test_variable.py 42.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
W
WeiXin 已提交
16 17
from functools import reduce

18
import paddle
J
Jiabin Yang 已提交
19
from paddle.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_, _non_static_mode
20
import paddle
W
wopeizl 已提交
21
import paddle.fluid as fluid
H
Hongyu Liu 已提交
22
import paddle.fluid.layers as layers
23
import paddle.fluid.core as core
Y
Yu Yang 已提交
24 25
import numpy as np

26 27
paddle.enable_static()

Y
Yu Yang 已提交
28 29

class TestVariable(unittest.TestCase):
30

31 32 33
    def setUp(self):
        np.random.seed(2022)

Y
Yu Yang 已提交
34
    def test_np_dtype_convert(self):
35
        DT = core.VarDesc.VarType
36
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
37 38 39 40 41 42 43
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
44 45
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
46

Y
Yu Yang 已提交
47
    def test_var(self):
Y
Yu Yang 已提交
48
        b = default_main_program().current_block()
49 50 51 52
        w = b.create_var(dtype="float64",
                         shape=[784, 100],
                         lod_level=0,
                         name="fc.w")
53
        self.assertNotEqual(str(w), "")
54
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
55 56
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
57
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
58 59 60
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
61
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
62 63
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
64
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
65 66 67 68 69
        self.assertEqual(0, w.lod_level)

        self.assertRaises(ValueError,
                          lambda: b.create_var(name="fc.w", shape=(24, 100)))

70 71 72
        w = b.create_var(dtype=paddle.fluid.core.VarDesc.VarType.STRINGS,
                         shape=[1],
                         name="str_var")
73 74
        self.assertEqual(None, w.lod_level)

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    def test_element_size(self):
        with fluid.program_guard(Program(), Program()):
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
104 105 106
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
107 108
        var = b.create_var(name='step_scopes',
                           type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
109 110
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
111
    def _test_slice(self, place):
W
wopeizl 已提交
112 113 114 115 116
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
117
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
118 119 120 121

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
122
        nw = w[:, :]
W
wopeizl 已提交
123 124
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
125 126
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
127

H
Hongyu Liu 已提交
128 129 130 131 132 133 134
        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
135 136 137 138 139 140

        self.assertEqual(0, nw.lod_level)

        main = fluid.Program()
        with fluid.program_guard(main):
            exe = fluid.Executor(place)
141 142 143 144
            tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                     [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                     [[19, 20, 21], [22, 23, 24],
                                      [25, 26, 27]]]).astype('float32')
W
wopeizl 已提交
145 146 147 148
            var = fluid.layers.assign(tensor_array)
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
149 150
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
W
wopeizl 已提交
151
            var_reshape = fluid.layers.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
152 153 154 155 156 157 158 159 160 161
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
162 163 164

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.fc(input=x, size=1, act=None)
H
Hongyu Liu 已提交
165
            y_1 = y[:, 0]
W
wopeizl 已提交
166 167 168 169 170
            feeder = fluid.DataFeeder(place=place, feed_list=[x])
            data = []
            data.append((np.random.randint(10, size=[13]).astype('float32')))
            exe.run(fluid.default_startup_program())

W
wopeizl 已提交
171
            local_out = exe.run(main,
W
wopeizl 已提交
172
                                feed=feeder.feed([data]),
W
wopeizl 已提交
173 174
                                fetch_list=[
                                    var, var1, var2, var3, var4, var5, var6,
H
Hongyu Liu 已提交
175 176
                                    var7, var8, var9, var10, var11, var12,
                                    var13, var14, var15
W
wopeizl 已提交
177 178
                                ])

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
            np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
            np.testing.assert_array_equal(local_out[2], tensor_array[1:])
            np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
            np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
            np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
            np.testing.assert_array_equal(
                local_out[6],
                tensor_array.reshape((3, -1, 3))[:, :, -1])
            np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
            np.testing.assert_array_equal(local_out[8],
                                          tensor_array[:1, :1, :1])
            np.testing.assert_array_equal(local_out[9],
                                          tensor_array[:-1, :-1, :-1])
            np.testing.assert_array_equal(local_out[10],
                                          tensor_array[::-1, :1, :-1])
            np.testing.assert_array_equal(local_out[11], tensor_array[:-1, ::-1,
                                                                      -1:])
            np.testing.assert_array_equal(local_out[12], tensor_array[1:2,
                                                                      2:, ::-1])
            np.testing.assert_array_equal(local_out[13], tensor_array[2:10, 2:,
                                                                      -2:-1])
            np.testing.assert_array_equal(local_out[14],
                                          tensor_array[1:-1, 0:2, ::-1])
            np.testing.assert_array_equal(local_out[15],
                                          tensor_array[::-1, ::-1, ::-1])
W
wopeizl 已提交
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(IndexError):
            one = paddle.ones(shape=[1])
            res = x[one, [0, 0]]

