io.cpp 16.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dolphin8 已提交
15
#include "io/io.h"
W
wangliu 已提交
16
#include <vector>
L
liuruilong 已提交
17
#include "common/enforce.h"
L
liuruilong 已提交
18
#include "common/log.h"
L
liuruilong 已提交
19
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
20 21
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
22
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
23 24 25 26
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
D
dolphin8 已提交
27 28 29 30 31 32
#ifdef PADDLE_EXECUTOR_MULTITHREAD
#include <algorithm>
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif
W
wangliu 已提交
33 34 35 36

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
37 38
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
39 40
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
41 42 43 44 45 46
  fseek(file, 0, SEEK_END);
  long size = ftell(file);
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
47 48
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
49 50
  fclose(file);
  return data;
W
wangliu 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
}

static size_t ReadBuffer(const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = reinterpret_cast<uint8_t *>(malloc(size));

  size_t cur_len = 0;
  size_t nread;
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

template <typename Dtype, Precision P>
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
L
liuruilong 已提交
78
    const std::string &dirname, bool optimize, bool can_add_split) {
L
liuruilong 已提交
79 80
  auto program =
      this->LoadProgram(dirname + "/__model__", optimize, can_add_split);
L
liuruilong 已提交
81 82 83 84 85
  program.model_path = dirname;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
86 87 88
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &model_path, const std::string &para_path,
    bool optimize) {
L
liuruilong 已提交
89 90 91 92 93 94 95
  auto program = this->LoadProgram(model_path, optimize);
  program.para_path = para_path;
  program.is_commbine = true;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
96
const framework::Program<Dtype, P> Loader<Dtype, P>::LoadProgram(
L
liuruilong 已提交
97
    const std::string &model_path, bool optimize, bool can_add_split) {
L
liuruilong 已提交
98
  std::string model_filename = model_path;
W
wangliu 已提交
99 100 101 102 103 104 105
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(
L
liuruilong 已提交
106
      NULL, read_size, buf);
W
wangliu 已提交
107
  //
W
wangliu 已提交
108
  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");
W
wangliu 已提交
109
  //
W
wangliu 已提交
110
  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
W
wangliu 已提交
111
  //
112
  auto originProgramDesc = std::make_shared<framework::ProgramDesc>(c_program);
W
wangliu 已提交
113 114 115 116

  framework::Program<Dtype, P> program;
  program.originProgram = originProgramDesc;

117
  auto scope = std::make_shared<framework::Scope>();
W
wangliu 已提交
118 119 120
  program.scope = scope;

  for (const auto &block : originProgramDesc->Blocks()) {
121
    for (auto var_desc : block->Vars()) {
W
wangliu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
      auto var = scope->Var(var_desc->Name());

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }

L
liuruilong 已提交
144 145
  if (optimize) {
    framework::ProgramOptimize program_optimize;
L
liuruilong 已提交
146
    program.optimizeProgram =
L
liuruilong 已提交
147
        program_optimize.FusionOptimize(originProgramDesc, can_add_split);
L
liuruilong 已提交
148
  }
L
liuruilong 已提交
149 150 151 152 153 154
  if (optimize) {
    program.optimizeProgram->Description("optimize: ");
  } else {
    originProgramDesc->Description("program: ");
  }

W
wangliu 已提交
155 156 157 158 159
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
  return program;
}

template class Loader<CPU, Precision::FP32>;
L
liuruilong 已提交
160 161
template class Loader<FPGA, Precision::FP32>;
template class Loader<GPU_MALI, Precision::FP32>;
W
wangliu 已提交
162 163 164

#pragma mark - executor
template <typename Dtype, Precision P>
L
liuruilong 已提交
165 166
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
167
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
168 169 170 171 172 173 174 175 176
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
D
dolphin8 已提交
177 178 179
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  depManager.resize(blocks.size());
#endif
W
wangliu 已提交
180 181 182 183 184
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
185
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
186 187 188 189 190
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();
      ops_of_block_[*block_desc.get()].push_back(op_base);
D
dolphin8 已提交
191 192 193
#ifdef PADDLE_EXECUTOR_MULTITHREAD
      depManager[i].analysisDep(ops_of_block_[*block_desc.get()]);
#endif
W
wangliu 已提交
194 195
    }
  }
L
liuruilong 已提交
196 197 198 199 200
  if (program_.is_commbine) {
    InitCombineMemory();
  } else {
    InitMemory();
  }
W
wangliu 已提交
201 202 203 204
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
L
liuruilong 已提交
205
                                    framework::LoDTensor *tensor, char *&data) {
W
wangliu 已提交
206
  // 1. version
L
liuruilong 已提交
207 208
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
209 210

  // 2 Lod information
L
liuruilong 已提交
211 212 213 214
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, data, sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
L
liuruilong 已提交
215 216
  data += sizeof(uint64_t);

W
wangliu 已提交
217 218 219
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
220 221 222
    uint64_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
223
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
224 225 226 227 228 229 230

