model_test.cc 7.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
16
#include <sstream>
Y
Yan Chunwei 已提交
17 18 19 20
#include <string>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/api/test_helper.h"
21
#include "lite/core/device_info.h"
22
#include "lite/core/profile/timer.h"
Y
Yan Chunwei 已提交
23 24
#include "lite/utils/cp_logging.h"
#include "lite/utils/string.h"
25 26 27
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/basic_profiler.h"
#endif  // LITE_WITH_PROFILE
Y
Yan Chunwei 已提交
28

29
using paddle::lite::profile::Timer;
30

Y
Yan Chunwei 已提交
31 32 33
DEFINE_string(input_shape,
              "1,3,224,224",
              "input shapes, separated by colon and comma");
34 35 36
DEFINE_bool(use_optimize_nb,
            false,
            "optimized & naive buffer model for mobile devices");
37
DEFINE_string(arg_name, "", "the arg name");
38

Y
Yan Chunwei 已提交
39 40 41 42 43 44 45 46
namespace paddle {
namespace lite_api {

void OutputOptModel(const std::string& load_model_dir,
                    const std::string& save_optimized_model_dir,
                    const std::vector<std::vector<int64_t>>& input_shapes) {
  lite_api::CxxConfig config;
  config.set_model_dir(load_model_dir);
47 48 49 50 51
#ifdef LITE_WITH_X86
  config.set_valid_places({Place{TARGET(kX86), PRECISION(kFloat)},
                           Place{TARGET(kX86), PRECISION(kInt64)},
                           Place{TARGET(kHost), PRECISION(kFloat)}});
#else
Y
Yan Chunwei 已提交
52 53 54
  config.set_valid_places({
      Place{TARGET(kARM), PRECISION(kFloat)},
  });
55
#endif
Y
Yan Chunwei 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  auto predictor = lite_api::CreatePaddlePredictor(config);

  // delete old optimized model
  int ret = system(
      paddle::lite::string_format("rm -rf %s", save_optimized_model_dir.c_str())
          .c_str());
  if (ret == 0) {
    LOG(INFO) << "delete old optimized model " << save_optimized_model_dir;
  }
  predictor->SaveOptimizedModel(save_optimized_model_dir,
                                LiteModelType::kNaiveBuffer);
  LOG(INFO) << "Load model from " << load_model_dir;
  LOG(INFO) << "Save optimized model to " << save_optimized_model_dir;
}

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
void Run(const std::vector<std::vector<int64_t>>& input_shapes,
         const std::string& model_dir,
74
         const PowerMode power_mode,
Y
Yan Chunwei 已提交
75
         const int thread_num,
76
         const int repeat,
Y
Yan Chunwei 已提交
77 78
         const int warmup_times = 0) {
  lite_api::MobileConfig config;
79
  config.set_model_from_file(model_dir + ".nb");
80 81
  config.set_power_mode(power_mode);
  config.set_threads(thread_num);
Y
Yan Chunwei 已提交
82 83 84 85 86 87 88 89 90 91 92

  auto predictor = lite_api::CreatePaddlePredictor(config);

  for (int j = 0; j < input_shapes.size(); ++j) {
    auto input_tensor = predictor->GetInput(j);
    input_tensor->Resize(input_shapes[j]);
    auto input_data = input_tensor->mutable_data<float>();
    int input_num = 1;
    for (int i = 0; i < input_shapes[j].size(); ++i) {
      input_num *= input_shapes[j][i];
    }
H
HappyAngel 已提交
93

Y
Yan Chunwei 已提交
94 95 96 97 98 99 100 101 102
    for (int i = 0; i < input_num; ++i) {
      input_data[i] = 1.f;
    }
  }

  for (int i = 0; i < warmup_times; ++i) {
    predictor->Run();
  }

103 104
  Timer ti;
  for (int j = 0; j < repeat; ++j) {
105
    ti.Start();
Y
Yan Chunwei 已提交
106
    predictor->Run();
107 108
    float t = ti.Stop();
    LOG(INFO) << "iter: " << j << ", time: " << t << " ms";
Y
Yan Chunwei 已提交
109 110 111
  }

