model_test.cc 7.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
16
#include <sstream>
Y
Yan Chunwei 已提交
17 18 19 20
#include <string>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/api/test_helper.h"
21
#include "lite/core/device_info.h"
22
#include "lite/core/profile/timer.h"
Y
Yan Chunwei 已提交
23 24
#include "lite/utils/cp_logging.h"
#include "lite/utils/string.h"
25 26 27
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/basic_profiler.h"
#endif  // LITE_WITH_PROFILE
Y
Yan Chunwei 已提交
28

29
using paddle::lite::profile::Timer;
30

Y
Yan Chunwei 已提交
31 32 33
DEFINE_string(input_shape,
              "1,3,224,224",
              "input shapes, separated by colon and comma");
34 35 36
DEFINE_bool(use_optimize_nb,
            false,
            "optimized & naive buffer model for mobile devices");
37
DEFINE_string(arg_name, "", "the arg name");
38

Y
Yan Chunwei 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
namespace paddle {
namespace lite_api {

void OutputOptModel(const std::string& load_model_dir,
                    const std::string& save_optimized_model_dir,
                    const std::vector<std::vector<int64_t>>& input_shapes) {
  lite_api::CxxConfig config;
  config.set_model_dir(load_model_dir);
  config.set_valid_places({
      Place{TARGET(kARM), PRECISION(kFloat)},
  });
  auto predictor = lite_api::CreatePaddlePredictor(config);

  // delete old optimized model
  int ret = system(
      paddle::lite::string_format("rm -rf %s", save_optimized_model_dir.c_str())
          .c_str());
  if (ret == 0) {
    LOG(INFO) << "delete old optimized model " << save_optimized_model_dir;
  }
  predictor->SaveOptimizedModel(save_optimized_model_dir,
                                LiteModelType::kNaiveBuffer);
  LOG(INFO) << "Load model from " << load_model_dir;
  LOG(INFO) << "Save optimized model to " << save_optimized_model_dir;
}

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
void Run(const std::vector<std::vector<int64_t>>& input_shapes,
         const std::string& model_dir,
68
         const PowerMode power_mode,
Y
Yan Chunwei 已提交
69
         const int thread_num,
70
         const int repeat,
Y
Yan Chunwei 已提交
71 72
         const int warmup_times = 0) {
  lite_api::MobileConfig config;
73
  config.set_model_from_file(model_dir + ".nb");
74 75
  config.set_power_mode(power_mode);
  config.set_threads(thread_num);
Y
Yan Chunwei 已提交
76 77 78 79 80 81 82 83 84 85 86

  auto predictor = lite_api::CreatePaddlePredictor(config);

  for (int j = 0; j < input_shapes.size(); ++j) {
    auto input_tensor = predictor->GetInput(j);
    input_tensor->Resize(input_shapes[j]);
    auto input_data = input_tensor->mutable_data<float>();
    int input_num = 1;
    for (int i = 0; i < input_shapes[j].size(); ++i) {
      input_num *= input_shapes[j][i];
    }
H
HappyAngel 已提交
87

Y
Yan Chunwei 已提交
88 89 90 91 92 93 94 95 96
    for (int i = 0; i < input_num; ++i) {
      input_data[i] = 1.f;
    }
  }

  for (int i = 0; i < warmup_times; ++i) {
    predictor->Run();
  }

97 98
  Timer ti;
  for (int j = 0; j < repeat; ++j) {
99
    ti.Start();
Y
Yan Chunwei 已提交
100
    predictor->Run();
101 102
    float t = ti.Stop();
    LOG(INFO) << "iter: " << j << ", time: " << t << " ms";
Y
Yan Chunwei 已提交
103 104 105
  }

