test_mean_op.py 15.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
liaogang 已提交
15 16
import unittest
import numpy as np
A
arlesniak 已提交
17
from op_test import OpTest, OpTestTool
18
import paddle
C
chengduo 已提交
19
import paddle.fluid.core as core
20 21
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
22
from test_sum_op import TestReduceOPTensorAxisBase
23 24 25
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
26

27 28
np.random.seed(10)

L
liaogang 已提交
29

30 31 32 33 34 35 36 37 38 39 40 41
def mean_wrapper(x, axis=None, keepdim=False, reduce_all=False):
    if reduce_all == True:
        return paddle.mean(x, range(len(x.shape)), keepdim)
    return paddle.mean(x, axis, keepdim)


def reduce_mean_wrapper(x, axis=0, keepdim=False, reduce_all=False):
    if reduce_all == True:
        return paddle.mean(x, range(len(x.shape)), keepdim)
    return paddle.mean(x, axis, keepdim)


Q
qijun 已提交
42
class TestMeanOp(OpTest):
43

L
liaogang 已提交
44
    def setUp(self):
Q
qijun 已提交
45
        self.op_type = "mean"
46
        self.python_api = paddle.mean
47
        self.dtype = np.float64
C
chengduo 已提交
48 49
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Q
qijun 已提交
50
        self.outputs = {'Out': np.mean(self.inputs["X"])}
L
liaogang 已提交
51

C
chengduo 已提交
52 53 54
    def init_dtype_type(self):
        pass

Q
qijun 已提交
55
    def test_check_output(self):
56
        self.check_output(check_eager=True)
L
liaogang 已提交
57

Q
qijun 已提交
58
    def test_checkout_grad(self):
59
        self.check_grad(['X'], 'Out', check_eager=True)
60 61


62
class TestMeanOpError(unittest.TestCase):
63

64 65 66 67
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of mean_op must be Variable.
            input1 = 12
68
            self.assertRaises(TypeError, paddle.mean, input1)
69
            # The input dtype of mean_op must be float16, float32, float64.
70 71 72
            input2 = fluid.layers.data(name='input2',
                                       shape=[12, 10],
                                       dtype="int32")
73
            self.assertRaises(TypeError, paddle.mean, input2)
74 75 76
            input3 = fluid.layers.data(name='input3',
                                       shape=[4],
                                       dtype="float16")
77 78 79
            fluid.layers.softmax(input3)


C
chengduo 已提交
80 81 82
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestFP16MeanOp(TestMeanOp):
83

C
chengduo 已提交
84 85
    def init_dtype_type(self):
        self.dtype = np.float16
S
sneaxiy 已提交
86
        self.__class__.no_need_check_grad = True
C
chengduo 已提交
87 88 89 90

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
91
            self.check_output_with_place(place, check_eager=True)
C
chengduo 已提交
92 93 94 95

    def test_checkout_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
S
sneaxiy 已提交
96 97 98 99
            with fluid.dygraph.guard():
                x_np = np.random.random((10, 10)).astype(self.dtype)
                x = paddle.to_tensor(x_np)
                x.stop_gradient = False
100
                y = paddle.mean(x)
S
sneaxiy 已提交
101 102 103
                dx = paddle.grad(y, x)[0].numpy()
                dx_expected = self.dtype(1.0 / np.prod(x_np.shape)) * np.ones(
                    x_np.shape).astype(self.dtype)
104
                np.testing.assert_array_equal(dx, dx_expected)
C
chengduo 已提交
105 106


A
arlesniak 已提交
107 108
@OpTestTool.skip_if_not_cpu_bf16()
class TestBF16MeanOp(TestMeanOp):
109

A
arlesniak 已提交
110 111 112 113 114
    def init_dtype_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        paddle.enable_static()
115
        self.check_output_with_place(core.CPUPlace(), check_eager=True)
A
arlesniak 已提交
116 117 118

    def test_checkout_grad(self):
        place = core.CPUPlace()
119
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
A
arlesniak 已提交
120 121


122 123 124 125 126 127 128 129
def ref_reduce_mean(x, axis=None, keepdim=False, reduce_all=False):
    if isinstance(axis, list):
        axis = tuple(axis)
    if reduce_all:
        axis = None
    return np.mean(x, axis=axis, keepdims=keepdim)


S
sneaxiy 已提交
130 131 132 133 134 135 136 137
def ref_reduce_mean_grad(x, axis, dtype):
    if reduce_all:
        axis = list(range(x.ndim))

    shape = [x.shape[i] for i in axis]
    return (1.0 / np.prod(shape) * np.ones(shape)).astype(dtype)


