test_scale_op.py 7.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20
import paddle
21
import paddle.fluid as fluid
22 23
import paddle.fluid.core as core
from paddle.fluid.op import Operator
24
from paddle.static import Program, program_guard
Y
Yu Yang 已提交
25 26


27
class TestScaleOp(OpTest):
Y
Yu Yang 已提交
28
    def setUp(self):
Q
qijun 已提交
29
        self.op_type = "scale"
30
        self.dtype = np.float64
C
chengduo 已提交
31 32
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Y
Yu Yang 已提交
33
        self.attrs = {'scale': -2.3}
C
chengduo 已提交
34 35 36 37 38 39
        self.outputs = {
            'Out': self.inputs['X'] * self.dtype(self.attrs['scale'])
        }

    def init_dtype_type(self):
        pass
Y
Yu Yang 已提交
40

Q
qijun 已提交
41 42
    def test_check_output(self):
        self.check_output()
Y
Yu Yang 已提交
43

Q
qijun 已提交
44 45
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
Y
Yu Yang 已提交
46 47


48 49 50
class TestScaleOpScaleVariable(OpTest):
    def setUp(self):
        self.op_type = "scale"
51
        self.dtype = np.float64
52 53 54 55
        self.init_dtype_type()
        self.scale = -2.3
        self.inputs = {
            'X': np.random.random((10, 10)).astype(self.dtype),
56
            'ScaleTensor': np.array([self.scale]).astype('float64')
57 58 59 60 61 62 63 64 65 66 67 68 69 70
        }
        self.attrs = {}
        self.outputs = {'Out': self.inputs['X'] * self.dtype(self.scale)}

    def init_dtype_type(self):
        pass

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


71
class TestScaleOpSelectedRows(unittest.TestCase):
C
chengduo 已提交
72 73 74
    def init_dtype_type(self):
        pass

75 76 77
    def check_with_place(self, place, in_name, out_name):
        scope = core.Scope()

78
        self.dtype = np.float64
C
chengduo 已提交
79 80
        self.init_dtype_type()

81 82 83 84 85 86 87 88 89 90
        # create and initialize Grad Variable
        in_height = 10
        in_rows = [0, 4, 7]
        in_row_numel = 12
        scale = 2.0

        in_selected_rows = scope.var(in_name).get_selected_rows()
        in_selected_rows.set_height(in_height)
        in_selected_rows.set_rows(in_rows)
        in_array = np.random.random(
C
chengduo 已提交
91
            (len(in_rows), in_row_numel)).astype(self.dtype)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

        in_tensor = in_selected_rows.get_tensor()
        in_tensor.set(in_array, place)

        # create and initialize Param Variable
        out_selected_rows = scope.var(out_name).get_selected_rows()
        out_tensor = out_selected_rows.get_tensor()
        out_tensor._set_dims(in_tensor._get_dims())

        # create and run sgd operator
        scale_op = Operator("scale", X=in_name, Out=out_name, scale=scale)
        scale_op.run(scope, place)

        # get and compare result
        out_height = out_selected_rows.height()
        out_rows = out_selected_rows.rows()
        result_array = np.array(out_tensor)

        assert (in_array * scale == result_array).all()
        assert in_height == out_height
112
        assert in_rows == out_rows
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

    def test_scale_selected_rows(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'in')


129 130 131 132 133 134 135 136
class TestScaleRaiseError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.scale([10])

        self.assertRaises(TypeError, test_type)


C
chengduo 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
# Add FP16 test
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScaleFp16Op(TestScaleOp):
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=0.002)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad_with_place(
                place, ["X"], "Out", max_relative_error=0.05)


156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
class TestScaleBF16Op(OpTest):
    def setUp(self):
        self.op_type = "scale"
        self.dtype = np.uint16
        self.attrs = {'scale': -2.3}
        x = np.random.random((10, 10)).astype(np.float32)
        out = x * np.float32(self.attrs['scale'])
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', numeric_grad_delta=0.8)


C
chengduo 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScaleFp16OpSelectedRows(TestScaleOpSelectedRows):
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_scale_selected_rows(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'in')


190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
class TestScaleApiStatic(unittest.TestCase):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.enable_static()
        input = np.random.random([2, 25]).astype("float32")
        main_prog = Program()
        with program_guard(main_prog, Program()):
            x = paddle.static.data(name="x", shape=[2, 25], dtype="float32")
            out = self._executed_api(x, scale=2.0, bias=3.0)

        exe = paddle.static.Executor(place=paddle.CPUPlace())
        out = exe.run(main_prog, feed={"x": input}, fetch_list=[out])
        self.assertEqual(np.array_equal(out[0], input * 2.0 + 3.0), True)


class TestScaleInplaceApiStatic(TestScaleApiStatic):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


class TestScaleApiDygraph(unittest.TestCase):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.disable_static()
        input = np.random.random([2, 25]).astype("float32")
        x = paddle.to_tensor(input)
        out = self._executed_api(x, scale=2.0, bias=3.0)
        self.assertEqual(np.array_equal(out.numpy(), input * 2.0 + 3.0), True)
        paddle.enable_static()


class TestScaleInplaceApiDygraph(TestScaleApiDygraph):
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


Q
qijun 已提交
230
if __name__ == "__main__":
Y
Yu Yang 已提交
231
    unittest.main()