  LOG(INFO) << "================== Speed Report ===================";
106 107 108
  LOG(INFO) << "Model: " << model_dir
            << ", power_mode: " << static_cast<int>(power_mode)
            << ", threads num " << thread_num << ", warmup: " << warmup_times
109
            << ", repeats: " << repeat << ", avg time: " << ti.LapTimes().Avg()
110
            << " ms"
111 112
            << ", min time: " << ti.LapTimes().Min() << " ms"
            << ", max time: " << ti.LapTimes().Max() << " ms.";
Y
Yan Chunwei 已提交
113 114 115 116 117 118 119 120 121 122 123

  auto output = predictor->GetOutput(0);
  auto out = output->data<float>();
  LOG(INFO) << "out " << out[0];
  LOG(INFO) << "out " << out[1];
  auto output_shape = output->shape();
  int output_num = 1;
  for (int i = 0; i < output_shape.size(); ++i) {
    output_num *= output_shape[i];
  }
  LOG(INFO) << "output_num: " << output_num;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

  // please turn off memory_optimize_pass to use this feature.
  if (FLAGS_arg_name != "") {
    auto arg_tensor = predictor->GetTensor(FLAGS_arg_name);
    auto arg_shape = arg_tensor->shape();
    int arg_num = 1;
    std::ostringstream os;
    os << "{";
    for (int i = 0; i < arg_shape.size(); ++i) {
      arg_num *= arg_shape[i];
      os << arg_shape[i] << ",";
    }
    os << "}";
    float sum = 0.;
    std::ofstream out(FLAGS_arg_name + ".txt");
    for (size_t i = 0; i < arg_num; ++i) {
      sum += arg_tensor->data<float>()[i];
      out << std::to_string(arg_tensor->data<float>()[i]) << "\n";
    }
    LOG(INFO) << FLAGS_arg_name << " shape is " << os.str()
              << ", mean value is " << sum * 1. / arg_num;
  }
Y
Yan Chunwei 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158
}
#endif

}  // namespace lite_api
}  // namespace paddle

int main(int argc, char** argv) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir == "") {
    LOG(INFO) << "usage: "
              << "--model_dir /path/to/your/model";
    exit(0);
  }
159 160 161 162 163 164
  std::string save_optimized_model_dir = "";
  if (FLAGS_use_optimize_nb) {
    save_optimized_model_dir = FLAGS_model_dir;
  } else {
    save_optimized_model_dir = FLAGS_model_dir + "opt2";
  }
Y
Yan Chunwei 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

  auto split_string =
      [](const std::string& str_in) -> std::vector<std::string> {
    std::vector<std::string> str_out;
    std::string tmp_str = str_in;
    while (!tmp_str.empty()) {
      size_t next_offset = tmp_str.find(":");
      str_out.push_back(tmp_str.substr(0, next_offset));
      if (next_offset == std::string::npos) {
        break;
      } else {
        tmp_str = tmp_str.substr(next_offset + 1);
      }
    }
    return str_out;
  };

  auto get_shape = [](const std::string& str_shape) -> std::vector<int64_t> {
    std::vector<int64_t> shape;
    std::string tmp_str = str_shape;
    while (!tmp_str.empty()) {
      int dim = atoi(tmp_str.data());
      shape.push_back(dim);
      size_t next_offset = tmp_str.find(",");
      if (next_offset == std::string::npos) {
        break;
      } else {
        tmp_str = tmp_str.substr(next_offset + 1);
      }
    }
    return shape;
  };

  LOG(INFO) << "input shapes: " << FLAGS_input_shape;
  std::vector<std::string> str_input_shapes = split_string(FLAGS_input_shape);
  std::vector<std::vector<int64_t>> input_shapes;
  for (int i = 0; i < str_input_shapes.size(); ++i) {
    LOG(INFO) << "input shape: " << str_input_shapes[i];
    input_shapes.push_back(get_shape(str_input_shapes[i]));
  }

206 207 208 209 210
  if (!FLAGS_use_optimize_nb) {
    // Output optimized model
    paddle::lite_api::OutputOptModel(
        FLAGS_model_dir, save_optimized_model_dir, input_shapes);
  }
Y
Yan Chunwei 已提交
211 212 213

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
  // Run inference using optimized model
214 215 216 217 218 219 220
  paddle::lite_api::Run(
      input_shapes,
      save_optimized_model_dir,
      static_cast<paddle::lite_api::PowerMode>(FLAGS_power_mode),
      FLAGS_threads,
      FLAGS_repeats,
      FLAGS_warmup);
Y
Yan Chunwei 已提交
221 222 223
#endif
  return 0;
}