138
class TestReduceMeanOp(OpTest):
139

140 141
    def setUp(self):
        self.op_type = 'reduce_mean'
142
        self.python_api = reduce_mean_wrapper
143 144 145 146 147 148 149 150
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]
        self.axis = [0]
        self.keepdim = False
        self.set_attrs()

        np.random.seed(10)
        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
S
sneaxiy 已提交
151 152 153
        if not hasattr(self, "reduce_all"):
            self.reduce_all = (not self.axis) or len(self.axis) == len(x_np)

154 155 156 157 158 159 160 161 162
        out_np = ref_reduce_mean(x_np, self.axis, self.keepdim, self.reduce_all)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}
        self.attrs = {
            'dim': self.axis,
            'keep_dim': self.keepdim,
            'reduce_all': self.reduce_all
        }

S
sneaxiy 已提交
163 164 165
        if self.dtype == 'float16':
            self.__class__.no_need_check_grad = True

166 167 168 169
    def set_attrs(self):
        pass

    def test_check_output(self):
S
sneaxiy 已提交
170
        if self.dtype != 'float16':
171
            self.check_output(check_eager=True)
S
sneaxiy 已提交
172 173 174 175 176
        else:
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            self.check_output_with_place(place=place)
177 178

    def test_check_grad(self):
S
sneaxiy 已提交
179
        if self.dtype != 'float16':
180
            self.check_grad(['X'], ['Out'], check_eager=True)
S
sneaxiy 已提交
181 182 183 184 185 186 187 188 189
        else:
            return
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            if core.is_float16_supported(place):
                return
            with fluid.dygraph.guard(place=place):
                x = paddle.tensor(self.inputs['X'])
190 191 192
                y = paddle.mean(x,
                                axis=self.attrs['dim'],
                                keepdim=self.attrs['keep_dim'])
S
sneaxiy 已提交
193
                dx = paddle.grad(y, x)[0].numpy()
194 195 196
                dx_expected = ref_reduce_mean_grad(self.inputs['X'],
                                                   self.attrs['dim'],
                                                   self.dtype)
197
                np.testing.assert_array_equal(dx, dx_expected)
198 199 200


class TestReduceMeanOpDefaultAttrs(TestReduceMeanOp):
201

202 203
    def setUp(self):
        self.op_type = 'reduce_mean'
204
        self.python_api = reduce_mean_wrapper
205 206 207 208 209 210 211 212 213 214
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]

        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out_np = np.mean(x_np, axis=0)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}


class TestReduceMeanOpFloat32(TestReduceMeanOp):
215

216 217 218 219
    def set_attrs(self):
        self.dtype = 'float32'


S
sneaxiy 已提交
220
class TestReduceMeanOpFloat16(TestReduceMeanOp):
221

S
sneaxiy 已提交
222 223 224 225
    def set_attrs(self):
        self.dtype = 'float16'


226
class TestReduceMeanOpShape1D(TestReduceMeanOp):
227

228 229 230 231
    def set_attrs(self):
        self.shape = [100]


S
sneaxiy 已提交
232
class TestReduceMeanOpShape1DFP16(TestReduceMeanOp):
233

S
sneaxiy 已提交
234 235 236 237 238
    def set_attrs(self):
        self.shape = [100]
        self.dtype = 'float16'


239
class TestReduceMeanOpShape6D(TestReduceMeanOp):
240

241 242 243 244
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]


S
sneaxiy 已提交
245
class TestReduceMeanOpShape6DFP16(TestReduceMeanOp):
246

S
sneaxiy 已提交
247 248 249 250 251
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]
        self.dtype = 'float16'


252
class TestReduceMeanOpAxisAll(TestReduceMeanOp):
253

254 255 256 257
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]


S
sneaxiy 已提交
258
class TestReduceMeanOpAxisAllFP16(TestReduceMeanOp):
259

S
sneaxiy 已提交
260 261 262 263 264
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.dtype = 'float16'


265
class TestReduceMeanOpAxisTuple(TestReduceMeanOp):
266

267 268 269 270
    def set_attrs(self):
        self.axis = (0, 1, 2)


S
sneaxiy 已提交
271
class TestReduceMeanOpAxisTupleFP16(TestReduceMeanOp):
272

S
sneaxiy 已提交
273 274 275 276 277
    def set_attrs(self):
        self.axis = (0, 1, 2)
        self.dtype = 'float16'


278
class TestReduceMeanOpAxisNegative(TestReduceMeanOp):
279

280 281 282 283
    def set_attrs(self):
        self.axis = [-2, -1]


S
sneaxiy 已提交
284
class TestReduceMeanOpAxisNegativeFP16(TestReduceMeanOp):
285

S
sneaxiy 已提交
286 287 288 289 290
    def set_attrs(self):
        self.axis = [-2, -1]
        self.dtype = 'float16'


