test_scale_op.py 7.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20
import paddle
21
import paddle.fluid as fluid
22 23
import paddle.fluid.core as core
from paddle.fluid.op import Operator
24
from paddle.static import Program, program_guard
Y
Yu Yang 已提交
25 26


27
class TestScaleOp(OpTest):
28

Y
Yu Yang 已提交
29
    def setUp(self):
Q
qijun 已提交
30
        self.op_type = "scale"
31
        self.python_api = paddle.scale
32
        self.dtype = np.float64
C
chengduo 已提交
33 34
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Y
Yu Yang 已提交
35
        self.attrs = {'scale': -2.3}
C
chengduo 已提交
36 37 38 39 40 41
        self.outputs = {
            'Out': self.inputs['X'] * self.dtype(self.attrs['scale'])
        }

    def init_dtype_type(self):
        pass
Y
Yu Yang 已提交
42

Q
qijun 已提交
43
    def test_check_output(self):
44
        self.check_output(check_eager=True)
Y
Yu Yang 已提交
45

Q
qijun 已提交
46
    def test_check_grad(self):
47
        self.check_grad(['X'], 'Out', check_eager=True)
Y
Yu Yang 已提交
48 49


50
class TestScaleOpScaleVariable(OpTest):
51

52 53
    def setUp(self):
        self.op_type = "scale"
54
        self.python_api = paddle.scale
55
        self.dtype = np.float64
56 57 58 59
        self.init_dtype_type()
        self.scale = -2.3
        self.inputs = {
            'X': np.random.random((10, 10)).astype(self.dtype),
60
            'ScaleTensor': np.array([self.scale]).astype('float64')
61 62 63 64 65 66 67 68
        }
        self.attrs = {}
        self.outputs = {'Out': self.inputs['X'] * self.dtype(self.scale)}

    def init_dtype_type(self):
        pass

    def test_check_output(self):
69
        self.check_output(check_eager=True)
70 71

    def test_check_grad(self):
72
        self.check_grad(['X'], 'Out', check_eager=True)
73 74


75
class TestScaleOpSelectedRows(unittest.TestCase):
76

C
chengduo 已提交
77 78 79
    def init_dtype_type(self):
        pass

80 81 82
    def check_with_place(self, place, in_name, out_name):
        scope = core.Scope()

83
        self.dtype = np.float64
C
chengduo 已提交
84 85
        self.init_dtype_type()

86 87 88 89 90 91 92 93 94 95
        # create and initialize Grad Variable
        in_height = 10
        in_rows = [0, 4, 7]
        in_row_numel = 12
        scale = 2.0

        in_selected_rows = scope.var(in_name).get_selected_rows()
        in_selected_rows.set_height(in_height)
        in_selected_rows.set_rows(in_rows)
        in_array = np.random.random(
C
chengduo 已提交
96
            (len(in_rows), in_row_numel)).astype(self.dtype)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

        in_tensor = in_selected_rows.get_tensor()
        in_tensor.set(in_array, place)

        # create and initialize Param Variable
        out_selected_rows = scope.var(out_name).get_selected_rows()
        out_tensor = out_selected_rows.get_tensor()
        out_tensor._set_dims(in_tensor._get_dims())

        # create and run sgd operator
        scale_op = Operator("scale", X=in_name, Out=out_name, scale=scale)
        scale_op.run(scope, place)

        # get and compare result
        out_height = out_selected_rows.height()
        out_rows = out_selected_rows.rows()
        result_array = np.array(out_tensor)

        assert (in_array * scale == result_array).all()
        assert in_height == out_height
117
        assert in_rows == out_rows
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    def test_scale_selected_rows(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place, 'in', 'in')


134
class TestScaleRaiseError(unittest.TestCase):
135

136
    def test_errors(self):
137

138 139 140 141 142 143
        def test_type():
            fluid.layers.scale([10])

        self.assertRaises(TypeError, test_type)


C
chengduo 已提交
144 145 146 147
# Add FP16 test
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScaleFp16Op(TestScaleOp):
148

C
chengduo 已提交
149 150 151 152 153 154
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
155
            self.check_output_with_place(place, atol=0.002, check_eager=True)
C
chengduo 已提交
156 157 158 159

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
160 161 162 163
            self.check_grad_with_place(place, ["X"],
                                       "Out",
                                       max_relative_error=0.05,
                                       check_eager=True)
C
chengduo 已提交
164 165


166
class TestScaleBF16Op(OpTest):
167

168 169
    def setUp(self):
        self.op_type = "scale"
170
        self.python_api = paddle.scale
171 172 173 174 175 176 177 178
        self.dtype = np.uint16
        self.attrs = {'scale': -2.3}
        x = np.random.random((10, 10)).astype(np.float32)
        out = x * np.float32(self.attrs['scale'])
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
179
        self.check_output(check_eager=True)
180 181

    def test_check_grad(self):
182
        self.check_grad(['X'], 'Out', numeric_grad_delta=0.8, check_eager=True)
183 184


C
chengduo 已提交
185 186 187
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScaleFp16OpSelectedRows(TestScaleOpSelectedRows):
188

C
chengduo 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202
    def init_dtype_type(self):
        self.dtype = np.float16

    def test_scale_selected_rows(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'out')

    def test_scale_selected_rows_inplace(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_with_place(place, 'in', 'in')


203
class TestScaleApiStatic(unittest.TestCase):
204

205 206 207 208 209 210 211 212 213 214 215 216 217
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.enable_static()
        input = np.random.random([2, 25]).astype("float32")
        main_prog = Program()
        with program_guard(main_prog, Program()):
            x = paddle.static.data(name="x", shape=[2, 25], dtype="float32")
            out = self._executed_api(x, scale=2.0, bias=3.0)

        exe = paddle.static.Executor(place=paddle.CPUPlace())
        out = exe.run(main_prog, feed={"x": input}, fetch_list=[out])
218
        np.testing.assert_array_equal(out[0], input * 2.0 + 3.0)
219 220 221


class TestScaleInplaceApiStatic(TestScaleApiStatic):
222

223 224 225 226 227
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


class TestScaleApiDygraph(unittest.TestCase):
228

229 230 231 232 233 234 235 236
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return paddle.scale(x, scale, bias)

    def test_api(self):
        paddle.disable_static()
        input = np.random.random([2, 25]).astype("float32")
        x = paddle.to_tensor(input)
        out = self._executed_api(x, scale=2.0, bias=3.0)
237
        np.testing.assert_array_equal(out.numpy(), input * 2.0 + 3.0)
238 239 240 241
        paddle.enable_static()


class TestScaleInplaceApiDygraph(TestScaleApiDygraph):
242

243 244 245 246
    def _executed_api(self, x, scale=1.0, bias=0.0):
        return x.scale_(scale, bias)


Q
qijun 已提交
247
if __name__ == "__main__":
Y
Yu Yang 已提交
248
    unittest.main()