test_flash_attention.py 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import unittest

import numpy as np

import paddle
import paddle.nn.functional as F
23 24
from paddle import fluid
from paddle.fluid import core
25 26 27 28
from paddle.nn.functional.flash_attention import (
    flash_attention,
    flash_attn_unpadded,
)
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70


def get_cuda_version():
    result = os.popen("nvcc --version").read()
    regex = r'release (\S+),'
    match = re.search(regex, result)
    if match:
        num = str(match.group(1))
        integer, decimal = num.split('.')
        return int(integer) * 1000 + int(float(decimal) * 10)
    else:
        return -1


def attention_naive(q, k, v, causal=False):
    qt = paddle.transpose(q, [0, 2, 1, 3])
    kt = paddle.transpose(k, [0, 2, 1, 3])
    vt = paddle.transpose(v, [0, 2, 1, 3])
    scale = 1.0 / np.sqrt(q.shape[-1])
    s = paddle.matmul(qt, paddle.transpose(kt, [0, 1, 3, 2]))
    s = paddle.scale(s, scale)
    p = (
        paddle.incubate.softmax_mask_fuse_upper_triangle(s)
        if causal
        else F.softmax(s)
    )
    o = paddle.matmul(p, vt)
    return paddle.transpose(o, [0, 2, 1, 3])


@unittest.skipIf(
    not core.is_compiled_with_cuda() or get_cuda_version() < 11030,
    "core is not compiled with CUDA and cuda version need larger than or equal to 11.3",
)
class TestFlashAttentionAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 128, 8, 16)
        self.dtype = 'float16'
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
71
        self.use_sdp_kernel = False
72

73
    def test_unpadded(self):
C
Chitsing KUI 已提交
74
        print(
75
            f"Test unpadded case shape {self.shape} dtype {self.dtype} causal {self.causal}"
C
Chitsing KUI 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        )

        paddle.disable_static()

        query = np.random.random(self.shape)
        q = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        q_ = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )

        out_ = attention_naive(q_, q_, q_, self.causal)

        scale = 1.0 / np.sqrt(q.shape[-1])

        bs = self.shape[0]
        ms = self.shape[1]
        nh = self.shape[2]
        hd = self.shape[3]
        cu_q = paddle.arange(0, (bs + 1) * ms, ms, dtype='int32')

        qq = paddle.reshape(q, [bs * ms, nh, hd])
99
        out, _ = flash_attn_unpadded(
C
Chitsing KUI 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            qq,
            qq,
            qq,
            cu_q,
            cu_q,
            ms,
            ms,
            scale,
            self.dropout,
            self.causal,
            self.return_softmax,
        )
        out_ = paddle.reshape(out_, [bs * ms, nh, hd])

        np.testing.assert_allclose(out.numpy(), out_, rtol=5e-03, atol=1e-03)

        out.backward()
        out_.backward()

        np.testing.assert_allclose(
            q.grad.numpy(), q_.grad.numpy(), rtol=5e-03, atol=1e-03
        )

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        # test static
        paddle.enable_static()

        with paddle.static.program_guard(paddle.static.Program()):
            qs = paddle.static.data(
                name="q", shape=self.shape, dtype=self.dtype
            )

            cu_q = paddle.arange(0, (bs + 1) * ms, ms, dtype='int32')
            qs = paddle.reshape(qs, [bs * ms, nh, hd])

            outs, softmax = flash_attn_unpadded(
                qs,
                qs,
                qs,
                cu_q,
                cu_q,
                ms,
                ms,
                scale,
                self.dropout,
                self.causal,
                self.return_softmax,
            )

            exe = fluid.Executor(self.place)
            fetches_result = exe.run(
                feed={
                    "q": query.astype('float16'),
                    "k": query.astype('float16'),
                    "v": query.astype('float16'),
                },
                fetch_list=[outs],
            )

            np.testing.assert_allclose(
                fetches_result[0], out_, rtol=5e-03, atol=1e-03
            )

