test_flash_attention.py 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import unittest

import numpy as np

import paddle
import paddle.nn.functional as F
23 24
from paddle import fluid
from paddle.fluid import core
25 26 27 28
from paddle.nn.functional.flash_attention import (
    flash_attention,
    flash_attn_unpadded,
)
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58


def get_cuda_version():
    result = os.popen("nvcc --version").read()
    regex = r'release (\S+),'
    match = re.search(regex, result)
    if match:
        num = str(match.group(1))
        integer, decimal = num.split('.')
        return int(integer) * 1000 + int(float(decimal) * 10)
    else:
        return -1


def attention_naive(q, k, v, causal=False):
    qt = paddle.transpose(q, [0, 2, 1, 3])
    kt = paddle.transpose(k, [0, 2, 1, 3])
    vt = paddle.transpose(v, [0, 2, 1, 3])
    scale = 1.0 / np.sqrt(q.shape[-1])
    s = paddle.matmul(qt, paddle.transpose(kt, [0, 1, 3, 2]))
    s = paddle.scale(s, scale)
    p = (
        paddle.incubate.softmax_mask_fuse_upper_triangle(s)
        if causal
        else F.softmax(s)
    )
    o = paddle.matmul(p, vt)
    return paddle.transpose(o, [0, 2, 1, 3])


S
Shijie 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
is_sm75 = (
    core.is_compiled_with_cuda()
    and paddle.device.cuda.get_device_capability()[0] == 7
    and paddle.device.cuda.get_device_capability()[1] == 5
)
is_sm8x = (
    core.is_compiled_with_cuda()
    and paddle.device.cuda.get_device_capability()[0] == 8
    and paddle.device.cuda.get_device_capability()[1] >= 0
)
is_sm_supported = is_sm75 or is_sm8x


72
@unittest.skipIf(
S
Shijie 已提交
73 74 75 76 77
    not core.is_compiled_with_cuda()
    or get_cuda_version() < 11030
    or not is_sm_supported,
    "core is not compiled with CUDA and cuda version need larger than or equal to 11.3"
    "and device's compute capability must be 7.5 or 8.x",
78 79 80 81 82 83 84 85 86
)
class TestFlashAttentionAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 128, 8, 16)
        self.dtype = 'float16'
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
87
        self.use_sdp_kernel = False
88

89
    def test_unpadded(self):
C
Chitsing KUI 已提交
90
        print(
91
            f"Test unpadded case shape {self.shape} dtype {self.dtype} causal {self.causal}"
C
Chitsing KUI 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        )

        paddle.disable_static()

        query = np.random.random(self.shape)
        q = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        q_ = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )

        out_ = attention_naive(q_, q_, q_, self.causal)

        scale = 1.0 / np.sqrt(q.shape[-1])

        bs = self.shape[0]
        ms = self.shape[1]
        nh = self.shape[2]
        hd = self.shape[3]
        cu_q = paddle.arange(0, (bs + 1) * ms, ms, dtype='int32')

        qq = paddle.reshape(q, [bs * ms, nh, hd])
115
        out, _ = flash_attn_unpadded(
C
Chitsing KUI 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
            qq,
            qq,
            qq,
            cu_q,
            cu_q,
            ms,
            ms,
            scale,
            self.dropout,
            self.causal,
            self.return_softmax,
        )
        out_ = paddle.reshape(out_, [bs * ms, nh, hd])

        np.testing.assert_allclose(out.numpy(), out_, rtol=5e-03, atol=1e-03)

        out.backward()
        out_.backward()

        np.testing.assert_allclose(
            q.grad.numpy(), q_.grad.numpy(), rtol=5e-03, atol=1e-03
        )

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        # test static
        paddle.enable_static()

        with paddle.static.program_guard(paddle.static.Program()):
            qs = paddle.static.data(
                name="q", shape=self.shape, dtype=self.dtype
            )

            cu_q = paddle.arange(0, (bs + 1) * ms, ms, dtype='int32')
            qs = paddle.reshape(qs, [bs * ms, nh, hd])

            outs, softmax = flash_attn_unpadded(
                qs,
                qs,
                qs,
                cu_q,
                cu_q,
                ms,
                ms,
                scale,
                self.dropout,
                self.causal,
                self.return_softmax,
            )

            exe = fluid.Executor(self.place)
            fetches_result = exe.run(
                feed={
                    "q": query.astype('float16'),
                    "k": query.astype('float16'),
                    "v": query.astype('float16'),
                },
                fetch_list=[outs],
            )

            np.testing.assert_allclose(
                fetches_result[0], out_, rtol=5e-03, atol=1e-03
            )

