test_scale_op.py 10.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest, convert_float_to_uint16
18
import paddle
19
import paddle.fluid as fluid
20 21
import paddle.fluid.core as core
from paddle.fluid.op import Operator
22
from paddle.static import Program, program_guard
23 24 25
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
Y
Yu Yang 已提交
26 27


28
class TestScaleOp(OpTest):
29

Y
Yu Yang 已提交
30
    def setUp(self):
Q
qijun 已提交
31
        self.op_type = "scale"
32
        self.python_api = paddle.scale
33
        self.dtype = np.float64
C
chengduo 已提交
34 35
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Y
Yu Yang 已提交
36
        self.attrs = {'scale': -2.3}
C
chengduo 已提交
37 38 39 40 41 42
        self.outputs = {
            'Out': self.inputs['X'] * self.dtype(self.attrs['scale'])
        }

    def init_dtype_type(self):
        pass
Y
Yu Yang 已提交
43

Q
qijun 已提交
44
    def test_check_output(self):
45
        self.check_output(check_eager=True)
Y
Yu Yang 已提交
46

Q
qijun 已提交
47
    def test_check_grad(self):
48
        self.check_grad(['X'], 'Out', check_eager=True)
Y
Yu Yang 已提交
49 50


51
class TestScaleOpScaleVariable(OpTest):
52

53 54
    def setUp(self):
        self.op_type = "scale"
55
        self.python_api = paddle.scale
56
        self.dtype = np.float64
57 58 59 60
        self.init_dtype_type()
        self.scale = -2.3
        self.inputs = {
            'X': np.random.random((10, 10)).astype(self.dtype),
61
            'ScaleTensor': np.array([self.scale]).astype('float64')
62 63 64 65 66 67 68 69
        }
        self.attrs = {}
        self.outputs = {'Out': self.inputs['X'] * self.dtype(self.scale)}

    def init_dtype_type(self):
        pass

    def test_check_output(self):
70
        self.check_output(check_eager=True)
71 72

    def test_check_grad(self):
73
        self.check_grad(['X'], 'Out', check_eager=True)
74 75


76
class TestScaleOpSelectedRows(unittest.TestCase):
77

C
chengduo 已提交
78 79 80
    def init_dtype_type(self):
        pass

81 82 83
    def check_with_place(self, place, in_name, out_name):
        scope = core.Scope()

84
        self.dtype = np.float64
C
chengduo 已提交
85 86
        self.init_dtype_type()

87 88 89 90 91 92 93 94 95 96
        # create and initialize Grad Variable
        in_height = 10
        in_rows = [0, 4, 7]
        in_row_numel = 12
        scale = 2.0

        in_selected_rows = scope.var(in_name).get_selected_rows()
        in_selected_rows.set_height(in_height)
        in_selected_rows.set_rows(in_rows)
        in_array = np.random.random(
C
chengduo 已提交
97
            (len(in_rows), in_row_numel)).astype(self.dtype)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

        in_tensor = in_selected_rows.get_tensor()
        in_tensor.set(in_array, place)

        # create and initialize Param Variable
        out_selected_rows = scope.var(out_name).get_selected_rows()
        out_tensor = out_selected_rows.get_tensor()
        out_tensor._set_dims(in_tensor._get_dims())

        # create and run sgd operator
        scale_op = Operator("scale", X=in_name, Out=out_name, scale=scale)
        scale_op.run(scope, place)

        # get and compare result
        out_height = out_selected_rows.height()
        out_rows = out_selected_rows.rows()
        result_array = np.array(out_tensor)

        assert (in_array * scale == result_array).all()
        assert in_height == out_height
118
        assert in_rows == out_rows
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

    def test_scale_selected_rows(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'in')


135
class TestScaleRaiseError(unittest.TestCase):
136

137
    def test_errors(self):
138

139 140 141 142 143 144
        def test_type():
            fluid.layers.scale([10])

        self.assertRaises(TypeError, test_type)


C
chengduo 已提交
145 146 147 148
# Add FP16 test
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScaleFp16Op(TestScaleOp):
149

C
chengduo 已提交
150 151 152 153 154 155
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
156
            self.check_output_with_place(place, atol=0.002, check_eager=True)
C
chengduo 已提交
157 158 159 160

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
161 162 163 164
            self.check_grad_with_place(place, ["X"],
                                       "Out",
                                       max_relative_error=0.05,
                                       check_eager=True)
C
chengduo 已提交
165 166


167
class TestScaleBF16Op(OpTest):
168

169 170
    def setUp(self):
        self.op_type = "scale"
171
        self.python_api = paddle.scale
172 173 174 175 176 177 178 179
        self.dtype = np.uint16
        self.attrs = {'scale': -2.3}
        x = np.random.random((10, 10)).astype(np.float32)
        out = x * np.float32(self.attrs['scale'])
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
180
        self.check_output(check_eager=True)
181 182

    def test_check_grad(self):
183
        self.check_grad(['X'], 'Out', numeric_grad_delta=0.8, check_eager=True)
184 185


C
chengduo 已提交
186 187 188
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScaleFp16OpSelectedRows(TestScaleOpSelectedRows):
189

C
chengduo 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_scale_selected_rows(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'in')


204
class TestScaleApiStatic(unittest.TestCase):
205

206 207 208 209 210 211 212 213 214 215 216 217 218
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.enable_static()
        input = np.random.random([2, 25]).astype("float32")
        main_prog = Program()
        with program_guard(main_prog, Program()):
            x = paddle.static.data(name="x", shape=[2, 25], dtype="float32")
            out = self._executed_api(x, scale=2.0, bias=3.0)

        exe = paddle.static.Executor(place=paddle.CPUPlace())
        out = exe.run(main_prog, feed={"x": input}, fetch_list=[out])
219
        np.testing.assert_array_equal(out[0], input * 2.0 + 3.0)
220 221 222


class TestScaleInplaceApiStatic(TestScaleApiStatic):
223

224 225 226 227 228
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


class TestScaleApiDygraph(unittest.TestCase):
229

230 231 232 233 234 235 236 237
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.disable_static()
        input = np.random.random([2, 25]).astype("float32")
        x = paddle.to_tensor(input)
        out = self._executed_api(x, scale=2.0, bias=3.0)
238
        np.testing.assert_array_equal(out.numpy(), input * 2.0 + 3.0)
239 240 241 242
        paddle.enable_static()


class TestScaleInplaceApiDygraph(TestScaleApiDygraph):
243

244 245 246 247
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
class TestScaleDoubleGradCheck(unittest.TestCase):

    def scale_wrapper(self, x):
        return paddle.scale(x[0], scale=2.0)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.scale(data, 2.0)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.scale_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestScaleTripleGradCheck(unittest.TestCase):

    def scale_wrapper(self, x):
        return paddle.scale(x[0], scale=2.0)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.scale(data, 2.0)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.scale_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
322
if __name__ == "__main__":
Y
Yu Yang 已提交
323
    unittest.main()