Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7f9ab2bd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7f9ab2bd
编写于
5月 05, 2023
作者:
Z
zhangkaihuo
提交者:
GitHub
5月 05, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add scaled_dot_product_attention (#53113)
上级
decc4c38
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
233 addition
and
49 deletion
+233
-49
python/paddle/fluid/tests/unittests/test_flash_attention.py
python/paddle/fluid/tests/unittests/test_flash_attention.py
+50
-6
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+2
-0
python/paddle/nn/functional/flash_attention.py
python/paddle/nn/functional/flash_attention.py
+181
-43
未找到文件。
python/paddle/fluid/tests/unittests/test_flash_attention.py
浏览文件 @
7f9ab2bd
...
...
@@ -68,6 +68,7 @@ class TestFlashAttentionAPI(unittest.TestCase):
self
.
dropout
=
0.0
self
.
causal
=
False
self
.
return_softmax
=
False
self
.
use_sdp_kernel
=
False
def
test_unpadded
(
self
):
print
(
...
...
@@ -189,9 +190,19 @@ class TestFlashAttentionAPI(unittest.TestCase):
value
,
place
=
self
.
place
,
dtype
=
self
.
dtype
,
stop_gradient
=
False
)
out
,
_
=
flash_attention
(
q
,
k
,
v
,
self
.
dropout
,
self
.
causal
,
self
.
return_softmax
)
if
self
.
use_sdp_kernel
:
with
paddle
.
nn
.
functional
.
sdp_kernel
(
enable_math
=
self
.
enable_math
,
enable_flash
=
self
.
enable_flash
,
enable_mem_efficient
=
self
.
enable_mem_efficient
,
):
out
,
_
=
flash_attention
(
q
,
k
,
v
,
self
.
dropout
,
self
.
causal
,
self
.
return_softmax
)
else
:
out
,
_
=
flash_attention
(
q
,
k
,
v
,
self
.
dropout
,
self
.
causal
,
self
.
return_softmax
)
out_
=
attention_naive
(
q_
,
k_
,
v_
,
self
.
causal
)
out
.
backward
()
...
...
@@ -220,9 +231,24 @@ class TestFlashAttentionAPI(unittest.TestCase):
name
=
"v"
,
shape
=
self
.
shape
,
dtype
=
self
.
dtype
)
outs
,
softmax
=
flash_attention
(
qs
,
ks
,
vs
,
self
.
dropout
,
self
.
causal
,
self
.
return_softmax
)
if
self
.
use_sdp_kernel
:
with
paddle
.
nn
.
functional
.
sdp_kernel
(
enable_math
=
self
.
enable_math
,
enable_flash
=
self
.
enable_flash
,
enable_mem_efficient
=
self
.
enable_mem_efficient
,
):
outs
,
softmax
=
flash_attention
(
qs
,
ks
,
vs
,
self
.
dropout
,
self
.
causal
,
self
.
return_softmax
,
)
else
:
outs
,
softmax
=
flash_attention
(
qs
,
ks
,
vs
,
self
.
dropout
,
self
.
causal
,
self
.
return_softmax
)
exe
=
fluid
.
Executor
(
self
.
place
)
fetches_result
=
exe
.
run
(
...
...
@@ -247,6 +273,7 @@ class TestFlashAttentionAPITest1(TestFlashAttentionAPI):
self
.
dropout
=
0.0
self
.
causal
=
False
self
.
return_softmax
=
False
self
.
use_sdp_kernel
=
False
class
TestFlashAttentionAPITest2
(
TestFlashAttentionAPI
):
...
...
@@ -257,6 +284,7 @@ class TestFlashAttentionAPITest2(TestFlashAttentionAPI):
self
.
dropout
=
0.0
self
.
causal
=
False
self
.
return_softmax
=
True
self
.
use_sdp_kernel
=
False
class
TestFlashAttentionAPITest3
(
TestFlashAttentionAPI
):
...
...
@@ -267,6 +295,7 @@ class TestFlashAttentionAPITest3(TestFlashAttentionAPI):
self
.
dropout
=
0.0
self
.
causal
=
True
self
.
return_softmax
=
False
self
.
use_sdp_kernel
=
False
class
TestFlashAttentionAPITest4
(
TestFlashAttentionAPI
):
...
...