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    def test_all(self):
        print(
            f"Test case shape {self.shape} dtype {self.dtype} causal {self.causal}"
        )
        # test dynamic
        paddle.disable_static()

        query = np.random.random(self.shape)
        key = np.random.random(self.shape)
        value = np.random.random(self.shape)

        q = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        k = paddle.to_tensor(
            key, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        v = paddle.to_tensor(
            value, place=self.place, dtype=self.dtype, stop_gradient=False
        )

        q_ = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        k_ = paddle.to_tensor(
            key, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        v_ = paddle.to_tensor(
            value, place=self.place, dtype=self.dtype, stop_gradient=False
        )

209 210 211 212 213 214 215 216 217 218 219 220 221
        if self.use_sdp_kernel:
            with paddle.nn.functional.sdp_kernel(
                enable_math=self.enable_math,
                enable_flash=self.enable_flash,
                enable_mem_efficient=self.enable_mem_efficient,
            ):
                out, _ = flash_attention(
                    q, k, v, self.dropout, self.causal, self.return_softmax
                )
        else:
            out, _ = flash_attention(
                q, k, v, self.dropout, self.causal, self.return_softmax
            )
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        out_ = attention_naive(q_, k_, v_, self.causal)

        out.backward()
        out_.backward()

        np.testing.assert_allclose(out.numpy(), out_, rtol=5e-03, atol=1e-03)

        self.assertEqual(q.grad.shape, q.shape)
        self.assertEqual(q_.grad.shape, q.shape)

        np.testing.assert_allclose(
            q.grad.numpy(), q_.grad.numpy(), rtol=5e-03, atol=1e-03
        )

        # test static
        paddle.enable_static()

        with paddle.static.program_guard(paddle.static.Program()):
            qs = paddle.static.data(
                name="q", shape=self.shape, dtype=self.dtype
            )
            ks = paddle.static.data(
                name="k", shape=self.shape, dtype=self.dtype
            )
            vs = paddle.static.data(
                name="v", shape=self.shape, dtype=self.dtype
            )

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            if self.use_sdp_kernel:
                with paddle.nn.functional.sdp_kernel(
                    enable_math=self.enable_math,
                    enable_flash=self.enable_flash,
                    enable_mem_efficient=self.enable_mem_efficient,
                ):
                    outs, softmax = flash_attention(
                        qs,
                        ks,
                        vs,
                        self.dropout,
                        self.causal,
                        self.return_softmax,
                    )
            else:
                outs, softmax = flash_attention(
                    qs, ks, vs, self.dropout, self.causal, self.return_softmax
                )
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

            exe = fluid.Executor(self.place)
            fetches_result = exe.run(
                feed={
                    "q": query.astype('float16'),
                    "k": key.astype('float16'),
                    "v": value.astype('float16'),
                },
                fetch_list=[outs],
            )

            np.testing.assert_allclose(
                fetches_result[0], out_, rtol=5e-03, atol=1e-03
            )


class TestFlashAttentionAPITest1(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 128, 8, 16)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
292
        self.use_sdp_kernel = False
293 294 295 296 297 298 299 300 301 302


class TestFlashAttentionAPITest2(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 256, 8, 16)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = True
303
        self.use_sdp_kernel = False
304 305 306 307 308 309 310 311 312 313


class TestFlashAttentionAPITest3(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 512, 8, 16)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = True
        self.return_softmax = False
314
        self.use_sdp_kernel = False
315 316 317 318 319 320 321 322 323 324


class TestFlashAttentionAPITest4(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (8, 1024, 16, 128)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        self.use_sdp_kernel = False


class TestMathAttentionAPITest(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (8, 1024, 16, 128)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
        self.use_sdp_kernel = True
        self.enable_math = True
        self.enable_flash = False
        self.enable_mem_efficient = False
340 341 342 343


if __name__ == '__main__':
    unittest.main()