model_test.cc 6.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <string>
#include <vector>
#include "lite/api/paddle_api.h"
J
juncaipeng 已提交
19 20 21
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
Y
Yan Chunwei 已提交
22
#include "lite/api/test_helper.h"
23
#include "lite/core/device_info.h"
24
#include "lite/tests/utils/timer.h"
Y
Yan Chunwei 已提交
25 26 27
#include "lite/utils/cp_logging.h"
#include "lite/utils/string.h"

28 29
using paddle::lite::Timer;

Y
Yan Chunwei 已提交
30 31 32 33
DEFINE_string(input_shape,
              "1,3,224,224",
              "input shapes, separated by colon and comma");

34 35 36 37
DEFINE_bool(use_optimize_nb,
            false,
            "optimized & naive buffer model for mobile devices");

Y
Yan Chunwei 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
namespace paddle {
namespace lite_api {

void OutputOptModel(const std::string& load_model_dir,
                    const std::string& save_optimized_model_dir,
                    const std::vector<std::vector<int64_t>>& input_shapes) {
  lite_api::CxxConfig config;
  config.set_model_dir(load_model_dir);
  config.set_valid_places({
      Place{TARGET(kX86), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
  });
  auto predictor = lite_api::CreatePaddlePredictor(config);

  // delete old optimized model
  int ret = system(
      paddle::lite::string_format("rm -rf %s", save_optimized_model_dir.c_str())
          .c_str());
  if (ret == 0) {
    LOG(INFO) << "delete old optimized model " << save_optimized_model_dir;
  }
  predictor->SaveOptimizedModel(save_optimized_model_dir,
                                LiteModelType::kNaiveBuffer);
  LOG(INFO) << "Load model from " << load_model_dir;
  LOG(INFO) << "Save optimized model to " << save_optimized_model_dir;
}

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
void Run(const std::vector<std::vector<int64_t>>& input_shapes,
         const std::string& model_dir,
68
         const PowerMode power_mode,
Y
Yan Chunwei 已提交
69
         const int thread_num,
70
         const int repeat,
Y
Yan Chunwei 已提交
71 72 73
         const int warmup_times = 0) {
  lite_api::MobileConfig config;
  config.set_model_dir(model_dir);
74 75
  config.set_power_mode(power_mode);
  config.set_threads(thread_num);
Y
Yan Chunwei 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

  auto predictor = lite_api::CreatePaddlePredictor(config);

  for (int j = 0; j < input_shapes.size(); ++j) {
    auto input_tensor = predictor->GetInput(j);
    input_tensor->Resize(input_shapes[j]);
    auto input_data = input_tensor->mutable_data<float>();
    int input_num = 1;
    for (int i = 0; i < input_shapes[j].size(); ++i) {
      input_num *= input_shapes[j][i];
    }
    for (int i = 0; i < input_num; ++i) {
      input_data[i] = 1.f;
    }
  }

  for (int i = 0; i < warmup_times; ++i) {
    predictor->Run();
  }

96 97 98
  Timer ti;
  for (int j = 0; j < repeat; ++j) {
    ti.start();
Y
Yan Chunwei 已提交
99
    predictor->Run();
100 101
    ti.end();
    LOG(INFO) << "iter: " << j << ", time: " << ti.latest_time() << " ms";
Y
Yan Chunwei 已提交
102 103 104
  }

  LOG(INFO) << "================== Speed Report ===================";
105 106 107 108 109 110 111
  LOG(INFO) << "Model: " << model_dir
            << ", power_mode: " << static_cast<int>(power_mode)
            << ", threads num " << thread_num << ", warmup: " << warmup_times
            << ", repeats: " << repeat << ", avg time: " << ti.get_average_ms()
            << " ms"
            << ", min time: " << ti.get_min_time() << " ms"
            << ", max time: " << ti.get_max_time() << " ms.";
Y
Yan Chunwei 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

  auto output = predictor->GetOutput(0);
  auto out = output->data<float>();
  LOG(INFO) << "out " << out[0];
  LOG(INFO) << "out " << out[1];
  auto output_shape = output->shape();
  int output_num = 1;
  for (int i = 0; i < output_shape.size(); ++i) {
    output_num *= output_shape[i];
  }
  LOG(INFO) << "output_num: " << output_num;
}
#endif

}  // namespace lite_api
}  // namespace paddle

int main(int argc, char** argv) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir == "") {
    LOG(INFO) << "usage: "
              << "--model_dir /path/to/your/model";
    exit(0);
  }
136 137 138 139 140 141
  std::string save_optimized_model_dir = "";
  if (FLAGS_use_optimize_nb) {
    save_optimized_model_dir = FLAGS_model_dir;
  } else {
    save_optimized_model_dir = FLAGS_model_dir + "opt2";
  }
Y
Yan Chunwei 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

  auto split_string =
      [](const std::string& str_in) -> std::vector<std::string> {
    std::vector<std::string> str_out;
    std::string tmp_str = str_in;
    while (!tmp_str.empty()) {
      size_t next_offset = tmp_str.find(":");
      str_out.push_back(tmp_str.substr(0, next_offset));
      if (next_offset == std::string::npos) {
        break;
      } else {
        tmp_str = tmp_str.substr(next_offset + 1);
      }
    }
    return str_out;
  };

  auto get_shape = [](const std::string& str_shape) -> std::vector<int64_t> {
    std::vector<int64_t> shape;
    std::string tmp_str = str_shape;
    while (!tmp_str.empty()) {
      int dim = atoi(tmp_str.data());
      shape.push_back(dim);
      size_t next_offset = tmp_str.find(",");
      if (next_offset == std::string::npos) {
        break;
      } else {
        tmp_str = tmp_str.substr(next_offset + 1);
      }
    }
    return shape;
  };

  LOG(INFO) << "input shapes: " << FLAGS_input_shape;
  std::vector<std::string> str_input_shapes = split_string(FLAGS_input_shape);
  std::vector<std::vector<int64_t>> input_shapes;
  for (int i = 0; i < str_input_shapes.size(); ++i) {
    LOG(INFO) << "input shape: " << str_input_shapes[i];
    input_shapes.push_back(get_shape(str_input_shapes[i]));
  }

183 184 185 186 187
  if (!FLAGS_use_optimize_nb) {
    // Output optimized model
    paddle::lite_api::OutputOptModel(
        FLAGS_model_dir, save_optimized_model_dir, input_shapes);
  }
Y
Yan Chunwei 已提交
188 189 190

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
  // Run inference using optimized model
191 192 193 194 195 196 197
  paddle::lite_api::Run(
      input_shapes,
      save_optimized_model_dir,
      static_cast<paddle::lite_api::PowerMode>(FLAGS_power_mode),
      FLAGS_threads,
      FLAGS_repeats,
      FLAGS_warmup);
Y
Yan Chunwei 已提交
198 199 200
#endif
  return 0;
}