291
class TestReduceMeanOpKeepdimTrue1(TestReduceMeanOp):
292

293 294 295 296
    def set_attrs(self):
        self.keepdim = True


S
sneaxiy 已提交
297
class TestReduceMeanOpKeepdimTrue1FP16(TestReduceMeanOp):
298

S
sneaxiy 已提交
299 300 301 302 303
    def set_attrs(self):
        self.keepdim = True
        self.dtype = 'float16'


304
class TestReduceMeanOpKeepdimTrue2(TestReduceMeanOp):
305

306 307 308 309 310
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True


S
sneaxiy 已提交
311
class TestReduceMeanOpKeepdimTrue2FP16(TestReduceMeanOp):
312

S
sneaxiy 已提交
313 314 315 316 317 318
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True
        self.dtype = 'float16'


319
class TestReduceMeanOpReduceAllTrue(TestReduceMeanOp):
320

321 322 323 324
    def set_attrs(self):
        self.reduce_all = True


S
sneaxiy 已提交
325
class TestReduceMeanOpReduceAllTrueFP16(TestReduceMeanOp):
326

S
sneaxiy 已提交
327 328 329 330 331
    def set_attrs(self):
        self.reduce_all = True
        self.dtype = 'float16'


332
class TestMeanAPI(unittest.TestCase):
333
    # test paddle.tensor.stat.mean
334 335 336 337 338 339 340 341

    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_api_static(self):
Z
Fix  
zhupengyang 已提交
342
        paddle.enable_static()
343
        with paddle.static.program_guard(paddle.static.Program()):
344
            x = paddle.fluid.data('X', self.x_shape)
345 346 347 348 349 350 351 352 353 354 355 356
            out1 = paddle.mean(x)
            out2 = paddle.tensor.mean(x)
            out3 = paddle.tensor.stat.mean(x)
            axis = np.arange(len(self.x_shape)).tolist()
            out4 = paddle.mean(x, axis)
            out5 = paddle.mean(x, tuple(axis))

            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x},
                          fetch_list=[out1, out2, out3, out4, out5])
        out_ref = np.mean(self.x)
        for out in res:
357
            np.testing.assert_allclose(out, out_ref, rtol=0.0001)
358

Z
Fix  
zhupengyang 已提交
359 360 361
    def test_api_dygraph(self):
        paddle.disable_static(self.place)

362
        def test_case(x, axis=None, keepdim=False):
Z
Zhou Wei 已提交
363
            x_tensor = paddle.to_tensor(x)
364 365 366 367 368 369
            out = paddle.mean(x_tensor, axis, keepdim)
            if isinstance(axis, list):
                axis = tuple(axis)
                if len(axis) == 0:
                    axis = None
            out_ref = np.mean(x, axis, keepdims=keepdim)
370
            np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.0001)
371 372 373 374 375 376 377 378 379 380 381

        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])
        paddle.enable_static()

382 383 384 385 386 387 388 389
    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data("x", shape=[10, 10], dtype="float32")
            out = fluid.layers.reduce_mean(input=x, dim=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x_np = np.random.rand(10, 10).astype(np.float32)
            res = exe.run(feed={"x": x_np}, fetch_list=[out])
390
        np.testing.assert_allclose(res[0], np.mean(x_np, axis=1), rtol=1e-05)
391 392 393 394 395

        with fluid.dygraph.guard():
            x_np = np.random.rand(10, 10).astype(np.float32)
            x = fluid.dygraph.to_variable(x_np)
            out = fluid.layers.reduce_mean(input=x, dim=1)
396 397 398
        np.testing.assert_allclose(out.numpy(),
                                   np.mean(x_np, axis=1),
                                   rtol=1e-05)
399

400
    def test_errors(self):
401 402 403 404 405
        paddle.disable_static()
        x = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        x = paddle.to_tensor(x)
        self.assertRaises(Exception, paddle.mean, x, -3)
        self.assertRaises(Exception, paddle.mean, x, 2)
Z
Fix  
zhupengyang 已提交
406
        paddle.enable_static()
407
        with paddle.static.program_guard(paddle.static.Program()):
408
            x = paddle.fluid.data('X', [10, 12], 'int32')
409 410 411
            self.assertRaises(TypeError, paddle.mean, x)


412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
class TestMeanWithTensorAxis1(TestReduceOPTensorAxisBase):

    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([1, 2], dtype='int64')
        self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64')


class TestMeanWithTensorAxis2(TestReduceOPTensorAxisBase):

    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 10, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
            paddle.to_tensor([2], 'int64')
        ]


436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
class TestMeanDoubleGradCheck(unittest.TestCase):

    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.mean_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMeanTripleGradCheck(unittest.TestCase):

    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.mean_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
510
if __name__ == "__main__":
511
    paddle.enable_static()
L
liaogang 已提交
512
    unittest.main()