  LOG(INFO) << "================== Speed Report ===================";
112 113 114
  LOG(INFO) << "Model: " << model_dir
            << ", power_mode: " << static_cast<int>(power_mode)
            << ", threads num " << thread_num << ", warmup: " << warmup_times
115
            << ", repeats: " << repeat << ", avg time: " << ti.LapTimes().Avg()
116
            << " ms"
117 118
            << ", min time: " << ti.LapTimes().Min() << " ms"
            << ", max time: " << ti.LapTimes().Max() << " ms.";
Y
Yan Chunwei 已提交
119 120 121 122 123 124 125 126 127 128 129

  auto output = predictor->GetOutput(0);
  auto out = output->data<float>();
  LOG(INFO) << "out " << out[0];
  LOG(INFO) << "out " << out[1];
  auto output_shape = output->shape();
  int output_num = 1;
  for (int i = 0; i < output_shape.size(); ++i) {
    output_num *= output_shape[i];
  }
  LOG(INFO) << "output_num: " << output_num;
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

  // please turn off memory_optimize_pass to use this feature.
  if (FLAGS_arg_name != "") {
    auto arg_tensor = predictor->GetTensor(FLAGS_arg_name);
    auto arg_shape = arg_tensor->shape();
    int arg_num = 1;
    std::ostringstream os;
    os << "{";
    for (int i = 0; i < arg_shape.size(); ++i) {
      arg_num *= arg_shape[i];
      os << arg_shape[i] << ",";
    }
    os << "}";
    float sum = 0.;
    std::ofstream out(FLAGS_arg_name + ".txt");
    for (size_t i = 0; i < arg_num; ++i) {
      sum += arg_tensor->data<float>()[i];
147
      out << paddle::lite::to_string(arg_tensor->data<float>()[i]) << "\n";
148 149 150 151
    }
    LOG(INFO) << FLAGS_arg_name << " shape is " << os.str()
              << ", mean value is " << sum * 1. / arg_num;
  }
Y
Yan Chunwei 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
}
#endif

}  // namespace lite_api
}  // namespace paddle

int main(int argc, char** argv) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir == "") {
    LOG(INFO) << "usage: "
              << "--model_dir /path/to/your/model";
    exit(0);
  }
165 166 167 168 169 170
  std::string save_optimized_model_dir = "";
  if (FLAGS_use_optimize_nb) {
    save_optimized_model_dir = FLAGS_model_dir;
  } else {
    save_optimized_model_dir = FLAGS_model_dir + "opt2";
  }
Y
Yan Chunwei 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

  auto split_string =
      [](const std::string& str_in) -> std::vector<std::string> {
    std::vector<std::string> str_out;
    std::string tmp_str = str_in;
    while (!tmp_str.empty()) {
      size_t next_offset = tmp_str.find(":");
      str_out.push_back(tmp_str.substr(0, next_offset));
      if (next_offset == std::string::npos) {
        break;
      } else {
        tmp_str = tmp_str.substr(next_offset + 1);
      }
    }
    return str_out;
  };

  auto get_shape = [](const std::string& str_shape) -> std::vector<int64_t> {
    std::vector<int64_t> shape;
    std::string tmp_str = str_shape;
    while (!tmp_str.empty()) {
      int dim = atoi(tmp_str.data());
      shape.push_back(dim);
      size_t next_offset = tmp_str.find(",");
      if (next_offset == std::string::npos) {
        break;
      } else {
        tmp_str = tmp_str.substr(next_offset + 1);
      }
    }
    return shape;
  };

  LOG(INFO) << "input shapes: " << FLAGS_input_shape;
  std::vector<std::string> str_input_shapes = split_string(FLAGS_input_shape);
  std::vector<std::vector<int64_t>> input_shapes;
207
  for (size_t i = 0; i < str_input_shapes.size(); ++i) {
Y
Yan Chunwei 已提交
208 209 210 211
    LOG(INFO) << "input shape: " << str_input_shapes[i];
    input_shapes.push_back(get_shape(str_input_shapes[i]));
  }

212 213 214 215 216
  if (!FLAGS_use_optimize_nb) {
    // Output optimized model
    paddle::lite_api::OutputOptModel(
        FLAGS_model_dir, save_optimized_model_dir, input_shapes);
  }
Y
Yan Chunwei 已提交
217 218 219

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
  // Run inference using optimized model
220 221 222 223 224 225 226
  paddle::lite_api::Run(
      input_shapes,
      save_optimized_model_dir,
      static_cast<paddle::lite_api::PowerMode>(FLAGS_power_mode),
      FLAGS_threads,
      FLAGS_repeats,
      FLAGS_warmup);
Y
Yan Chunwei 已提交
227 228 229
#endif
  return 0;
}