.popen("nvcc --version").read()
    regex = r'release (\S+),'
    match = re.search(regex, result)
    if match:
        num = str(match.group(1))
        integer, decimal = num.split('.')
        return int(integer) * 1000 + int(float(decimal) * 10)
    else:
        return -1


def attention_naive(q, k, v, causal=False):
    qt = paddle.transpose(q, [0, 2, 1, 3])
    kt = paddle.transpose(k, [0, 2, 1, 3])
    vt = paddle.transpose(v, [0, 2, 1, 3])
    scale = 1.0 / np.sqrt(q.shape[-1])
    s = paddle.matmul(qt, paddle.transpose(kt, [0, 1, 3, 2]))
    s = paddle.scale(s, scale)
    p = (
        paddle.incubate.softmax_mask_fuse_upper_triangle(s)
        if causal
        else F.softmax(s)
    )
    o = paddle.matmul(p, vt)
    return paddle.transpose(o, [0, 2, 1, 3])


S
Shijie 已提交
60 61 62 63 64
is_sm8x = (
    core.is_compiled_with_cuda()
    and paddle.device.cuda.get_device_capability()[0] == 8
    and paddle.device.cuda.get_device_capability()[1] >= 0
)
65 66 67 68 69 70 71 72

is_sm90 = (
    core.is_compiled_with_cuda()
    and paddle.device.cuda.get_device_capability()[0] == 9
    and paddle.device.cuda.get_device_capability()[1] == 0
)

is_sm_supported = is_sm8x or is_sm90
S
Shijie 已提交
73 74


75
@unittest.skipIf(
S
Shijie 已提交
76
    not core.is_compiled_with_cuda()
77
    or get_cuda_version() < 11040
S
Shijie 已提交
78
    or not is_sm_supported,
79 80
    "core is not compiled with CUDA and cuda version need larger than or equal to 11.4"
    "and device's compute capability must be 8.x or 90",
81 82 83 84 85 86 87 88 89
)
class TestFlashAttentionAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 128, 8, 16)
        self.dtype = 'float16'
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
90
        self.use_sdp_kernel = False
91
        self.use_sdp_api = False
92

93
    def test_unpadded(self):
C
Chitsing KUI 已提交
94
        print(
95
            f"Test unpadded case shape {self.shape} dtype {self.dtype} causal {self.causal}"
C
Chitsing KUI 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        )

        paddle.disable_static()

        query = np.random.random(self.shape)
        q = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        q_ = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )

        out_ = attention_naive(q_, q_, q_, self.causal)

        scale = 1.0 / np.sqrt(q.shape[-1])

        bs = self.shape[0]
        ms = self.shape[1]
        nh = self.shape[2]
        hd = self.shape[3]
        cu_q = paddle.arange(0, (bs + 1) * ms, ms, dtype='int32')

        qq = paddle.reshape(q, [bs * ms, nh, hd])
119
        out, _ = flash_attn_unpadded(
C
Chitsing KUI 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
            qq,
            qq,
            qq,
            cu_q,
            cu_q,
            ms,
            ms,
            scale,
            self.dropout,
            self.causal,
            self.return_softmax,
        )
        out_ = paddle.reshape(out_, [bs * ms, nh, hd])

        np.testing.assert_allclose(out.numpy(), out_, rtol=5e-03, atol=1e-03)

        out.backward()
        out_.backward()

        np.testing.assert_allclose(
            q.grad.numpy(), q_.grad.numpy(), rtol=5e-03, atol=1e-03
        )

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        # test static
        paddle.enable_static()

        with paddle.static.program_guard(paddle.static.Program()):
            qs = paddle.static.data(
                name="q", shape=self.shape, dtype=self.dtype
            )

            cu_q = paddle.arange(0, (bs + 1) * ms, ms, dtype='int32')
            qs = paddle.reshape(qs, [bs * ms, nh, hd])

            outs, softmax = flash_attn_unpadded(
                qs,
                qs,
                qs,
                cu_q,
                cu_q,
                ms,
                ms,
                scale,
                self.dropout,
                self.causal,
                self.return_softmax,
            )

            exe = fluid.Executor(self.place)
            fetches_result = exe.run(
                feed={
                    "q": query.astype('float16'),
                    "k": query.astype('float16'),
                    "v": query.astype('float16'),
                },
                fetch_list=[outs],
            )

            np.testing.assert_allclose(
                fetches_result[0], out_, rtol=5e-03, atol=1e-03
            )