@@ -277,6 +306,21 @@ class TestFlashAttentionAPITest4(TestFlashAttentionAPI):
self
.
dropout
=
0.0
self
.
causal
=
False
self
.
return_softmax
=
False
self
.
use_sdp_kernel
=
False
class
TestMathAttentionAPITest
(
TestFlashAttentionAPI
):
def
setUp
(
self
):
self
.
place
=
paddle
.
CUDAPlace
(
0
)
self
.
shape
=
(
8
,
1024
,
16
,
128
)
self
.
dtype
=
paddle
.
float16
self
.
dropout
=
0.0
self
.
causal
=
False
self
.
return_softmax
=
False
self
.
use_sdp_kernel
=
True
self
.
enable_math
=
True
self
.
enable_flash
=
False
self
.
enable_mem_efficient
=
False
if
__name__
==
'__main__'
:
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
7f9ab2bd
...
...
@@ -134,6 +134,8 @@ from .extension import gather_tree # noqa: F401
from
.extension
import
temporal_shift
# noqa: F401
from
.sparse_attention
import
sparse_attention
from
.flash_attention
import
scaled_dot_product_attention
from
.flash_attention
import
sdp_kernel
__all__
=
[
# noqa
'celu'
,
...
...
python/paddle/nn/functional/flash_attention.py
浏览文件 @
7f9ab2bd
...
...
@@ -13,8 +13,113 @@
# limitations under the License.
import
paddle
import
paddle.nn.functional
as
F
from
paddle
import
_C_ops
,
in_dynamic_mode
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.wrapped_decorator
import
signature_safe_contextmanager
g_enable_math
=
None
g_enable_flash
=
None
g_enable_mem_efficient
=
None
@
signature_safe_contextmanager
def
sdp_kernel
(
enable_math
=
False
,
enable_flash
=
True
,
enable_mem_efficient
=
True
):
r
"""
With the sdp_kernel context manager, different algorithm implementations can
be selected for scaled_dot_product_attention.
"""
global
g_enable_math
,
g_enable_flash
,
g_enable_mem_efficient
original_enable_math
=
g_enable_math
original_enable_flash
=
g_enable_math
original_enable_mem_efficient
=
g_enable_mem_efficient
g_enable_math
=
enable_math
g_enable_flash
=
enable_flash
g_enable_mem_efficient
=
enable_mem_efficient
try
:
yield
finally
:
g_enable_math
=
original_enable_math
g_enable_flash
=
original_enable_flash
g_enable_mem_efficient
=
original_enable_mem_efficient
def
_math_attention
(
query
,
key
,
value
,
dropout_rate
=
0.0
,
causal
=
False
,
return_softmax
=
False
,
training
=
True
,
):
r
"""
This is a basic implementation of scaled dot product attention composed of
combinations of fundamental components.
"""
head_dim
=
query
.
shape
[
-
1
]
query
=
paddle
.
transpose
(
query
,
[
0
,
2
,
1
,
3
])
key
=
paddle
.
transpose
(
key
,
[
0
,
2
,
1
,
3
])
value
=
paddle
.
transpose
(
value
,
[
0
,
2
,
1
,
3
])
product
=
paddle
.
matmul
(
x
=
query
*
(
head_dim
**-
0.5
),
y
=
key
,
transpose_y
=
True
)
weights
=
(
paddle
.
incubate
.
softmax_mask_fuse_upper_triangle
(
product
)
if
causal
else
F
.
softmax
(
product
)
)
if
dropout_rate
>
0.0
:
weights
=
F
.
dropout
(
weights
,
dropout_rate
,
training
=
training
,
mode
=
"upscale_in_train"
)
out
=
paddle
.
matmul
(
weights
,
value
)
out
=
paddle
.
transpose
(
out
,
[
0
,
2
,
1
,
3
])
return
out
,
weights
if
return_softmax
else
None
def
_select_sdp_cuda
(
head_dim
):
if
head_dim
<
128
:
return
"flash_attn"
else
:
return
"mem_efficient"
def
_select_sdp
(
head_dim
):
r
"""
There are currently three different implementation options available for
scaled dot product attention, and the chosen approach depends on whether it
is determined by the sdp_kernel configuration or specified through input values.
"""
place
=
paddle
.
get_device
()
# not use sdp_kernel
if
g_enable_flash
is
None
:
if
"gpu"
not
in
place
:
return
"math"
else
:
return
_select_sdp_cuda
(
head_dim
)
if
(
g_enable_math
is
False
and
g_enable_flash
is
False
and
g_enable_mem_efficient
is
False
):
raise
AssertionError
(
"No available backend for scaled_dot_product_attention was found."
