cos_sim_op.cc 6.3 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/cos_sim_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class CosSimOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
28
    // notnull check
29 30
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
31 32 33 34

    // shape check
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto y_dims = ctx.Input<Tensor>("Y")->dims();
35 36

    PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
37
                      "Ranks of Input(X) and Input(Y) must be equal.");
38
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
39
                      "Rank of Input(X) must not be less than 2.");
40 41 42 43
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
                      framework::slice_ddim(y_dims, 1, y_dims.size()),
                      "All dimensions except the 1st of Input(X) and Input(Y) "
                      "must be equal.");
44
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
45 46
                   "The 1st dimension of Input(Y) must be equal to Input(X) or"
                   " just 1 (which will be broadcasted to match Input(X)).");
47 48 49 50 51

    // resize tensor
    ctx.Output<Tensor>("Out")->Resize({x_dims[0], 1});
    ctx.Output<Tensor>("XNorm")->Resize({x_dims[0], 1});
    ctx.Output<Tensor>("YNorm")->Resize({y_dims[0], 1});
X
Xinghai Sun 已提交
52 53 54 55 56 57 58
  }
};

class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
59 60
    AddInput("X", "The 1st input of cos_sim op.");
    AddInput("Y", "The 2nd input of cos_sim op.");
X
Xinghai Sun 已提交
61
    AddOutput("Out", "The output of cos_sim op.");
62 63 64 65 66 67 68 69
    AddOutput("XNorm",
              "Norm of the first input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
    AddOutput("YNorm",
              "Norm of the second input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
70

X
Xinghai Sun 已提交
71 72 73
    AddComment(R"DOC(
Cosine Similarity Operator.

74 75 76 77 78 79
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).

Input(X) and Input(Y) must have the same shape, except that the 1st dimension
of Input(Y) could be just 1 (different from Input(X)), which will be
broadcasted to match the shape of Input(X) before computing their cosine
similarity.
X
Xinghai Sun 已提交
80 81 82 83 84 85 86 87 88 89
)DOC");
  }
};

class CosSimOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
90
    // notnull check
91 92 93 94 95 96
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("XNorm"),
                            "Input(XNorm) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("YNorm"),
                            "Input(YNorm) must not be null.");
97 98
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Out"),
                            "Input(Out) must not be null.");
X
Xinghai Sun 已提交
99
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
100
                            "Input(Out@GRAD) must not be null.");
X
Xinghai Sun 已提交
101

102
    // shape check
X
Xinghai Sun 已提交
103 104
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto y_dims = ctx.Input<Tensor>("Y")->dims();
105 106
    auto xnorm_dims = ctx.Input<Tensor>("XNorm")->dims();
    auto ynorm_dims = ctx.Input<Tensor>("YNorm")->dims();
107 108 109
    auto out_dims = ctx.Input<Tensor>("Out")->dims();
    auto out_grad_dims =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Ranks of Input(X) and Input(Y) must be equal.");
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Rank of Input(X) must not be less than 2.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
                      framework::slice_ddim(y_dims, 1, y_dims.size()),
                      "All dimensions except the 1st of Input(X) and Input(Y) "
                      "must be equal.");
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
                   "The 1st dimension of Input(Y) must be equal to Input(X) or"
                   " just 1 (which will be broadcasted to match Input(X)).");
    auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1}),
         auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1}),
         PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims,
                           "Shape of Input(XNorm) must be [X.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims,
                      "Shape of Input(YNorm) must be [Y.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims,
                      "Shape of Input(Out) must be [X.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims,
131 132 133
                      "Shape of Input(Out@Grad) must be [X.Dim(0), 1].");

    // resize tensor
X
Xinghai Sun 已提交
134 135
    auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
136 137
    if (x_grad) x_grad->Resize(x_dims);
    if (y_grad) y_grad->Resize(y_dims);
X
Xinghai Sun 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad,
            ops::CosSimOpGrad);
REGISTER_OP_CPU_KERNEL(cos_sim,
                       ops::CosSimKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    cos_sim_grad, ops::CosSimGradKernel<paddle::platform::CPUPlace, float>);