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
      DLOG << "tmp[k]: " << k << *(size_t *)data;
      data += sizeof(size_t);
    }

W
wangliu 已提交
231 232 233 234 235 236 237
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
238 239
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
240 241

  // 4. tensor desc
L
liuruilong 已提交
242 243 244
  int32_t size = *(int32_t *)data;
  data += sizeof(int32_t);

W
wangliu 已提交
245
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
246 247 248 249
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
  data += (sizeof(char) * size);
W
wangliu 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
285 286 287
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }
L
liuruilong 已提交
288
  data += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
289 290 291 292 293 294 295 296 297 298 299 300
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
301

L
liuruilong 已提交
302 303
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
304 305
        char *data = origin_data;
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
306
        delete origin_data;
W
wangliu 已提交
307 308 309 310 311 312 313 314 315 316 317
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
318
template <typename Dtype, Precision P>
L
liuruilong 已提交
319
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
320
  LOG(kLOG_INFO) << " begin init combine memory";
L
liuruilong 已提交
321
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
322
  char *data = origin_data;
L
liuruilong 已提交
323 324 325 326 327 328 329 330
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
331
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
332 333 334 335 336 337 338 339 340
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
L
liuruilong 已提交
341
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
342 343
}

W
wangliu 已提交
344
template <typename Dtype, Precision P>
W
wangliu 已提交
345 346
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
347 348 349 350 351 352
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
353
      to_predict_program_->Block(0);
D
dolphin8 已提交
354
  auto &ops = ops_of_block_[*to_predict_block.get()];
D
dolphin8 已提交
355
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
356
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
357
#endif
D
dolphin8 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  std::mutex m;
  std::condition_variable cv;
  std::queue<int> next;
  next.push(0);
  int rsize = ops.size();
  std::vector<int> status(rsize, 0);
  auto &threadPool = ThreadPool::getThreadPool();
  auto &dep = depManager[0];
  auto finishF = [&ops, &m, &cv, &next, &status, &rsize, &dep](int opi) {
    std::lock_guard<std::mutex> lk(m);
    rsize--;
    status[opi] = 2;
    for (int i : dep.getNext(opi)) {
      bool ok = true;
      for (int j : dep.getDeps(i)) {
        if (status[j] != 2) {
          ok = false;
          break;
        }
      }
      if (ok && (status[i] == 0)) {
        next.push(i);
      }
    }
    cv.notify_one();
  };
  for (;;) {
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, [&next, &rsize] { return rsize == 0 || !next.empty(); });
    if (rsize == 0) {
      break;
    }
    while (next.size() > 0) {
      int opi = next.front();
      next.pop();
      status[opi] = 1;
      threadPool.enqueue([opi, &ops, &finishF, &profile] {
        auto &op = ops[opi];
D
dolphin8 已提交
397
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
398 399 400 401
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
        profile[opi].tid = ThreadPool::getThreadPoolThreadId();
D
dolphin8 已提交
402
#endif
D
dolphin8 已提交
403
        ops[opi]->Run();
D
dolphin8 已提交
404
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
405 406
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
D
dolphin8 已提交
407
#endif
D
dolphin8 已提交
408 409 410
        finishF(opi);
      });
    }
W
wangliu 已提交
411
  }
D
dolphin8 已提交
412 413
#else
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
414
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
415 416 417 418 419 420 421 422 423
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
424 425
  }
#endif
W
wangliu 已提交
426
  auto last_op = ops.rbegin();
D
dolphin8 已提交
427

W
wangliu 已提交
428 429 430 431 432 433
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  // TODO expose profile info as an interface, user can get them to analysis
  //      the performance of their deepnet.
  FILE *df = fopen("net.dot", "w");
  fprintf(df, "digraph {\n");
  for (int i = 0; i < ops.size(); i++) {
    for (int j : dep.getNext(i)) {
      fprintf(df, "op_%d -> op_%d\n", i, j);
    }
  }
  for (int i = 0; i < ops.size(); i++) {
    fprintf(df, "op_%d[label=\"%s (%d)\"]\n", i, ops[i]->Type().c_str(), i);
  }
  fprintf(df, "}\n");
  fclose(df);
#endif
  FILE *pf = fopen("profile.out", "w");
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i, ops[i]->Type().c_str(),
            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
  }
  fclose(pf);
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(), (float)p.second,
           (float)p.second / _ptotal * 100.0);
  }
  printf("====================[---------]======================\n");
#endif

L
liuruilong 已提交
480
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
481 482 483 484 485
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
486 487 488
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
489
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
490 491
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
492 493 494 495 496 497 498 499
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
500 501 502
}

template class Executor<CPU, Precision::FP32>;
L
liuruilong 已提交
503 504
template class Executor<FPGA, Precision::FP32>;
template class Executor<GPU_MALI, Precision::FP32>;
W
wangliu 已提交
505 506

}  // namespace paddle_mobile