)
if
g_enable_math
is
True
:
if
g_enable_flash
is
False
and
g_enable_mem_efficient
is
False
:
return
"math"
if
"gpu"
not
in
place
:
return
"math"
if
g_enable_flash
is
True
and
g_enable_mem_efficient
is
True
:
return
_select_sdp_cuda
(
head_dim
)
if
g_enable_flash
is
True
:
return
"flash_attn"
return
"mem_efficient"
def
flash_attention
(
...
...
@@ -84,51 +189,81 @@ def flash_attention(
output = paddle.nn.functional.flash_attention(q, q, q, 0.9, False, False)
print(output)
"""
if
in_dynamic_mode
():
(
result_attention
,
result_softmax
,)
=
_C_ops
.
flash_attn
(
query
,
key
,
value
,
fixed_seed_offset
,
dropout
,
causal
,
return_softmax
,
not
training
,
rng_name
,
head_dim
=
query
.
shape
[
3
]
sdp_func_name
=
_select_sdp
(
head_dim
)
if
sdp_func_name
==
"flash_attn"
:
if
in_dynamic_mode
():
(
result_attention
,
result_softmax
,)
=
_C_ops
.
flash_attn
(
query
,
key
,
value
,
fixed_seed_offset
,
dropout
,
causal
,
return_softmax
,
not
training
,
rng_name
,
)
return
result_attention
,
result_softmax
if
return_softmax
else
None
helper
=
LayerHelper
(
'flash_attn'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'q'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
softmax
=
helper
.
create_variable_for_type_inference
(
dtype
)
softmax_lse
=
helper
.
create_variable_for_type_inference
(
paddle
.
float32
)
seed_offset
=
helper
.
create_variable_for_type_inference
(
paddle
.
int64
)
inputs
=
{
'q'
:
query
,
'k'
:
key
,
'v'
:
value
,
'fixed_seed_offset'
:
fixed_seed_offset
,
}
outputs
=
{
'out'
:
out
,
'softmax'
:
softmax
,
'softmax_lse'
:
softmax_lse
,
'seed_offset'
:
seed_offset
,
}
helper
.
append_op
(
type
=
'flash_attn'
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
{
'dropout'
:
dropout
,
'causal'
:
causal
,
'return_softmax'
:
return_softmax
,
'is_test'
:
not
training
,
'rng_name'
:
rng_name
,
},
)
return
result_attention
,
result_softmax
if
return_softmax
else
None
return
out
,
softmax
if
return_softmax
else
None
else
:
if
sdp_func_name
==
"mem_efficient"
:
from
paddle.incubate.nn.memory_efficient_attention
import
(
memory_efficient_attention
,
)
helper
=
LayerHelper
(
'flash_attn'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'q'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
softmax
=
helper
.
create_variable_for_type_inference
(
dtype
)
softmax_lse
=
helper
.
create_variable_for_type_inference
(
paddle
.
float32
)
seed_offset
=
helper
.
create_variable_for_type_inference
(
paddle
.
int64
)
inputs
=
{
'q'
:
query
,
'k'
:
key
,
'v'
:
value
,
'fixed_seed_offset'
:
fixed_seed_offset
,
}
outputs
=
{
'out'
:
out
,
'softmax'
:
softmax
,
'softmax_lse'
:
softmax_lse
,
'seed_offset'
:
seed_offset
,
}
helper
.
append_op
(
type
=
'flash_attn'
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
{
'dropout'
:
dropout
,
'causal'
:
causal
,
'return_softmax'
:
return_softmax
,
'is_test'
:
not
training
,
'rng_name'
:
rng_name
,
},
)
return
out
,
softmax
if
return_softmax
else
None
output
=
memory_efficient_attention
(
query
,
key
,
value
,
attn_bias
=
None
,
p
=
dropout
,
scale
=
None
,
training
=
training
,
)
return
output
,
None
else
:
return
_math_attention
(
query
,
key
,
value
,
dropout_rate
=
dropout
,
causal
=
causal
,
return_softmax
=
return_softmax
,
training
=
training
,
)
def
flash_attn_unpadded
(
...
...
@@ -264,3 +399,6 @@ def flash_attn_unpadded(
},
)
return
out
,
softmax
if
return_softmax
else
None
scaled_dot_product_attention
=
flash_attention
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录