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    def test_all(self):
        print(
            f"Test case shape {self.shape} dtype {self.dtype} causal {self.causal}"
        )
        # test dynamic
        paddle.disable_static()

        query = np.random.random(self.shape)
        key = np.random.random(self.shape)
        value = np.random.random(self.shape)

        q = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        k = paddle.to_tensor(
            key, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        v = paddle.to_tensor(
            value, place=self.place, dtype=self.dtype, stop_gradient=False
        )

        q_ = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        k_ = paddle.to_tensor(
            key, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        v_ = paddle.to_tensor(
            value, place=self.place, dtype=self.dtype, stop_gradient=False
        )

213 214 215 216 217 218
        if self.use_sdp_kernel:
            with paddle.nn.functional.sdp_kernel(
                enable_math=self.enable_math,
                enable_flash=self.enable_flash,
                enable_mem_efficient=self.enable_mem_efficient,
            ):
219 220 221 222 223 224 225 226 227
                if self.use_sdp_api:
                    out = scaled_dot_product_attention(
                        q, k, v, None, self.dropout, self.causal
                    )
                else:
                    out, _ = flash_attention(
                        q, k, v, self.dropout, self.causal, self.return_softmax
                    )

228 229 230 231
        else:
            out, _ = flash_attention(
                q, k, v, self.dropout, self.causal, self.return_softmax
            )
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        out_ = attention_naive(q_, k_, v_, self.causal)

        out.backward()
        out_.backward()

        np.testing.assert_allclose(out.numpy(), out_, rtol=5e-03, atol=1e-03)

        self.assertEqual(q.grad.shape, q.shape)
        self.assertEqual(q_.grad.shape, q.shape)

        np.testing.assert_allclose(
            q.grad.numpy(), q_.grad.numpy(), rtol=5e-03, atol=1e-03
        )

        # test static
        paddle.enable_static()

        with paddle.static.program_guard(paddle.static.Program()):
            qs = paddle.static.data(
                name="q", shape=self.shape, dtype=self.dtype
            )
            ks = paddle.static.data(
                name="k", shape=self.shape, dtype=self.dtype
            )
            vs = paddle.static.data(
                name="v", shape=self.shape, dtype=self.dtype
            )

260 261 262 263 264 265
            if self.use_sdp_kernel:
                with paddle.nn.functional.sdp_kernel(
                    enable_math=self.enable_math,
                    enable_flash=self.enable_flash,
                    enable_mem_efficient=self.enable_mem_efficient,
                ):
266 267 268 269 270 271 272 273 274 275 276 277 278
                    if self.use_sdp_api:
                        outs = scaled_dot_product_attention(
                            qs, ks, vs, None, self.dropout, self.causal
                        )
                    else:
                        outs, softmax = flash_attention(
                            qs,
                            ks,
                            vs,
                            self.dropout,
                            self.causal,
                            self.return_softmax,
                        )
279 280 281 282
            else:
                outs, softmax = flash_attention(
                    qs, ks, vs, self.dropout, self.causal, self.return_softmax
                )
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

            exe = fluid.Executor(self.place)
            fetches_result = exe.run(
                feed={
                    "q": query.astype('float16'),
                    "k": key.astype('float16'),
                    "v": value.astype('float16'),
                },
                fetch_list=[outs],
            )

            np.testing.assert_allclose(
                fetches_result[0], out_, rtol=5e-03, atol=1e-03
            )


class TestFlashAttentionAPITest1(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 128, 8, 16)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
307
        self.use_sdp_kernel = False
308 309 310 311 312 313 314 315 316 317


class TestFlashAttentionAPITest2(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 256, 8, 16)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = True
318
        self.use_sdp_kernel = False
319 320 321 322 323 324 325 326 327 328


class TestFlashAttentionAPITest3(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 512, 8, 16)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = True
        self.return_softmax = False
329
        self.use_sdp_kernel = False
330 331 332 333 334 335 336 337 338 339


class TestFlashAttentionAPITest4(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (8, 1024, 16, 128)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
340 341 342 343 344 345 346 347 348 349 350 351
        self.use_sdp_kernel = False


class TestMathAttentionAPITest(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (8, 1024, 16, 128)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
        self.use_sdp_kernel = True
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        self.use_sdp_api = False
        self.enable_math = True
        self.enable_flash = False
        self.enable_mem_efficient = False


class TestSDPAttentionAPITest(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (8, 1024, 16, 128)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
        self.use_sdp_kernel = True
        self.use_sdp_api = True
368 369 370
        self.enable_math = True
        self.enable_flash = False
        self.enable_mem_efficient = False
371 372 373 374


if __name__ == '__main__':
    unittest.main()