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

259 260 261 262 263
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
264
            y = paddle.assign([1, 2, 3, 4])
265 266 267 268
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
269 270
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
271
            out7 = y[..., 0]
272 273

        exe = paddle.static.Executor(place)
274 275
        result = exe.run(prog,
                         fetch_list=[out1, out2, out3, out4, out5, out6, out7])
276

W
WeiXin 已提交
277 278
        expected = [
            data[0:, ..., 1:], data[0:, ...], data[..., 1:], data[...],
279 280
            data[[1, 0], [0, 0]], data[([1, 0], [0, 0])],
            np.array([1])
W
WeiXin 已提交
281
        ]
282 283 284 285 286

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
287 288
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
289
        self.assertTrue((result[6] == expected[6]).all())
290

291 292
        with self.assertRaises(IndexError):
            res = x[[1.2, 0]]
W
wopeizl 已提交
293

294
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
295 296
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
297 298 299 300 301
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
302 303 304 305
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
306 307 308 309 310

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
311 312 313 314
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
315 316

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
317 318
        result = exe.run(
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7])
319

Z
zyfncg 已提交
320 321 322 323
        expected = [
            data[idx0], data[idx1], data[idx2], data[idx3], data[idx4],
            data[np_idx], data[data < 0.36], data[data > 0.6]
        ]
324 325 326 327 328

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
329 330 331 332
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
333

Z
zyfncg 已提交
334 335 336
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
        with self.assertRaises(ValueError):
337 338
            with paddle.static.program_guard(prog):
                res = x[[False, False]]
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    def _test_slice_index_scalar_bool(self, place):
        data = np.random.rand(1, 3, 4).astype("float32")
        np_idx = np.array([True])
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx = paddle.assign(np_idx)

            out = x[idx]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out])

        expected = [data[np_idx]]

        self.assertTrue((result[0] == expected[0]).all())

357 358
    def test_slice(self):
        places = [fluid.CPUPlace()]
W
wopeizl 已提交
359
        if core.is_compiled_with_cuda():
360 361 362 363 364 365
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
366
            self._test_slice_index_ellipsis(place)
367
            self._test_slice_index_list_bool(place)
368
            self._test_slice_index_scalar_bool(place)
W
wopeizl 已提交
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
        with fluid.dygraph.guard():
            self._tostring()

        with fluid.program_guard(default_main_program()):
            self._tostring()

386
    def test_fake_interface_only_api(self):
387 388 389
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
        with fluid.dygraph.guard():
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
        with fluid.dygraph.guard():
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
406
            var.stop_gradient = True
407 408 409 410 411 412
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
            self.assertEqual(var.dtype, fluid.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, fluid.core.VarDesc.VarType.LOD_TENSOR)
413

414 415 416
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

417 418 419 420 421
        var = b.create_var(name="var",
                           shape=[1, 1],
                           dtype="float32",
                           type=fluid.core.VarDesc.VarType.SELECTED_ROWS,
                           persistable=True)
422 423 424 425 426 427

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
            exe = paddle.static.Executor(fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
        scope = fluid.core.Scope()
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
456 457 458
                x = paddle.static.data(name='x',
                                       shape=[3, 2, 1],
                                       dtype='float32')
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
                result = exe.run(main,
                                 feed={'x': feed_data},
                                 fetch_list=[x, detach_x])
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

476 477 478
                modified_value = np.random.uniform(-1, 1,
                                                   size=[3, 2,
                                                         1]).astype('float32')
479 480 481 482 483
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
484

485
class TestVariableSlice(unittest.TestCase):
486

487 488 489
    def setUp(self):
        np.random.seed(2022)

490 491 492 493 494 495 496 497 498
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
499
            out4 = x[..., None, :, None]
500

