model_test.cc 6.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <string>
#include <vector>
#include "lite/api/paddle_api.h"
J
juncaipeng 已提交
19 20 21
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
Y
Yan Chunwei 已提交
22
#include "lite/api/test_helper.h"
23
#include "lite/core/device_info.h"
24
#include "lite/core/profile/timer.h"
Y
Yan Chunwei 已提交
25 26
#include "lite/utils/cp_logging.h"
#include "lite/utils/string.h"
27 28 29
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/basic_profiler.h"
#endif  // LITE_WITH_PROFILE
Y
Yan Chunwei 已提交
30

31
using paddle::lite::profile::Timer;
32

Y
Yan Chunwei 已提交
33 34 35 36
DEFINE_string(input_shape,
              "1,3,224,224",
              "input shapes, separated by colon and comma");

37 38 39 40
DEFINE_bool(use_optimize_nb,
            false,
            "optimized & naive buffer model for mobile devices");

Y
Yan Chunwei 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
namespace paddle {
namespace lite_api {

void OutputOptModel(const std::string& load_model_dir,
                    const std::string& save_optimized_model_dir,
                    const std::vector<std::vector<int64_t>>& input_shapes) {
  lite_api::CxxConfig config;
  config.set_model_dir(load_model_dir);
  config.set_valid_places({
      Place{TARGET(kARM), PRECISION(kFloat)},
  });
  auto predictor = lite_api::CreatePaddlePredictor(config);

  // delete old optimized model
  int ret = system(
      paddle::lite::string_format("rm -rf %s", save_optimized_model_dir.c_str())
          .c_str());
  if (ret == 0) {
    LOG(INFO) << "delete old optimized model " << save_optimized_model_dir;
  }
  predictor->SaveOptimizedModel(save_optimized_model_dir,
                                LiteModelType::kNaiveBuffer);
  LOG(INFO) << "Load model from " << load_model_dir;
  LOG(INFO) << "Save optimized model to " << save_optimized_model_dir;
}

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
void Run(const std::vector<std::vector<int64_t>>& input_shapes,
         const std::string& model_dir,
70
         const PowerMode power_mode,
Y
Yan Chunwei 已提交
71
         const int thread_num,
72
         const int repeat,
Y
Yan Chunwei 已提交
73 74 75
         const int warmup_times = 0) {
  lite_api::MobileConfig config;
  config.set_model_dir(model_dir);
76 77
  config.set_power_mode(power_mode);
  config.set_threads(thread_num);
Y
Yan Chunwei 已提交
78 79 80 81 82 83 84 85 86 87 88

  auto predictor = lite_api::CreatePaddlePredictor(config);

  for (int j = 0; j < input_shapes.size(); ++j) {
    auto input_tensor = predictor->GetInput(j);
    input_tensor->Resize(input_shapes[j]);
    auto input_data = input_tensor->mutable_data<float>();
    int input_num = 1;
    for (int i = 0; i < input_shapes[j].size(); ++i) {
      input_num *= input_shapes[j][i];
    }
H
HappyAngel 已提交
89

Y
Yan Chunwei 已提交
90 91 92 93 94 95 96 97 98
    for (int i = 0; i < input_num; ++i) {
      input_data[i] = 1.f;
    }
  }

  for (int i = 0; i < warmup_times; ++i) {
    predictor->Run();
  }

99 100
  Timer ti;
  for (int j = 0; j < repeat; ++j) {
101
    ti.Start();
Y
Yan Chunwei 已提交
102
    predictor->Run();
103 104
    float t = ti.Stop();
    LOG(INFO) << "iter: " << j << ", time: " << t << " ms";
Y
Yan Chunwei 已提交
105 106 107
  }

  LOG(INFO) << "================== Speed Report ===================";
108 109 110
  LOG(INFO) << "Model: " << model_dir
            << ", power_mode: " << static_cast<int>(power_mode)
            << ", threads num " << thread_num << ", warmup: " << warmup_times
111
            << ", repeats: " << repeat << ", avg time: " << ti.LapTimes().Avg()
112
            << " ms"
113 114
            << ", min time: " << ti.LapTimes().Min() << " ms"
            << ", max time: " << ti.LapTimes().Max() << " ms.";
Y
Yan Chunwei 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

  auto output = predictor->GetOutput(0);
  auto out = output->data<float>();
  LOG(INFO) << "out " << out[0];
  LOG(INFO) << "out " << out[1];
  auto output_shape = output->shape();
  int output_num = 1;
  for (int i = 0; i < output_shape.size(); ++i) {
    output_num *= output_shape[i];
  }
  LOG(INFO) << "output_num: " << output_num;
}
#endif

}  // namespace lite_api
}  // namespace paddle

int main(int argc, char** argv) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir == "") {
    LOG(INFO) << "usage: "
              << "--model_dir /path/to/your/model";
    exit(0);
  }
139 140 141 142 143 144
  std::string save_optimized_model_dir = "";
  if (FLAGS_use_optimize_nb) {
    save_optimized_model_dir = FLAGS_model_dir;
  } else {
    save_optimized_model_dir = FLAGS_model_dir + "opt2";
  }
Y
Yan Chunwei 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

  auto split_string =
      [](const std::string& str_in) -> std::vector<std::string> {
    std::vector<std::string> str_out;
    std::string tmp_str = str_in;
    while (!tmp_str.empty()) {
      size_t next_offset = tmp_str.find(":");
      str_out.push_back(tmp_str.substr(0, next_offset));
      if (next_offset == std::string::npos) {
        break;
      } else {
        tmp_str = tmp_str.substr(next_offset + 1);
      }
    }
    return str_out;
  };

  auto get_shape = [](const std::string& str_shape) -> std::vector<int64_t> {
    std::vector<int64_t> shape;
    std::string tmp_str = str_shape;
    while (!tmp_str.empty()) {
      int dim = atoi(tmp_str.data());
      shape.push_back(dim);
      size_t next_offset = tmp_str.find(",");
      if (next_offset == std::string::npos) {
        break;
      } else {
        tmp_str = tmp_str.substr(next_offset + 1);
      }
    }
    return shape;
  };

  LOG(INFO) << "input shapes: " << FLAGS_input_shape;
  std::vector<std::string> str_input_shapes = split_string(FLAGS_input_shape);
  std::vector<std::vector<int64_t>> input_shapes;
  for (int i = 0; i < str_input_shapes.size(); ++i) {
    LOG(INFO) << "input shape: " << str_input_shapes[i];
    input_shapes.push_back(get_shape(str_input_shapes[i]));
  }

186 187 188 189 190
  if (!FLAGS_use_optimize_nb) {
    // Output optimized model
    paddle::lite_api::OutputOptModel(
        FLAGS_model_dir, save_optimized_model_dir, input_shapes);
  }
Y
Yan Chunwei 已提交
191 192 193

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
  // Run inference using optimized model
194 195 196 197 198 199 200
  paddle::lite_api::Run(
      input_shapes,
      save_optimized_model_dir,
      static_cast<paddle::lite_api::PowerMode>(FLAGS_power_mode),
      FLAGS_threads,
      FLAGS_repeats,
      FLAGS_warmup);
Y
Yan Chunwei 已提交
201 202 203
#endif
  return 0;
}