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    def test_all(self):
        print(
            f"Test case shape {self.shape} dtype {self.dtype} causal {self.causal}"
        )
        # test dynamic
        paddle.disable_static()

        query = np.random.random(self.shape)
        key = np.random.random(self.shape)
        value = np.random.random(self.shape)

        q = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        k = paddle.to_tensor(
            key, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        v = paddle.to_tensor(
            value, place=self.place, dtype=self.dtype, stop_gradient=False
        )

        q_ = paddle.to_tensor(
            query, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        k_ = paddle.to_tensor(
            key, place=self.place, dtype=self.dtype, stop_gradient=False
        )
        v_ = paddle.to_tensor(
            value, place=self.place, dtype=self.dtype, stop_gradient=False
        )

193 194 195 196 197 198 199 200 201 202 203 204 205
        if self.use_sdp_kernel:
            with paddle.nn.functional.sdp_kernel(
                enable_math=self.enable_math,
                enable_flash=self.enable_flash,
                enable_mem_efficient=self.enable_mem_efficient,
            ):
                out, _ = flash_attention(
                    q, k, v, self.dropout, self.causal, self.return_softmax
                )
        else:
            out, _ = flash_attention(
                q, k, v, self.dropout, self.causal, self.return_softmax
            )
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        out_ = attention_naive(q_, k_, v_, self.causal)

        out.backward()
        out_.backward()

        np.testing.assert_allclose(out.numpy(), out_, rtol=5e-03, atol=1e-03)

        self.assertEqual(q.grad.shape, q.shape)
        self.assertEqual(q_.grad.shape, q.shape)

        np.testing.assert_allclose(
            q.grad.numpy(), q_.grad.numpy(), rtol=5e-03, atol=1e-03
        )

        # test static
        paddle.enable_static()

        with paddle.static.program_guard(paddle.static.Program()):
            qs = paddle.static.data(
                name="q", shape=self.shape, dtype=self.dtype
            )
            ks = paddle.static.data(
                name="k", shape=self.shape, dtype=self.dtype
            )
            vs = paddle.static.data(
                name="v", shape=self.shape, dtype=self.dtype
            )

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
            if self.use_sdp_kernel:
                with paddle.nn.functional.sdp_kernel(
                    enable_math=self.enable_math,
                    enable_flash=self.enable_flash,
                    enable_mem_efficient=self.enable_mem_efficient,
                ):
                    outs, softmax = flash_attention(
                        qs,
                        ks,
                        vs,
                        self.dropout,
                        self.causal,
                        self.return_softmax,
                    )
            else:
                outs, softmax = flash_attention(
                    qs, ks, vs, self.dropout, self.causal, self.return_softmax
                )
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

            exe = fluid.Executor(self.place)
            fetches_result = exe.run(
                feed={
                    "q": query.astype('float16'),
                    "k": key.astype('float16'),
                    "v": value.astype('float16'),
                },
                fetch_list=[outs],
            )

            np.testing.assert_allclose(
                fetches_result[0], out_, rtol=5e-03, atol=1e-03
            )


class TestFlashAttentionAPITest1(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 128, 8, 16)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
276
        self.use_sdp_kernel = False
277 278 279 280 281 282 283 284 285 286


class TestFlashAttentionAPITest2(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 256, 8, 16)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = True
287
        self.use_sdp_kernel = False
288 289 290 291 292 293 294 295 296 297


class TestFlashAttentionAPITest3(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 512, 8, 16)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = True
        self.return_softmax = False
298
        self.use_sdp_kernel = False
299 300 301 302 303 304 305 306 307 308


class TestFlashAttentionAPITest4(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (8, 1024, 16, 128)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
        self.use_sdp_kernel = False


class TestMathAttentionAPITest(TestFlashAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (8, 1024, 16, 128)
        self.dtype = paddle.float16
        self.dropout = 0.0
        self.causal = False
        self.return_softmax = False
        self.use_sdp_kernel = True
        self.enable_math = True
        self.enable_flash = False
        self.enable_mem_efficient = False
324 325 326 327


if __name__ == '__main__':
    unittest.main()