501
        outs = [out0, out1, out2, out3, out4]
502 503 504 505
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
506 507
            data[0:, None, 1:], data[0:, None], data[None, 1:], data[None],
            data[..., None, :, None]
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
            data[0, 1:, None], data[0, None], data[None, 1], data[None],
            data[0, 0, 0, None], data[None, 0, 0, 0, None]
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
547
class TestListIndex(unittest.TestCase):
548

549 550 551
    def setUp(self):
        np.random.seed(2022)

W
WeiXin 已提交
552 553 554 555 556 557 558
    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
559 560
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
561 562 563 564 565 566 567 568 569 570

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
571 572 573
                x = paddle.static.data(name='x',
                                       shape=array.shape,
                                       dtype='float32')
W
WeiXin 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

                y = x[index_mod]

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

                getitem_np = array[index_mod]
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
591
                np.testing.assert_array_equal(getitem_np, getitem_pp[0])
W
WeiXin 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):

            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
                getitem_np = array[index_mod]

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
618
            np.testing.assert_array_equal(getitem_np, getitem_pp.numpy())
W
WeiXin 已提交
619 620 621 622 623 624 625

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
626 627
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
628 629 630 631 632 633

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
634 635
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
636 637 638 639 640 641 642 643 644

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):

            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

645 646 647 648 649 650 651 652 653
            value = paddle.static.data(name='value',
                                       shape=value_np.shape,
                                       dtype='float32')
            index1 = paddle.static.data(name='index1',
                                        shape=index1.shape,
                                        dtype='int32')
            index2 = paddle.static.data(name='index2',
                                        shape=index2.shape,
                                        dtype='int32')
W
WeiXin 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

            y = x[index1, index2]

            place = paddle.fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else paddle.fluid.CUDAPlace(0)

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

            getitem_pp = exe.run(prog,
                                 feed={
                                     x.name: array,
                                     index1.name: index_mod1,
                                     index2.name: index_mod2
                                 },
                                 fetch_list=fetch_list)

678 679 680 681
            np.testing.assert_array_equal(
                y2,
                getitem_pp[0],
                err_msg='\n numpy:{},\n paddle:{}'.format(y2, getitem_pp[0]))
W
WeiXin 已提交
682 683 684 685

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
686 687
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
688 689 690 691 692 693

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
694 695
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
696 697 698 699 700 701 702 703 704 705

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
706
        np.testing.assert_array_equal(y.numpy(), y_np)
W
WeiXin 已提交
707

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    def run_getitem_list_index(self, array, index):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        y = x[index]
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            value_np = array2[index]
        except:
            with self.assertRaises(ValueError):
                getitem_pp = exe.run(prog,
                                     feed={x.name: array},
                                     fetch_list=fetch_list)
            return
        getitem_pp = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)

731 732 733 734
        np.testing.assert_allclose(value_np,
                                   getitem_pp[0],
                                   rtol=1e-5,
                                   atol=1e-8)
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

    def test_static_graph_getitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

W
WeiXin 已提交
763 764 765
    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

766 767 768
        value = paddle.static.data(name='value',
                                   shape=value_np.shape,
                                   dtype='float32')
W
WeiXin 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

        x[index] = value
        y = x
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
785 786 787 788 789 790
                setitem_pp = exe.run(prog,
                                     feed={
                                         x.name: array,
                                         value.name: value_np
                                     },
                                     fetch_list=fetch_list)
W
WeiXin 已提交
791 792
            return
        setitem_pp = exe.run(prog,
793 794 795 796
                             feed={
                                 x.name: array,
                                 value.name: value_np
                             },
W
WeiXin 已提交
797 798
                             fetch_list=fetch_list)

799
        np.testing.assert_allclose(array2, setitem_pp[0], rtol=1e-5, atol=1e-8)
W
WeiXin 已提交
800 801 802 803 804

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
        inps_shape = [3, 4, 5, 2, 3]
805 806
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
807 808 809 810 811

        index_shape = [3, 3, 1, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
812 813
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
        inps_shape = [3, 4, 5, 4, 3]
828 829
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
830 831 832 833 834

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
835 836
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849

        for _ in range(4):
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
850 851
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
852 853 854 855 856

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
857 858
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
859 860 861
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
    def test_static_graph_setitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

    def test_static_graph_setitem_bool_scalar_index(self):
        paddle.enable_static()
        array = np.ones((1, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

