conv_arm_func.h 7.6 KB
Newer Older
L
liuruilong 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

L
liuruilong 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liuruilong 已提交
6

L
liuruilong 已提交
7 8 9 10 11 12 13 14 15 16 17
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#pragma once
18
#include <vector>
19
#include "operators/math/conv_func.h"
H
hjchen2 已提交
20
#include "operators/math/depthwise_conv3x3.h"
21 22
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
23
#include "operators/math/pad.h"
24
#include "operators/math/vol2col.h"
H
hjchen2 已提交
25
#include "operators/math/winograd/winograd_transform.h"
L
liuruilong 已提交
26 27 28 29
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {
30

31
template <typename Itype, typename Otype>
H
hjchen2 已提交
32
inline void GemmConv(const ConvParam<CPU> &param) {
L
liuruilong 已提交
33 34 35
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
36
  output->mutable_data<Otype>();
L
liuruilong 已提交
37
  int groups = param.Groups();
38 39 40
  const std::vector<int> strides = param.Strides();
  const std::vector<int> paddings = param.Paddings();
  const std::vector<int> dilations = param.Dilations();
L
liuruilong 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
L
liuruilong 已提交
54
      framework::flatten_to_2d(col_shape, data_dim + 1);
L
liuruilong 已提交
55

56 57
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liuruilong 已提交
58 59 60
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
61
    col.mutable_data<Itype>(col_shape);
L
liuruilong 已提交
62 63 64 65 66
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
L
liuruilong 已提交
67
      input->dims(), 1, static_cast<int>(input->dims().size()));
L
liuruilong 已提交
68 69 70 71 72

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
L
liuruilong 已提交
73 74
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
L
liuruilong 已提交
75 76 77 78 79

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

80 81
  math::Vol2ColFunctor<CPU, Itype> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Itype> im2col;
L
liuruilong 已提交
82

H
hjchen2 已提交
83
  const int batch_size = static_cast<int>(input->dims()[0]);
L
liuruilong 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }
L
liuruilong 已提交
105

L
liuruilong 已提交
106 107 108
      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
109

110 111
      if (param.Input()->type() == typeid(int8_t)) {
        math::matmul_int8(filter_slice, false, col_matrix, false,
L
liuruilong 已提交
112
                          static_cast<float>(1), &out_slice,
Z
zhaojiaying01 已提交
113
                          static_cast<float>(0));
114 115 116 117 118
      } else {
        math::matmul<float>(filter_slice, false, col_matrix, false,
                            static_cast<float>(1), &out_slice,
                            static_cast<float>(0));
      }
L
liuruilong 已提交
119 120 121 122
    }
  }
}

H
hjchen2 已提交
123 124
template <int tile, int kernel>
inline void WinogradConv3x3(const ConvParam<CPU> &param) {
125
  const Tensor *input = param.Input();
H
hjchen2 已提交
126
  const Tensor *filter = param.Filter();
127 128 129 130 131 132
  Tensor *output = param.Output();
  output->mutable_data<float>();
  int batch_size = input->dims()[0];
  int groups = param.Groups();
  const std::vector<int> &paddings = param.Paddings();

H
hjchen2 已提交
133 134
  auto winograd_pad = [&](int width, int pad) {
    int output_tile = tile - kernel + 1;
135 136
    // int tiles = (width + pad - kernel) / output_tile + 1;
    // return (tiles - 1) * output_tile + tile - width;
H
hjchen2 已提交
137 138 139 140
    int pad_width = (width + 2 * pad - kernel) / output_tile * output_tile;
    return pad_width + tile - width;
  };

H
hjchen2 已提交
141
  math::PadFunctor<CPU, float> pad;
142
  Tensor input_pad;
H
hjchen2 已提交
143
  framework::Tensor transformed_input;
144 145 146
  for (int i = 0; i < batch_size; ++i) {
    Tensor in_batch = input->Slice(i, i + 1);
    Tensor out_batch = output->Slice(i, i + 1);
147 148 149 150
    // int pad_bottom = winograd_pad(in_batch.dims()[2], paddings[0]);
    // int pad_right = winograd_pad(in_batch.dims()[3], paddings[1]);
    int pad_bottom = paddings[0];
    int pad_right = paddings[1];
H
hjchen2 已提交
151
    if (paddings[0] || paddings[1] || pad_bottom || pad_right) {
152
      framework::DDim pad_shape = in_batch.dims();
H
hjchen2 已提交
153 154
      pad_shape[2] += paddings[0] + pad_bottom;
      pad_shape[3] += paddings[1] + pad_right;
155
      input_pad.mutable_data<float>(pad_shape);
H
hjchen2 已提交
156
      pad(in_batch, paddings[0], pad_bottom, paddings[1], pad_right,
157
          &input_pad);
158
    } else {
H
hjchen2 已提交
159
      input_pad = in_batch;
160
    }
H
hjchen2 已提交
161 162 163 164 165
    // tile input and transform
    math::winograd_transform_input<tile, kernel>(input_pad, &transformed_input);
    // caculate output
    math::winograd_transform_output<tile, kernel>(transformed_input, *filter,
                                                  output);
H
hjchen2 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  }
}

template <typename Itype, typename Otype>
inline void DepthwiseConv3x3(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  const Tensor *filter = param.Filter();
  Tensor *output = param.Output();
  output->mutable_data<Otype>();

  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &strides = param.Strides();
  const int batch_size = static_cast<int>(input->dims()[0]);
  Tensor input_pad;
  math::PadFunctor<CPU, Itype> pad;
  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1);
    Tensor out_batch = output->Slice(i, i + 1);
184 185 186 187 188 189 190 191 192 193
    if (paddings[0] || paddings[1]) {
      framework::DDim pad_shape = in_batch.dims();
      pad_shape[2] += 2 * paddings[0];
      pad_shape[3] += 2 * paddings[1];
      input_pad.mutable_data<float>(pad_shape);
      pad(in_batch, paddings[0], paddings[0], paddings[1], paddings[1],
          &input_pad);
    } else {
      input_pad = in_batch;
    }
H
hjchen2 已提交
194
    if (strides[0] == 1) {
195
      math::DepthwiseConv3x3s1<Itype, Otype>(input_pad, *filter, &out_batch);
H
hjchen2 已提交
196
    } else if (strides[0] == 2) {
197
      math::DepthwiseConv3x3s2<Itype, Otype>(input_pad, *filter, &out_batch);
H
hjchen2 已提交
198
    } else {
199 200 201 202
      // math::DepthwiseConv3x3<Itype, Otype>(input_pad, *filter,
      // &out_batch);
      PADDLE_MOBILE_THROW_EXCEPTION(
          "Depthwise conv with generic strides has not been implemented.");
H
hjchen2 已提交
203
    }
E
eclipsess 已提交
204 205 206
  }
}

L
liuruilong 已提交
207 208
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
209 210

#endif