W
WeiXin 已提交
898 899 900
    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
901 902
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
903 904

        index_shape = [2, 3, 4]
905 906 907 908
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
909 910

        value_shape = [4]
911 912
        value_np = np.arange(self.numel(value_shape),
                             dtype='float32').reshape(value_shape) + 100
W
WeiXin 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925
        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
                x1 = paddle.static.data(name='x1',
                                        shape=array.shape,
                                        dtype='float32')
                x2 = paddle.static.data(name='x2',
                                        shape=array.shape,
                                        dtype='float32')

                value = paddle.static.data(name='value',
                                           shape=value_np.shape,
                                           dtype='float32')
                index_1 = paddle.static.data(name='index_1',
                                             shape=index1.shape,
                                             dtype='int32')
                index_2 = paddle.static.data(name='index_2',
                                             shape=index2.shape,
                                             dtype='int32')
W
WeiXin 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964

                x1[index_1, index_2] = value
                x2[index_1] = value

                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name]

                setitem_pp = exe.run(prog,
                                     feed={
                                         x1.name: array,
                                         x2.name: array,
                                         value.name: value_np,
                                         index_1.name: index_mod1,
                                         index_2.name: index_mod2
                                     },
                                     fetch_list=fetch_list)
965 966 967 968 969 970 971 972 973 974
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array2, setitem_pp[0]))
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array3, setitem_pp[1]))
W
WeiXin 已提交
975 976 977 978 979 980 981
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
982 983
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
984 985

        index_shape = [2, 3, 4]
986 987 988 989
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):

1005 1006 1007 1008 1009 1010
                x1 = paddle.static.data(name='x1',
                                        shape=array.shape,
                                        dtype='float32')
                x2 = paddle.static.data(name='x2',
                                        shape=array.shape,
                                        dtype='float32')
W
WeiXin 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

                x1[index_mod1, index_mod2] = 1
                x2[index_mod1] = 2.5
                y1 = x1[index_mod2, index_mod1]
                y2 = x2[index_mod2]
                place = paddle.fluid.CPUPlace(
                ) if not paddle.fluid.core.is_compiled_with_cuda(
                ) else paddle.fluid.CUDAPlace(0)

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name, y1.name, y2.name]

                setitem_pp = exe.run(prog,
1026 1027 1028 1029
                                     feed={
                                         x1.name: array,
                                         x2.name: array
                                     },
W
WeiXin 已提交
1030
                                     fetch_list=fetch_list)
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array2, setitem_pp[0]))
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        array3, setitem_pp[1]))

                np.testing.assert_array_equal(
                    y_np1,
                    setitem_pp[2],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        y_np1, setitem_pp[2]))
                np.testing.assert_array_equal(
                    y_np2,
                    setitem_pp[3],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
                        y_np2, setitem_pp[3]))
W
WeiXin 已提交
1052 1053 1054 1055 1056 1057 1058
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
1059 1060
        array = np.arange(self.numel(inps_shape),
                          dtype='float32').reshape(inps_shape)
W
WeiXin 已提交
1061
        index_shape = [2, 3, 4]
1062 1063 1064 1065
        index1 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape)
        index2 = np.arange(self.numel(index_shape),
                           dtype='int32').reshape(index_shape) + 2
W
WeiXin 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

        for _ in range(3):

            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

1080 1081 1082 1083
            np.testing.assert_array_equal(
                y_t1.numpy(),
                y_np1,
                err_msg='\n numpy:{},\n paddle:{}'.format(y_np1, y_t1.numpy()))
W
WeiXin 已提交
1084 1085 1086 1087 1088 1089
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
1090 1091 1092 1093
            np.testing.assert_array_equal(
                y_t2.numpy(),
                y_np2,
                err_msg='\n numpy:{},\n paddle:{}'.format(y_np2, y_t2.numpy()))
W
WeiXin 已提交
1094 1095 1096 1097 1098

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
1099 1100 1101 1102 1103
            np.testing.assert_array_equal(
                tensor1.numpy(),
                array1,
                err_msg='\n numpy:{},\n paddle:{}'.format(
                    array1, tensor1.numpy()))
W
WeiXin 已提交
1104 1105 1106 1107 1108 1109 1110
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

1111 1112 1113 1114 1115
            np.testing.assert_array_equal(
                tensor2.numpy(),
                array2,
                err_msg='\n numpy:{},\n paddle:{}'.format(
                    array2, tensor2.numpy()))
W
WeiXin 已提交
1116 1117 1118 1119 1120 1121

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
1122 1123
if __name__ == '__main__':
    unittest.main()